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Abstract—Remarkable successes in deep learning have spurred
significant growth in the field of neural architecture search (NAS),
which is rapidly advancing as a promising technique for automat-
ing the design of network architecture. From an optimization
standpoint, a NAS task for a given search space can be viewed as
a multi-objective optimization problem (MOP) when considering
multiple design criteria simultaneously (e.g., prediction accuracy,
architecture complexity, hardware efficiency). However, whether
a NAS problem is a multimodal multi-objective optimization
problem or not (i.e., whether a single non-dominated solution
in the objective space has multiple different neural network
architectures or not) has not been examined in the literature.
This presents an intriguing research question that merits fur-
ther investigation. To fill this gap, we examine the multimodal
nature of seven multi-objective NAS problems. By doing so, this
work aims to help MOP researchers to better understand the
characteristics of the multi-objective NAS problems.

Index Terms—Neural architecture search, Multi-objective op-
timization, Multimodal multi-objective optimization.

I. INTRODUCTION

Recent years have witnessed the emergence of novel neural
network architecture designs such as ResNet [1], Inception [2],
Transformer [3] and GPT-3 [4]. These new architectures have
greatly promoted the successes of deep learning in many real-
world scenarios. However, manual design of an appropriate
deep neural network architecture for a given task typically
requires the involvement of human experts and a number of
trials and errors [5]. That is, this process is time-consuming
and prone to errors.

In contrast, neural architecture search (NAS) is a promis-
ing technique that automates the design of neural network
architecture, which decreases the heavy involvement of human
expert. The common goal of NAS is to find an appropriate
neural network architecture in terms of prediction accuracy
(or prediction error), which is the most important objective.
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However, in real applications, we also need to consider some
other objectives (which are usually conflicting with the main
objective: accuracy maximization). For instance, in certain
scenarios such as hardware-dependent NAS tasks targeting
mobile or embedded devices [6], it is crucial to strike a
balance between accuracy and speed (computation time). De-
signing a neural network solely for high accuracy may lead
to a large-scale computationally expensive model, which is
difficult to implement in low-power devices. Therefore, from
the optimization point of view, NAS tasks can be treated
as multi-objective optimization problems (i.e., multi-objective
NAS [7]).

Although multi-objective NAS can fall under the field of
multi-objective optimization (MOO) [8], it is very challeng-
ing to employ conventional optimization methods, such as
gradient-based methods [9], to solve them. First, due to the
blackbox nature of NAS, it is difficult to mathematically
formulate each objective function. Second, the decision-maker
may have unknown preference among objectives. This means
that the use of scalarizing approaches is not always appropriate
(e.g., we cannot use the weighted sum with the pre-specified
weight values for all decision makers since each decision
maker has different preferences). One promising approach to
search for a wide variety of non-dominated solutions along
the trade-off surface among multiple objectives is the use
of population-based evolutionary multi-objective optimization
(EMO) algorithms [10]–[12]. We can find a number of dif-
ferent non-dominated solutions by a singe run of an EMO
algorithm.

Recently, evolutionary computation (EC) methods have
gained significant attention in the field of NAS due to their
impressive performance in discovering optimal or near-optimal
neural network architecture [13]–[15]. However, compared
to the overall progress in the NAS field, utilizing EMO
algorithms to tackle multi-objective NAS still falls behind [16].
To better design advanced EMO algorithms targeting multi-
objective NAS, it is not trivial to study whether there exists
some specific characteristics of fitness landscapes in multi-
objective NAS from the optimization point of view, such as
the multimodal nature [17]. In fact, many real-world problems
can be classified as multimodal multi-objective problems. It is
essential to identify whether there exists multimodal nature in
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multi-objective NAS. On one hand, it is very likely that differ-
ent model architectures can have the same performance on a
given task. On the other hand, specific designed algorithms for
multimodal multi-objective optimization may be needed once
identifying the multimodal nature of multi-objective NAS.
This is because compared to the common EMO algorithms,
multimodal multi-objective evolutionary algorithms (MMEAs)
have the advantage of maintaining the solution space diversity
[18]. In this paper, to address the above issue, we examine the
multimodal nature of multi-objective NAS by using a recently
introduced multi-objective NAS benchmark called EvoXBench
[16]. To be specific, we focus on examining the multimodal
nature of specific test problems with the NAS-Bench-101
(NB101) [19], NAS-Bench-201 (NB201) [20], and NATS-
Bench search space [21]. These tabular benchmark problems
can support our exhaustive evaluation of all unique model
architectures over the entire search space.

