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Abstract—Trading volume is an important variable to suc-
cessfully capture market risks along with asset price/returns.
Recently, there has been a growing interest in deep learning
methods to forecast the trading volume of stocks using historical
volatility as a feature. Unlike the existing work, a novel data-
driven log volatility forecast is proposed in this paper as an extra
feature to improve trading volume forecasts. Recently, neural
networks for volatility and neural nets for electricity demand
forecasting, constructed with nnetar function, have shown to
be superior. The novelty of this paper is to demonstrate the
neural network based on the nnetar function from the forecast
package in R for trading volume forecast shows superiority over
the other neural network.

Index Terms—Cryptocurrencies, Neural Networks, Trading
Volume

I. INTRODUCTION

The total number of shares of a stock or a financial asset
bought and sold within a specified period is known as trading
volume. Trading volume helps to capture the overall volume
and liquidity in the market for a given stock. Elevated trading
volume frequently signifies a notable degree of interest and
engagement among investors, whereas limited trading volume
might imply reduced market interest or participation. For
investors and traders, trading volume is an essential metric
as it measures the significant impact of price movements
on the stock/market. Accurate trading volume forecasts pro-
vide valuable insights into market dynamics, aiding investors,
traders, regulators, and other stakeholders in making informed
decisions and ensuring the smooth functioning of financial
markets. Thus, forecasting trading volume in different markets
has become a fascinating research topic among scholars.

Many researchers have incorporated the trading volume of
stocks in different studies with different scopes. In most cases,
the trading volume is considered an explanatory variable to
obtain predictions/forecasts of risks/volatility and stock prices.
[2] demonstrates that the daily trading volume substantially
influences the variability in daily returns, suggesting a robust

connection between trading volume and return volatility. [3]
investigates trading volume and downside trading volume of
the stock spot market and futures markets, and it can be used to
predict the downside risk. Moreover, studies such as [4]–[6] in-
quire relation between trading volume and volatility/volatility
forecasts using different models. These studies confirm there
is a strong relation between the two variables, volatility and
trading volume, and thus, in regression-type models, trading
volume is an important variable to predict trading volatility and
vice versa. It is important to note that there are fluctuations
in the variance of asset (stock) returns as time progresses.
[7] proposes that utilizing GARCH coefficient BS models is a
suitable approach for capturing changing variances in data over
time. Within the realm of academic writing, predictions regard-
ing conditional volatility are derived by extracting the square
root of the forecasted conditional variance. [8] highlights that
this estimation’s asymptotic variance is greater, rendering it an
inefficient approach for acquiring volatility estimates. Within
the context of this article, we adopt recently introduced data-
driven exponentially weighted moving average (DDEWMA)
volatility forecast models to directly generate forecasts for
volatility (as opposed to variance) and use them as a new
feature to obtain trading volume forecasts.

Neural networks started to get popular during the latter part
of the 1980s. There was a lot of excitement about this new
approach, but some of the excitement was a bit exaggerated.
Researchers from fields like machine learning, mathematics,
and statistics study the characteristics of neural networks,
leading to enhancements in algorithms and the establishment
of a more refined methodology. Support vector machines
and boosting are two examples of the ways machine learns.
However, neural networks have been identified as a better
alternative because they could work more automatically. After
2010, neural networks came back with a new name,“deep
learning,” and new designs for how they operate (see [13]
for more details).
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The use of neural networks in trading volume is popular
among scholars. In [1], authors designed a backpropagation
(BP) NN to forecast monthly futures trading volume for the
Winnipeg commodity exchange. Trading volume is predicted
based on several independent variables, and the authors have
concluded that neural networks can produce better forecasts
against the naive model using the Theil U statistic and
even outperform the autoregressive integrated moving average
(ARIMA) model. [10] establish the BP NN model to predict
the carbon trading price and carbon trading volume, and
authors have shown that the model is effective. The authors
of [11] created a combined prediction system that relies
on artificial neural networks to estimate the daily trading
volume of Bitcoin. They utilized two distinct types of artificial
neural networks (radial basis function neural networks and
generalized regression neural networks) to predict the Bitcoin
trading volume. Through this combined predictive approach,
the proposed system managed to decrease forecasting errors
significantly. In a recent study conducted by [12], the focus
was on determining the predictability of trading volume using
its historical lags and establishing the level of model complex-
ity required to provide precise predictions.

