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Abstract—In the context of design, multi-concept optimization
(MCO) refers to the task of concurrently identifying the best
concept and the corresponding variable values to optimize certain
objective(s). Despite its relevance in various practical domains
such as engineering, transport, and product design, there have
been limited studies on developing computationally efficient al-
gorithms specialized for MCO problems. One of the contributing
factors towards this gap is the lack of benchmark problems for
MCO that offer diverse challenges for the systematic evaluation
and development of advanced algorithms. In this paper, we
conduct a brief review of some existing multi-objective test
problems in the domain and discuss some of their shortcomings.
The key aim is to highlight the need for the development of a more
extensive set of benchmark problems that are flexible and tunable
in terms of the challenges posed to the solution methodologies.
In turn, we hope that this will encourage the development of
more advanced algorithms to solve practical MCO problems in
the future.

Index Terms—Multi-concept optimization, multi-objective op-
timization, multi-concept benchmark problems

I. INTRODUCTION

Optimization forms an integral part of the design process,

wherein a systematic exploration of the controllable parame-

ters is undertaken to improve certain performance objective(s).

The applications span a diverse range of domains, such as

engineering, finance, operations research, to name a few. The

problems that involve only one objective are termed single-

objective optimization problems (SOPs), whereas those that

involve more than one conflicting objectives are referred to as

multi-objective optimization problems (MOPs). For SOPs, the

theoretical optimum consists of a single globally best objective

value, which may be achieved through one or more solutions

in the design space. For MOPs, however, given the conflict

between the objectives, a unique solution (in objective space)

is not possible. Rather, the theoretical optimum comprises a

set of trade-off designs in the objective space referred to as the

Pareto-optimal Front (PF). The corresponding solutions in the

variable space are referred to as the Pareto-optimal Set (PS).

While various types of SOPs and MOPs have been widely

studied in the literature, the focus has been predominantly on

the problems where a given solution “concept” is already fixed.

However, the solution process to real-world problems often

begins with defining a number of plausible competing solution

concepts in the initial stage and then choosing the most

promising ones based on experience or preliminary analysis.

The standard optimization algorithms typically operate on a

fixed concept and are therefore generally suited to later stages,

such as detailed design. On the other hand, they are not well-

suited or efficient for application to the initial design stages,

such as concept selection and preliminary design, which have

a significant impact on the product life-cycle costs [1], [2].

In a bid to address the above gaps, a specialized category of

problems has been defined that considers the concept selection

and optimization simultaneously, referred to as Multi-Concept

Optimization (MCO) [3]. In MCO problems, a number of

potential solution concepts are defined, with their respective

decision variables spaces. The target for a prospective solution

method is to search through the space of concept as well as

the corresponding variables concurrently to identify the best

of both. To cite a few examples, three unit cell types were

considered as different concepts for lattice design in [3], three

different winglet concepts were considered for the winglet

design in [4], six cross-sectional shapes were assessed as six

concepts for beam design in [5], and different types of impact

drivers were considered as different concepts for the design of

impact driver in [6].

In this study, we are mainly concerned with multi-objective
MCO problems. Schematically, the target of solving multi-

objective MCO problems can be understood from Fig. 1, where

the objective space is shown for five potential concepts (C1-

C5), along with their individual PFs. The aim of the MCO

problem is not to achieve the approximation of these PFs

individually, as shown in Fig. 1a, but instead to achieve the

overall PF approximation across multiple concepts, as shown

in Fig 1b. This overall PF approximation is referred to as s-

Pareto in [7], [8] and C-Pareto in [9]. It can be seen that only

parts of the individual PFs of some concepts (e.g. C1-C4)

may appear in the overall PF, and some concepts (C5) may

not contribute to the overall PF at all.

While the importance of considering multiple concepts has

been discussed in the design-related literature, there currently

exist relatively few dedicated and efficient algorithms to solve

MCO problems. One of the plausible reasons contributing to

this research gap is the unavailability of extensive benchmark

problems in the MCO domain. In the evolutionary computation

literature, the development of specific classes of algorithms
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Fig. 1. (a) PF of individual concepts and (b) Overall PF for MCO problem.

has often been driven by the design of the corresponding type

of test problems [10], [11]. Such problems, by design, have

known features (including true optimum) and span a range

of mathematical/computational challenges, which assists in a

comprehensive quantitative benchmarking of the algorithms

in the field [10]. In some instances, even if the problems

do not exhibit real-world features, they are still useful in

identifying specific strengths and weaknesses of an algorithm.