The remainder of this paper is organized as follows. In
Section II, the preliminaries on multi-objective NAS and
multimodal nature are introduced. The details of the examined
multi-objective NAS benchmark problems are described in
Section III. Experimental results are reported in Section IV
to illustrate whether there exists multimodal nature on the
general multi-objective NAS. Finally, the conclusion is given
in Section V.

II. PRELIMINARIES

A. Multi-objective NAS

In general, a multi-objective NAS task is inherently a bilevel
problem, where the upper-level task is to optimize architecture
and the lower-level task is to optimize the parameter of a given
model architecture. Mathematically, it can be formulated as a
multi-objective problem as follows:

Minimize
x∈Ωx

F (x) = [f1(x;ω
∗(x)), f2(x), ..., fm(x)]

Subject to ω∗(x) ∈ argmin
ω∈Ωω

L(ω;x)

where Ωx and Ωω are the architecture space and the associated
weight space, respectively. F (x) is a m-dimensional vector
that represents m objectives. f1(·) denotes the prediction error
objective that conditions on the trained optimal weight ω∗;
f2(·), ..., fm(·) denote the other objectives that only condition
on the model architecture (e.g., model complexity [22] and
hardware latency [23]).

B. Multimodal Nature

According to a recent review [18], the definition of multi-
modal multi-objective optimization problems (MMOPs) is still
controversial. One common consensus on defining MMOPs is
that multiple clearly separated solutions in the decision space
map to the same or very similar points on the Pareto front in
the objective space. These solutions are considered equivalent.
In this paper, we consider a multi-objective NAS problem
that exhibits multimodal nature (i.e., MMOPs) when there
exist multiple equivalent optimal solutions that correspond to

Fig. 1: Illustration of multimodal nature.

different model architectures, but achieve the same or similar
level of performance on each objective.

We define the equivalency as follows: formally, for two
given separated solutions x and y in the decision space, they
are defined as equivalent solutions if ∥F (x) − F (y)∥ ≤ ε,
where ∥ · ∥ is an arbitrary norm operator and ε is a pre-
defined non-negative real number that controls the relaxation
on equivalency. As illustrated in Fig. 1, when ε = 0, only
the solutions a and c that map to the exact same point in the
objective space are defined as equivalent. When we allow a
relaxation on equivalency, i.e., ε > 0, the solution a, b, and c
can be equivalent. Both solutions d and e have no equivalent
solution.

In real-world scenarios, many MOPs have proved to exhibit
multimodal natures, such as architecture layout design [24],
multi-objective knapsack optimization problem [25] and rock
engine design [26]. When we solve MOPs, it is worth to
finding different equivalent solutions that are separated in the
decision space but close in the objective space. This because
multiple alternative solutions will benefit the decision makers
by providing more choices, especially when some solutions
are hard to attain in reality.

In the context of multi-objective NAS, it is very likely that
there exists multimodal nature on this real-world problem. This
is because we can expect that different model architectures
show the same or very similar performances on each objective.
Note that the study [16] showed that NAS with NB101 and
NB201 search spaces exhibit multimodal natures, as they con-
tain a number of different optimal architectures that has very
close performances in terms of prediction error (i.e., single-
objective NAS). However, whether there exists multimodal
nature on multi-objective NAS is still unclear. To examine the
multimodal nature of multi-objective NAS, we consider both
the exact equivalency and relaxed equivalency (i.e., ε = 0 and
ε > 0). This is because obtaining the exact equivalent solutions
may be hard on the continuous objective space of multi-
objective NAS. Additionally, the stochastic training process
for optimal weights will add noise to the evaluation of a model
architecture (i.e., prediction error).