Different choices are available for setting up a neural
network, and here in this study, we consider two popular
approaches for time series data. The first approach uses
the keras package which connects with the tensorflow
packages to fit a neural network model, and we refer to this as
the neural network (NN) in this study. The NN interfaces with
optimized Python code to build a recurrent neural network
(RNN). The second approach uses the nnetar function from
the forecast package [14] in R to fit a neural network
model, and we refer to this as nnetar for convenience. The
nnetar network fits a neural network dynamic regression model
(p, P, k)m model, where p and P are the autoregressive (AR)
orders of the non-seasonal and seasonal parts, and k is the
number of nodes in the hidden layer. This model has been used
in many applications, such as electricity demand [16] and [17].
Using NN and nnetar network, we predict/forecast daily log
trading volumes of four technological stocks: Apple (AAPL),
Microsoft (MSFT), NVIDIA (NVDA), and Intel (INTC), and
four cryptocurrencies: Bitcoin (BTC-USD), Ethereum (ETH-
USD), Tether USDt (USDT-USD), and Binance Coin (BNB-
USD) based on asset daily log returns and daily log volatility.

The rest of the paper is structured as outlined below. In Sec-
tion II, we present the theories behind the DDEWMA volatility
forecast and describe the neural network’s architecture. Section
III presents the results of our experiments. Lastly, we conclude
with our final remarks in Section IV.

II. METHODOLOGY

A. Data-Driven EWMA volatility forecast

In Finance, the stock prices (price Pt, at time t) are modeled
as a geometric Brownian motion, and log returns (rt) of the
stocks can be calculated using log Pt − log Pt−1. Research
has revealed that log returns often deviate from the normal

distribution, with the majority exhibiting a t distribution char-
acterized by heavy tails in most instances (see [8] and [15]
for more details). If the data are t-distributed, it is important
to determine the degrees of freedom to make inferences, and
[8] proposed a technique to determine appropriate degrees of
freedom using the sign correlation.

Let X be a random variable and X follows a student’s t
distribution. The corresponding degrees of freedom (d.f.) ν
can be computed by solving,

2
√
ν − 2 = (ν − 1)ρXBeta

[
ν

2
,
1

2

]
, (1)

where ρX is sign correlation. The sign correlation of the
random variable X with mean µ is defined as

ρX = Corr(X − µ, sign(X − µ)). (2)

The data-driven algorithmic volatility estimator, in terms of
log returns r1, · · · , rn, is given as

σ̂r =
1

n

n∑
t=1

|rt − r̄|
ρ̂r

, (3)

where ρ̂r is the sample sign correlation of rt which can be
calculated using equation (2).

In this study, we obtain daily DDEWMA volatility forecasts
using log-returns of the past three months for each asset. Thus,
for stocks, 63-day rolling forecasts, and for cryptocurrencies,
90-day rolling forecasts are considered. An algorithm to obtain
the DDEWMA volatility forecast is given in Algorithm 1.

Algorithm 1 Data-Driven EWMA volatility forecasts
Require: Data: adjusted closing price of stocks / cryptocur-

rencies Pt, t = 1, . . . , n
1: rt ← log Pt − log Pt−1, t = 1, . . . , n
2: ρ̂ = Corr(r − r̄, sign(r − r̄))

3: Zt ← |rt−r̄|
ρ̂

4: S0 ← Z̄
5: α (smoothing paramter)← (0, 1)
6: St ← αZt + (1− α)St−1, t = 1, . . . , n
7: αopt ← min

∑n
t=k+1(Zt − St−1)

2

8: for t← 1, . . . , n do
9: St = αoptZt + (1− αopt)St−1

10: return Sn

B. Neural Networks

A neural network is a powerful tool to predict any nonlinear
real function on a bounded domain with high accuracy. The
fundamental form of a neural network is referred to as a
feed-forward neural network. It is composed of an input
unit responsible for processing input variables, succeeded by
numerous interconnected hidden layers and building up to
an output layer. The transition from one layer to the next
is characterized by nonlinear functions (e.g., Rectified Linear
Unit (ReLU), Sigmoid, and Hyperbolic Tangent (tanh)).

Neural networks exhibit distinctions from conventional time
series forecasting models employed in finance. They do not
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require extensive parameter tuning, and achieving a universal
approximate solution in a neural network does not mandate the
optimization of all parameters. In an autoregression model,
lagged values are used as inputs. Similarly, lagged values
of time series can be used as inputs in a time series neural
network model. Also, if the lagged values of the target variable
(yt−1, yt−2, . . . , yt−p) depend on the lagged values of some
features (x1,t, . . . , xL,t) they also can be used as inputs in a
neural network model. In this study, the target variable is the
log trading volume. The neural network is trained with lag
values of log trading volume, log returns, and log volatility.
Once the model is trained, log returns and log volatility
forecasts (DDEWMA volatility forecasts) from the testing data
are used to obtain log trading volume forecasts.

A general representation of a neural network with p number
of inputs, one hidden layer, and one output is given in Figure
1. However, more complicated neural networks can be formed
with multiple hidden layers with many neurons (hidden layer
nodes) and several outputs.