This, in turn, leads to the design of improved algorithms to

address those aspects and, subsequently, also show improved

performance for practical problems.

In this paper, we mainly intend to highlight the above

observation in regard to multi-objective MCO by conducting

a brief review and preliminary analysis of some existing

test problems in the domain. We present a collection of test

problems that have been used in the limited studies available

on the topic in Section II, indicating some of their basic

characteristics. Thereafter, in Section III, we list some of

the limitations of these test problems through observation

and/or preliminary experiments. We hope that this will help in

understanding the scope for improvement and the systematic

creation of more realistic and challenging problem sets in

the future. Concluding remarks and potential future works are

given in Section IV.

II. REVIEW OF TEST PROBLEMS

As indicated previously, there is relatively scarce research

in the field of MCO to date. Given that the dedicated MCO

formulation itself is not so widely familiar to the researchers,

the limited works in the domain have typically focused on

illustrating the ideas through simple problems rather than con-

structing challenging instances of the problem. Some of these

examples appear in works such as [8], [12]–[17]. Generally

speaking, each problem is individually created to demonstrate

certain scenarios rather than following a specific methodology

to create a suite of instances. We present a brief discussion of

a collection of such problems in this section. Given that the

problems were not specifically named in the cited references,

we list them as a series of problems for easy reference. The key

attributes of these problems are listed in Table I next, followed

by their discussion. The mathematical problem definitions can

be found in the cited resources.

TABLE I
EXISTING MCO TEST PROBLEMS

Name of
Problem

No. of
Concepts

No. of
Objectives

No. of
Variables

Type of
Variables

No. of
Constraints

Problem 1 [12] 4 2 1 Continuous 0
Problem 2 [14] 2 2 1, 2 Continuous 0
Problem 3 [14] 2 2 2 Continuous 2
Problem 4 [16] 2 3 3 Continuous 1
Problem 5 [15] 2 2 1 Continuous 0
Problem 5a [13] 2 2 1 Continuous 0
Problem 6 [15] 8 2 2 Continuous 2
Problem 7 [8] 2 2 1 Continuous 2
Problem 8 [13] 4 2 1 Continuous 0
Problem 9 [13] 8 2 1 Continuous 0
Problem 10 [17] 3 2 2, 3, 4 Continuous 0
Problem 11 [18] 2 2 1, 2 Continuous 0
Problem 12 [18] 2 2 3, 1 Continuous 0
Problem 13 [18] 2 2 2 Continuous 2
Problem 14 [18] 2 2 2 Continuous 2

Note that the PF shown subsequently for all test problems

are approximations obtained through multi-objective search

rather than theoretical sampling. To generate them, 31 indepen-

dent runs of NSGA-II [19] on each concept were conducted

with a population of 100 individuals, evolved for 100 gen-

erations. The SBX crossover and polynomial mutation were

applied with a probability of 0.95 and 0.1, respectively, and

distribution indices of 15 and 20, respectively. The solutions

from the 31 runs for each concept were combined, and a

nondominated (ND) sorting process was applied to obtain

the PF approximation for each concept. Then, for generating

overall PF, these ND solutions of each concept were combined.

Nondominated sorting and distance-based subset selection [20]

were then applied to the resulting set to pick 1000 final

solutions that represent the overall PF.

a) Problem 1 [12]: This is an unconstrained one-variable

bi-objective problem with four concepts. The objective func-

tions of each concept are quadratic, with differences among

them a resultant of different parameter values of the equations.

The PFs of each concept are convex-shaped, and the overall PF

is continuous (Fig. 2). There is a disparity in the magnitudes

of the two objectives in the PF, which could create challenges

for some algorithms that do not have normalization/scaling

mechanisms. Note that for brevity, a concept is abbreviated

by the letter ‘C’ for brevity in the following figures and

discussion.

b) Problem 2 [14, Ex.1]: This is an unconstrained bi-

objective optimization problem with two concepts. The first

objective is linear for both concepts. In C1, the second objec-

tive function is quadratic, while in C2, it is a rational function.