III. EXAMINED MULTI-OBJECTIVE NAS BENCHMARK

In this section, we will provide a thorough introduction to
the multi-objective NAS benchmark problems that were ex-
amined to determine whether they exhibit multimodal natures.
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TABLE I: The detailed information of the examined multi-objective NAS benchmark problems in this paper.

Problem Ω |Ω| D M Objectives

C-10/MOP1 NB101 423,624 26 2 fe, fc
1

C-10/MOP2 NB101 423,624 26 3 fe, fc
1 , fc

2
C-10/MOP3 NATS 32,768 5 3 fe, fc

1 , fc
2

C-10/MOP4 NATS 32,768 5 4 fe, fc
1 , fc

2 , fh1
1

C-10/MOP5 NB201 15,625 6 5 fe, fc
1 , fc

2 , fh1
1 , fh1

2

C-10/MOP6 NB201 15,625 6 6 fe, fc
1 , fc

2 , fh2
1 , fh2

2 , fh2
3

C-10/MOP7 NB201 15,625 6 8 fe, fc
1 , fc

2 , fh1
1 , fh1

2 , fh2
1 , fh2

2 , fh2
3

A recent study [16] proposed a unified and comprehensive
multi-objective NAS benchmark, dubbed EvoXBench, which
covers seven search spaces and up to six objectives (i.e.,
prediction error, model complexity related performances, and
hardware devices related performances). We conduct experi-
ments to examine the multimodal nature of the specific test
problems with NAS-Bench-101, NAS-Bench-210 and NATS-
Bench search space. Note that only the channel size search
space (i.e., configuration for the channel size in each layers) is
considered as the search space of model architecture for multi-
objective NAS benchmark problems. Thus, all these three
search spaces have a limited size of search space, enabling
exhaustive examination of their multimodal natures over the
entire search space. In Table I, we list the details of these
examined multi-objective NAS benchmark problems.

In Table I, Ω denotes the model architecture search space
and |Ω| is the number of totally unique models in terms of
the encoding in their original paper; D and M are the number
of decision variables and objectives, respectively. The number
of objectives of the examined test problems ranges from two
to eight, including the mean prediction error fe, the model
complexity related performances f c, and the hardware devices
related performances fH . In the above test problems, the
model complexity related performances include the number of
weights and floating point operations. The hardware devices
set H of these test problems includes GPUs (h1) and Eyeriss
(h2) [27], with the related performances of hardware latency,
energy consumption and arithmetic intensity.

For NB101 search space, each model architecture is encoded
by a 7-vertex directed acyclic graph (DAG) with 21 possible
edges, which can be represented by a 7 × 7 upper-triangular
binary matrix. Three operations including 3 × 3 convolution,
1 × 1 convolution and 3 × 3 max-pooling can be chosen for
each of the 5 vertices (removing the fixed input and output
vertices). Thus, there are a total 221 × 35 ≈ 510M possible
unique graphs in this encoding. However, a large number of
encodings correspond to invalid graphs, since the maximum
number of edges is limited to nine for exhaustive enumeration.
Also, some different encodings decode isomorphic graphs that
exhibit equivalent model architecture. After de-duplication and
filtering invalid encodings, we identify 423,624 total unique
model architectures for NB101 search space.

For NB201 search space, each model architecture is repre-
sented as a directed acyclic graph with 4 nodes and 6 edges,
where the nodes are densely connected. Each edge is asso-

ciated with 5 representative operation candidates, including
zeroize, skip connect, 1×1 convolution, 3×3 convolution
and 3×3 average pooling, where zeroize is the operation of
dropping the edge that eliminates the restriction on the search
topology of DAG. Thus, for NB201 search space, there are
56 = 15625 total unique model architecture by using the
encoding of 6-dimensional vectors, where the i-th element
denotes the operation in the i-th edge.