Fig. 1. Illustration of a feed-forward neural network

Similar to how it works in other multilayer feed-forward
networks, in the case of the nnetar function, inputs are
received from the preceding layers. The outputs generated
by the nodes within a specific layer serve as the inputs
for the subsequent layer. Each node’s inputs are integrated
through a weighted linear combination, which is subsequently
transformed by a nonlinear function before being produced
as output. The inputs into each hidden neuron are combined
linearly to give

zj = bj +

p∑
i=1

wi,jxi.

Within the hidden layer, this is subsequently altered by
applying a nonlinear function, like a sigmoid,

s(z) =
1

1 + e−z
,

to provide input for the subsequent layer, which helps mitigate
the impact of exceptionally high or low input values, conse-
quently enhancing the network’s resilience against outliers.

The values of the parameters b1, b2, . . . , bq , (q number of
neurons in the hidden layer) and w1,1, . . . , wp,q are determined

through a process of learning or estimation based on the data.
Typically, measures are applied to limit the magnitude of the
weight values to prevent them from becoming excessively
large. This controlling parameter for the weights is referred
to as the ”decay parameter,” and it is frequently set to a value
of 0.1.

Initially, the weights are assigned random values, which are
subsequently adjusted based on the available data. As a result,
neural networks introduce an element of unpredictability into
their predictions. To address this inherent randomness, the net-
work is typically trained multiple times, starting from different
random initial values for the weights, and the outcomes are
then averaged. Furthermore, it is essential to predefine the
number of hidden layers and the number of nodes within each
hidden layer before training the network.

III. EXPERIMENTAL RESULTS

In this section, we investigate the performance of the NN
and nnetar networks. Trading volumes of the four stocks (Ap-
ple, Microsoft, NVIDIA, and Intel) and four cryptocurrencies
(Bitcoin, Ethereum, Tether, and Binance Coin) are obtained
along with their adjusted closing prices, and daily volatility
forecasts are obtained from DDEWMA volatility forecast
using the Algorithm 1. The study period for this work is from
2022-01-01 to 2022-12-31, and all the data are collected from
Yahoo! Finance. Stocks are chosen based on their popularity
during the study period, while cryptocurrencies are selected
according to their market capitalization as per Coinmarketcap.
The downloadable data encompass various attributes such as
opening, high, low, closing prices, adjusted prices, and daily
trading volumes for both stocks and cryptocurrencies. In this
research, we specifically employ the daily adjusted price,
which is a modified version of the daily asset price, to compute
logarithmic returns. The networks are trained with 75% of the
observations, and lag values of daily log trading volume, daily
log returns, and daily log volatility are used as inputs of the
networks. The remaining 25% of the observations are used to
evaluate model performances, and two performance evaluation
metrics are considered in this study. The mean square error
(MSE) and mean absolute deviation (MAD) of the daily log
trading volume forecasts/predictions during the testing period
from two networks are computed, and the model with the
lowest MSE and MAD is considered the superior model.

When using the NN, the network needs to feed with lag
values of the variables decided by the user. However, the
nnetar network does not need to provide lag values from the
user, and the function itself is capable of deciding how many
lag values of the target variable need to be considered. It
is essential to emphasize that the nnetar network generates
a feed-forward neural network with one hidden layer and past
input data for predicting univariate time series. In contrast, we
have the opportunity to construct more complicated networks
with multiple hidden layers and several outputs with NN.

First, the networks are constructed using the NN for all
the stocks and cryptocurrencies. All the networks have one
hidden layer with twelve neurons (twelve hidden layer nodes).
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However, different lag values are used for each stock and cryp-
tocurrency in the input layer. Lag values for each stock and
cryptocurrency are decided using ACF (Autocorrelation Func-
tion) plots of daily log trading volumes for the study period,
and corresponding ACF plots for stocks and cryptocurrencies
are given in Figure 2 and Figure 3, respectively. Furthermore,
in all the networks, 10% dropout is applied to the input data,
and 10% dropout is applied to the recurrent connections within
the RNN layer for regularization. Also, when training the
models, the RMSprop optimization algorithm (see [18] for
more details) is used to adjust the learning rate and mean
square error chosen as the loss function.

Fig. 2. Autocorrelation Function plot of Trading Volume - Stocks

Fig. 3. Autocorrelation Function plot of Trading Volume - Cryptocurrencies

Second, we construct networks from nnetar. The target
variable or the target time series in the networks is daily
log trading volume, and daily log return and volatility are
used as exogenous variables. The parameter specifies the
regularization strength for the model is set to auto, and thus,
the function will automatically determine an appropriate value
for the regularization parameter. The rate at which the weights
of the neural network model decay is 10% and the summary of
the best-fitted model for training data of each asset is provided
in Table I. Observe that the model suggests different lag values
to be considered with different neurons in the hidden layer for

stocks. However, for cryptocurrencies, the model suggests nine
neurons in the hidden layer with the last fifteen observations
of the target variable (fifteen lag values of daily log trading
volume) yt−1, . . . , yt−15 to forecast the target yt (daily log
trading volume at time t) for all the cryptocurrencies.