C1 yields a convex-shaped continuous PF with a similar range

for each objective. On the other hand, C2 converges to a single

solution, indicating nonconflicting objectives.

c) Problem 3 [14, Ex. 2]: The problem shown here is a

slightly modified version of the one in [14]. To approximate

the PF, with the ranges as shown and discussed in [14], the
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Fig. 2. (a) PF of each concept and (b) overall PF of Problem 1.

ranges of the objectives need to be restricted, which we have

done by introducing simple bound constraints on objectives

in the modified version1. The constrained version is a bi-

objective problem with two variables in the same domain. The

first objective is a linear function, while the second one is a

nonlinear function involving quadratic, linear and sinusoidal

terms. C1’s PF is convex-shaped, while C2’s PF exhibits a

mixed shape with convex and nonconvex regions. Both PFs

are continuous. The overall PF (Fig. 3b) is nearly identical to

that of C2, but a small portion of C1 is also included.
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Fig. 3. (a) PF of each concept and (b) overall PF of Problem 3.

d) Problem 4 [16, Ch.7, Ex. 7.3]: Unlike other problems,

this one has three objectives in addition to constraints. It in-

volves two concepts, each with three variables. Both concepts

share the same set of linear objective functions, but they differ

in their constraints. The feasible regions of each concept are

spherical in shape. The PFs of each concept (Fig. 4a) are

convex and continuous. The overall PF (Fig. 4b) comprises a

continuous surface formed by combining parts of the fronts of

both concepts. The trade-off ranges in each objective of each

concept’s PF and the overall PF lie are similar in magnitude.

The domains of decision variables for each concept are also

the same.
e) Problem 5 [15, Ex. A]: Problem 5 is an uncon-

strained single-variable bi-objective optimization problem with

two concepts. The objective functions of the concepts are

quadratic, with a different set of constant terms between the

concepts. Both concepts’ PFs (Fig. 5a) and the overall PF

(Fig. 5b) are convex-shaped and continuous. C1 dominates

C2, making the overall PF identical to C1’s PF. The trade-off

1Similar modifications are also done for Problems 6, 7, 13 and 14

(a) (b)

Fig. 4. (a) PF of each concept and (b) overall PF of Problem 4.

range magnitudes in each objective of each concept’s PF are

similar.
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Fig. 5. (a) PF of each concept and (b) overall PF of Problem 5.

f) Problem 5a [13, Ex. 1]: This extended version of

Problem 5 includes a third concept with different parameter

values and a decision variable domain of [-10,10] instead of

[-5,5]. C3’s PF shape matches C1 and C2 from Problem 5.

Similar to the original version, C1 dominates C3. Thus, the

overall PF resembles that of the original problem.
g) Problem 6 [15, Ex. C]: This is a bi-objective opti-

mization problem having eight concepts with two variables in

the same domain. Like Problem 3, the first objective function

is a single-variable linear function, while the second objec-

tive function is a nonlinear two-variable function involving

quadratic, linear, and sinusoidal terms. The PFs of all concepts

(Fig. 6a) mixed (convex/concave) shapes. The overall PF (Fig.

6b) consists of segments from four of the concepts.
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Fig. 6. (a) PF of each concept and (b) overall PF of Problem 6.

h) Problem 7 [8, Ex. 1]: It is a two-concept problem

where the first objective is sinusoidal for both concepts.
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However, the second objective function differs between the

two concepts, though they both involve power transformations

of the sine function. The variable range was not explicitly men-

tioned in [8]. Observing the nature of the objective functions,

we have assumed the variable range to be [0, π/2]. Moreover,

[8] examines this problem in a stochastic environment; we

present it here in a deterministic context. The PFs of each

concept (Fig. 7a) are concave-shaped and continuous. The

overall PF (Fig. 7b) is also concave-shaped, resulting from

the contribution of both concepts’ fronts. The trade-off range

magnitudes in each objective of C1 and C2’s PFs are dissim-

ilar.
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Fig. 7. (a) PF of each concept and (b) overall PF of Problem 7.