NATS is a newly proposed NAS benchmark for both the
topology search and channel size search, where the size refers
to the number of channels configured to each layer. For
the multi-objective NAS test problems with NATS search
space listed in Table 1, only the channel size search space
is considered. In the channel size search space of NATS, 8
candidates for the number of channels are pre-defined for each
of the 6 layers. Thus, there are 85 = 32767 total unique models
that can be encoded by a 5-dimensional vector, where the i-th
elements denotes the number of channels in the i-th layer.

IV. EXPERIMENTAL STUDY

In this section, we show our experimental study on ex-
amining the multimodal natures of the multi-objective NAS
benchmark problems introduced in Section III. Specially, we
examine the benchmark problems with NB101, NB201, and
NATS search space, respectively.

A. Multimodal Nature on NB101 Search Space

We first examine whether there exists multimodal natures
on the multi-objective NAS benchmark problems with NB101
search space, i.e., C-10/MOP1-2 test problems.

As introduced in Section III, in NB101 search space, a
large number of encodings will just decode invalid graphs
or isomorphic graphs. However, the analysis of multimodal
nature in NAS should focus on the uniqueness of the resulting
models, rather than just the uniqueness of the graphs them-
selves. Therefore, we first filter out invalid graphs and employ
an iterative graph hashing algorithm [28] to identify the
model-level unique solutions. Then, exhaustive enumeration
can be conducted in this resulting search space to ensure
we are considering the full range of possible unique models.
The resulting normalized model-level unique solutions in the
objective space are shown in Fig. 2 (a) and 2 (b).

From Fig. 2 (a) and 2 (b), we can see that in many regions
multiple solutions are overlapped or very close to each other,
which indicates that there may exist multimodal nature on
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(a) 2-objective NAS (Ω = NB101) (b) 3-objective NAS (Ω = NB101) (c) 2-objective NAS (Ω = NB101) (d) 3-objective NAS (Ω = NB101)

Fig. 2: Obtained Unique solutions for the multi-objective NAS with NB101 search space.

(a) 2-objective NAS (Ω = NB101) (b) 3-objective NAS (Ω = NB101)

Fig. 3: The number of equivalent paired solutions with a distance measure that falls within the target minimum distance for
NB101 search space.

Fig. 4: The equivalent architectures that have exactly the same performance on each objective for 2-objective NAS with NB101
search space on the validation set.

the multi-objective NAS with NB101 search space. Then,
we perform non-dominated sorting by using an efficient non-
dominated sort method described in [29]. The achieved Pareto
fronts are shown in Fig. 2 (c) and 2 (d).

To examine whether there exists multimodal nature (i.e.,
whether there exist equivalent solutions in the Pareto front),
we calculate the minimum distance of each solution to other
solutions. As we have clarified in Section 2.2, two solutions
with their distance within a pre-defined acceptable threshold
value can be considered as equivalent solutions. Thus, as

shown in Fig. 3, we calculate the number of paired solutions
with a distance equal to or smaller than a specific range of
threshold values DTH , respectively (i.e., the number of paired
solutions that are equivalent with a relaxation ε ∈ DTH ).
The red dots are the starting point of minimum distance that
indicates the existence of equivalent paired solutions.

In Fig. 3 (a), we can observe that in 2-objective NAS
with NB101 search space, there exists one pair of equivalent
solutions with a distance of zero between them. It means
that these two different model architectures show the exact
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TABLE II: Summary on the number of groups where different specific number of equivalent solutions map to the exact same
point in the objective space for 2-objective NAS with NB101 search space.

Group size 2 3 4 5 6 7 8 9 10 11 12 13
# Groups 38876 15503 7517 3992 2228 1239 721 404 224 121 54 32

Group size 14 15 16 17 18 21 27 30 48 54 61 83
# Groups 17 6 5 3 1 2 2 1 1 1 1 1

(a) 5-objective NAS (b) 6-objective NAS (c) 8-objective NAS

(d) 3-objective NAS (e) 4-objective NAS

Fig. 5: The number of equivalent paired solutions with a distance measure that falls within the target minimum distance for
NB201 and NATS search space.

same performance, which indicates the multimodal nature of
multi-objective NAS with NB101 search space. The obtained
equivalent paired solutions in the objective space are shown in
red points in Fig. 2 (c). The model architectures of these two
equivalent solutions are illustrated in Fig. 4. We can observe
that the two model architectures in Fig. 4 are totally different,
but they achieve the exact same performance on each objective.