TABLE I
SUMMARY OF BEST-FITTED MODELS USING nnetar

lag values of target variable (p) Number of neurons
Asset (yt−1, . . . , yt−p) in the hidden layer σ̂2

Apple 4 4 4.20 ×10−07

MSFT 2 2 7.96 ×10−07

NVIDIA 1 2 5.97 ×10−07

Intel 3 3 9.75 ×10−07

Bitcoin 15 9 3.96 ×10−08

Ethereum 15 9 3.31 ×10−03

Tether 15 9 3.35 ×10−08

Binance Coin 15 9 8.59 ×10−08

Once the networks are trained, daily log trading volume
forecasts for the testing period can be obtained (Figure 4
and Figure 5). Then, using actual daily log trading volumes
and forecasts of daily log trading volumes, MSE and MAD
are calculated. Results using NN and nnetar network are
summarized in Table II. It can be seen from the table that
for all the stocks and cryptocurrencies, MSE and MAD using
nnetar network are lower than MSE and MAD computed using
the NN. This indicates networks constructed with the nnetar
network lead to better predictions/forecasts of daily log trading
volume.

TABLE II
MSE AND MAD OF DAILY LOG TRADING VOLUMES FORECASTS USING

NN WITH ONE LAYER AND nnetar

NN nnetar
Asset MSE MAD MSE MAD

Apple 0.8992 0.7515 0.2064 0.4087
Microsoft 0.9212 0.7002 0.1444 0.3012
NVIDIA 1.0939 0.8031 0.0826 0.2160
Intel 1.2504 0.7736 0.1286 0.2719
Bitcoin 0.6970 0.6401 0.1962 0.3483
Ethereum 1.2455 0.9289 0.6110 0.6705
Tether 0.8159 0.7407 0.5046 0.6143
Binance Coin 0.5758 0.6196 0.2664 0.3862

There is no strict rule for determining the exact number
of hidden layers and neurons in a neural network that will
work optimally for all tasks. The optimal architecture depends
on various factors, including the complexity of the problem,
the available data, and the computational resources. Increasing
the number of hidden layers and neurons in a neural network
can potentially improve its performance and accuracy. Thus,
a complex neural network (a network with several hidden
layers, and each layer has more neurons) may help to improve
the forecasting ability of trading volumes. However, it is
important to remember that complex networks do not always
guarantee better results. Adding too many layers or neurons
can lead to overfitting, and as the network memorizes the
training data, it may fail to generalize well to new, unseen data.
Also, it increases complexity and reduces interpretability while
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Fig. 4. Log Trading Volume Forecasts using NN with One Layer

demanding more resources to implement and run the model.
Nonetheless, we introduce another layer and twice as many
neurons to the neural network constructed using NN. The new
model is trained with the same training data, and daily log
trading volume forecasts are obtained for the same testing data
(Figure 6). The MSE and MAD are summarized in Table III.
Observe that both MSE and MAD values have increased for
all the stocks. However, among the cryptocurrencies, Ethereum
and Tether show lower MSE and MAD, and For Bitcoin and
Binance Coin, both MSE and MAD have increased. This
indicates some improvements can be achieved with complex
NNs for selected cases when forecasting trading volumes.

IV. CONCLUSIONS

Recently superiority of the nnetar neural network dy-
namic regression models for electricity demand forecasting has
been demonstrated. The trading volume forecasts play a crucial
role in measuring the substantial influence of price movements
on stocks and cryptocurrencies. In this paper, the driving idea,
unlike the existing work, is demonstrating the superiority of
the trading volume forecasts using nnetar function form
forecast package in R over the neural networks using

Fig. 5. Log Trading Volume Forecasts using nnetar

TABLE III
MSE AND MAD OF DAILY LOG TRADING VOLUMES FORECASTS USING

NN WITH TWO LAYERS

Asset MSE MAD
Apple 0.9545 0.8218
Microsoft 1.0282 0.7483
NVIDIA 1.1291 0.8155
Intel 1.3951 0.8647
Bitcoin 0.8366 0.7110
Ethereum 0.9197 0.7958
Tether 0.6964 0.6886
Binance Coin 0.7281 0.6700

keras and tensorflow packages. Moreover, this paper
considers the extra features such as data-driven log volatility
forecasts and log returns to improve trading volume forecasts.
The experimental results show that trading volume forecasts
using the nnetar network are superior to the keras neural
network forecasts.
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Fig. 6. Log Trading Volume Forecasts using NN with two Layers
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