i) Problem 8 [13, Ex. 2]: Problem 8 is an uncon-

strained single-variable bi-objective optimization problem with

four concepts. Each concept contains different variations of

quadratic objective functions and has convex-shaped, con-

tinuous PFs. The problem was designed in [13] to evaluate

algorithm performance when two concepts share the same

front. Upon setting specific parameter values for C2 and C3,

their objective functions become identical. Both C2 and C3

dominate the other concepts. Consequently, the overall PF

(Fig. 8b) is identical to the PFs of C2 and C3. The trade-

off range magnitudes in each objective of each concept’s PF

and the overall PF are similar.
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Fig. 8. (a) PF of each concept and (b) overall PF of Problem 8.

j) Problem 9 [13, Ex. 5]: Problem 9 is a single-variable

unconstrained bi-objective optimization problem with eight

distinct concepts. Similar to Problems 1, 5, and 8, the ob-

jectives of each concept represent different variations of a

quadratic function, resulting in convex-shaped, continuous

Pareto fronts (Fig. 9a). However, unlike the other mentioned

problems, the overall PF is disconnected (Fig. 9b). C5 dom-

inates all other concepts except for a small portion of C8.

Consequently, the overall PF is mainly the same as that of

C5, with an additional small segment contributed by C8.
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Fig. 9. (a) PF of each concept and (b) overall PF of Problem 9.

k) Problem 10 [17, Appendix H, Ex. 1]: Problem 10

is an unconstrained bi-objective optimization problem with

three concepts. Unlike most of the previous problems, the

number of decision variables differs for each concept, but

their domains are the same. Each concept involves different

combinations of objective functions, including trigonometric,

linear, and constant terms. All concepts have convex-shaped

and continuous PFs (Fig. 10a). The overall PF is formed by

contributions from all three concepts and has two disconnected

segments (Fig. 10b). While the magnitudes of trade-off ranges

in each objective of each concept’s PF are similar, the overall

PF’s trade-off ranges are marginally dissimilar.
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Fig. 10. (a) PF of each concept and (b) overall PF of Problem 10.

l) Problem 11 [18, Ch. 4, Ex. 4.1.1-B]: Problem 11

is an unconstrained bi-objective optimization problem with

two concepts. The number of decision variables differ for

each concept, but their domains are the same. For both

concepts, the first objective function is linear, while the second

objective function is quadratic. Both concepts have convex-

shaped continuous PF (Fig. 11a). The overall PF (Fig. 11b)

is identical to the PFs of C1 and C2. The trade-off range

magnitudes in each objective of each concept’s PF and the

overall PF are similar.

m) Problem 12 [18, Ch. 4, Ex. 4.1.2-E]: This is an

unconstrained bi-objective optimization problem with two

concepts. C1 is a modified version of the KUR [21] MOP

test problem, with both the original objective functions shifted
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Fig. 11. (a) PF of each concept and (b) overall PF of Problem 11.

by 20 units. KUR is scalable in terms of the number of

decision variables; 3 variables are considered in C1. In C2,

the first objective is a linear function, whereas the second one

is quadratic. C1’s PF is disconnected, and C2’s is convex and

continuous (Fig. 12a). C1 dominates C2, making the overall PF

(Fig. 12b) identical to C1’s PF. The trade-off range magnitudes

in each objective of each concept’s PF are dissimilar.
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Fig. 12. (a) PF of each concept and (b) overall PF of Problem 12.

n) Problem 13 [18, Ch. 4, Ex. 4.1.1-A]: Apart from

the modifications brought by introducing bound constraints

as discussed in Problem 3, we have also slightly modified the

second objective function of C2. In the original version, as

stated in [18], the constant term was 0.75. However, to match

the PF, we have changed the constant term to 1. The modified

version is a bi-objective problem with two variables in the

same domain. The first objective is a linear function, while

the second is a nonlinear function involving quadratic, linear

and sinusoidal terms. C1’s PF is convex-shaped, while C2’s

PF exhibits a mixed shape with convex and nonconvex regions

(Fig. 13a). Each concept substantially contributes to the overall

PF (Fig. 13b).

o) Problem 14 [18, Ch. 4, Ex. 4.1.2-A]: It is a bi-

objective problem with two variables in the same domain. The

first objective is a linear function, while the second one is a

nonlinear function involving quadratic, linear and sinusoidal

terms. C1’s PF is convex-shaped, while C2’s PF exhibits a

mixed shape, combining convex and nonconvex regions (Fig.