However, in 3-objective NAS with NB101 search space as
shown in Fig. 3 (b), no equivalent paired solutions with a
distance of zero can be found (i.e., no multimodal nature). We
can only find equivalent paired solutions when we increase the
value of acceptable minimum distance to identify equivalent
solutions (e.g., ε ≥ 1.0205 × 10−4). The obtained equivalent
paired solutions in the objective space are shown in Fig. 2 (d).

Considering that there exists multimodal nature on the 2-
objective NAS with NB101 search space, we examine whether
there exists multimodal nature in other regions of the search
space besides Pareto front (i.e., including the dominated so-
lutions) on this test problem. Our experimental results show

that a group of equivalent solutions will map to the exact
same point in the objective space. Also, there exist multiple
such groups that consist of a different numbers of equivalent
solutions (i.e., with different group sizes). In Table II, we
record the number of such groups where a specific number
of different solutions are equivalent with ε = 0.

In Table II, the group size denotes the number of equivalent
solutions that map to the same point in the objective space,
and # group denotes the number of such groups with the
same group size. Table II shows that the 2-objective NAS
exhibits very clear multimodal nature on the whole NB101
search space. Besides, we can find different numbers of
equivalent solutions ranging from 2 to 83. It suggests that we
should consider the multimodal nature when designing EMO
algorithms to solve multi-objective NAS (e.g., NB101 search
space), since many solutions have exactly the same objective
values but represent completely different model architectures.
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TABLE III: Summary of the experimental results on examining the multimodal nature of different multi-objective NAS
benchmark problems using the validation set.

Results on validation set

Problem Ω M multimodal nature # POS # Equivalent pairs Minimum Distance

C-10/MOP1 NB101 2 ✓ 45 1 0
C-10/MOP2 NB101 3 X 60 0 1.0205e-4
C-10/MOP3 NATS 3 X 380 0 2.1e-3
C-10/MOP4 NATS 4 X 962 0 3.7e-3
C-10/MOP5 NB201 5 X 123 0 1.5281e-4
C-10/MOP6 NB201 6 X 105 0 8.1405e-6
C-10/MOP7 NB201 8 X 455 0 1.5281e-4

TABLE IV: Summary of the experimental results on examining the multimodal nature of different multi-objective NAS
benchmark problems using the testing set.

Results on testing set

Problem Ω M multimodal nature # POS # Equivalent pairs Minimum Distance

C-10/MOP1 NB101 2 ✓ 44 1 0
C-10/MOP2 NB101 3 X 66 0 4.1317e-5
C-10/MOP3 NATS 3 X 347 0 8.0601e-4
C-10/MOP4 NATS 4 X 891 0 4.8e-3
C-10/MOP5 NB201 5 X 122 0 4.8176e-4
C-10/MOP6 NB201 6 ✓ 96 3 0
C-10/MOP7 NB201 8 X 434 0 3.9036e-4

B. Multimodal Nature on NB201 and NATS Search Space

Similar to the previous subsection, we examine the multi-
modal nature of multi-objective NAS on benchmark problems
with NB201 and NATS search spaces, i.e., C-10/MOP3-7 test
problems. In Fig. 5, we illustrate the plots of the number of
equivalent paired solutions over a range of minimum distances
for different test problems.

Fig. 5 (a)-(c) show that on all three test problems, no
equivalent paired solutions can be found with a distance of
zero. It indicates that the multi-objective NAS benchmark
problems with NB201 search space exhibit no multimodal
nature. However, in Fig. 5 (b), we observe that the red point is
very close to (almost overlapping with) the minimum distance
of zero (i.e., ε = 8.1405×10−6). This suggests that there exist
solutions that are very similar to each other in the objective
space, which can be considered equivalent with a very small
relaxation in the definition of equivalency (i.e., ε could be set
to a very small value). Actually, in the upcoming subsection,
we will demonstrate that the performance evaluation of model
architectures on the testing set for 6-objective NAS with
the NB201 search space shows the evidence of multimodal
nature. Based on our results, we can conclude that the 6-
objective NAS with the NB201 search space has the potential
to demonstrate multimodal nature.

For multi-objective NAS with the NATS search space,
as shown in Fig. 5, we can observe that there exists no
multimodal nature on these test problems. In addition, the red
points are far away from the original point. It suggests that,
even when we relax the definition of equivalency by setting
a small threshold value, identifying the multimodal nature
of multi-objective NAS with the NATS search space can be
challenging (i.e., multimodal nature can only be observable

when using a larger value of ε).

C. Multimodal Nature of Multi-objective NAS on Testing Set

In the previous subsections, we discussed the multimodal
nature of various multi-objective NAS benchmark problems.
However, the experimental results we presented were based on
the evaluation of model architectures by using the validation
set, where the first objective is associated with the validation
prediction error. In this subsection, we will examine the
multimodal nature of multi-objective NAS by evaluating the
performance of model architectures on the testing set. It can
help us better understand the generalization of the multimodal
nature of model architectures to novel data.

We summarize the experimental results on the examination
of the multimodal nature of various multi-objective NAS
benchmark problems on the validation set and testing set in
Tables III and IV.

In Tables III and IV, we introduce several key metrics
that help us better understand the examination of multimodal
nature of different multi-objective NAS problems. Specifically,
we use M to represent the number of objectives, and #POS
to represent the number of Pareto optimal solutions on the
Pareto front that can be obtained through exhaustive enu-
meration. Additionally, #Equivalent pairs denotes the number
of paired solutions that have the exact same performance on
each objective. The minimum distance represents the smallest
distance between two paired solutions that we can find. This
quantity helps to determine the smallest threshold value of
ε, which defines a relaxation in equivalency that allows for
finding equivalent solutions.

We can observe that 2-objective NAS with the NB101
search space (C-10/MOP1) exhibit multimodal nature on both
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(a) 1st equivalent architectures (b) 2nd equivalent architectures

(c) 3rd equivalent architectures

Fig. 6: Three equivalent architectures that have the exact same performance on each objective for 6-objective NAS with the
NB201 search space on the testing set.

validation and testing set. For 6-objective NAS with the
NB201 search space (C-10/MOP6), it exhibits multimodal
nature on the testing set. We illustrated the model architectures
of the found equivalent pairs in Fig. 6. On the validation set,
no two solutions have the exact same objective values for
C-10/MOP6. However, as we have explained, its minimum
distance (i.e., 8.1405× 10−6) is very small on the validation
set. It means that we can easily find its multimodal nature
when slightly increasing the equivalency relaxation ε to a very
small value.

On other multi-objective NAS problems with the NB201
search space (i.e., C-10/MOP5 and 7), we find no multimodal
nature when considering the equivalency based on ε = 0.
However, they can exhibit multimodal natures when we ad-
just the equivalency relaxation ε to a slightly larger value.
Multi-objective NAS problems with the NATS search space
also exhibit no multimodal nature when considering ε = 0.
Besides, their minimum distances between any two solutions
we can find are large. Thus, it seems that it is challenging to
find multimodal nature on the multi-objective NAS with the
NATS search space.

V. CONCLUSION

In this paper, we examined the multimodal nature of multi-
objective neural architecture search. More specifically, we
searched for different architectures which have (almost) the

same performance in the objective space. Our experimental
results showed that on some multi-objective NAS benchmark
problems, there exists multimodal nature. Some other prob-
lems exhibit no multimodal nature when we consider the
exact equivalency (i.e., ε = 0). However, these problems can
exhibit multimodal nature if we allow for a small relaxation on
defining the equivalency. There are still a number of problems
that exhibit no multimodal nature even if we consider a small
relaxation on equivalency. Interestingly, we observed that on
the other objective space besides the Pareto front, there exist
a large number of equivalent solutions that achieve the exact
same performance on each objective for many problems. All
these results suggest that it is worth paying attention to the
multimodal nature when we design EMO algorithms to solve
multi-objective NAS problems.
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