14a). Both PFs are continuous. Each concept substantially

contributes to form the overall PF (Fig. 14b).
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Fig. 13. (a) PF of each concept and (b) overall PF of Problem 13.
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Fig. 14. (a) PF of each concept and (b) overall PF of Problem 14.

III. PRELIMINARY OBSERVATIONS AND LIMITATIONS OF

TEST PROBLEMS

To gain further insights into the problems, we conducted

preliminary investigations using Strategies 1-2 from [3]. Strat-

egy 1 essentially conducts a search for each concept indi-

vidually, whereas Strategy 2 conducts a simultaneous search

with a computational budget (function evaluations) allocated

to the concepts based on their performance. Strategy 1 is also

referred to in the literature as the sequential approach. For

Strategy 2, we set the minimum guaranteed evaluation for

each concept (NMi) to 0 instead of 50% in [3] of the initial

population size to observe the strategy’s performance under

purely performance-based computing resource allocation. The

maximum number of function evaluations (FEmax) is set at

50 times the sum of the initial populations of all concepts,

and the initial population size Ni for each concept is set

at 10 times the number of decision variables Di. The other

parameters used for the experiments remained identical to

those stated in [3]. We ran each strategy 31 times on these

problems. We excluded Problem 2 in the experiments since it

has nonconflicting objectives for C2.

The problem formulations indicate that these problems are

relatively straightforward, with a small number of decision

variables (usually 1-2). Additionally, constrained problems

typically involve 1-2 constraints that are not highly nonlinear.

The applied strategies were able to find feasible solutions

from the initial population for all runs of all the constrained

problems. It is also observed that their PFs lack diversity

and controllability in terms of shapes, and irregularities such

as disconnected patches or a mix of different PF shapes

(e.g., convex, concave, linear) are uncommon. Moreover, the
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scalability of the problems in terms of the number of concepts,

objective functions, decision variables and constraints has not

been inherently considered in the problem formulations. Thus,

while it may be possible to extend them in theory, it would

require constructing them manually for each instance. Most of

the example problems with > 1 design variables have variable

domains of identical magnitude, contrary to the recommenda-

tion for dissimilar magnitudes [11]. Likewise, the magnitudes

of trade-off ranges in each objective of existing test problems

are often similar, whereas dissimilarity is recommended [11]

to better simulate real-world scenarios.

Some previous studies [3], [14] have reported an interesting

phenomenon in MCO problems where some concepts initially

perform poorly compared to others in the early search stages.

However, with sufficient computational resources, these ini-

tially inferior concepts eventually contribute solutions to the

PF. If the allocation of computational resources is solely driven

by performance, solutions from these initially inferior concepts

might be prematurely eliminated due to the selection pressure

early in the search. This premature elimination of concept phe-

nomena is observed in Problems 3 (C1), 9 (C8), 10 (C3) and

11 (C2) among the discussed test problems. Fig. 15 illustrates

this effect by displaying the overall PF approximations and

the concept-wise resource allocation plots of Problem 10 for

both the sequential (Strategy 1) and simultaneous (Strategy

2) approaches. These plots are associated with the runs that

achieved the median IGD+ value [22]. In the simultaneous

approach, where resource allocation is performance-driven,

initially under-performing C3 receives fewer evaluations and is

eliminated from the search process early (Fig. 15d), resulting

in no contribution to the overall PF approximation achieved

(Fig. 15b). Conversely, the sequential approach (Strategy 1) al-

locates resources to each concept regardless of its performance

(Fig. 15c), allowing C3 to contribute to the overall PF (Fig.

15a). To note, ND after concept ID highlights the concepts

that contribute to the overall PF of the problem.

In most of the discussed problems, the participating con-

cepts exhibit similar levels of individual difficulty in terms of

convergence. The similarity in difficulty among the concepts

arises from the similar nature of objective functions and/or

constraints (where applicable) in the participating concepts,

along with an equal number of decision variables in each

concept. Fig. 16a illustrates that the convergence rates, with

respect to the overall PF and in terms of IGD+, are ap-

proximately the same for each concept of Problem 8 (noting

that the ND concepts converge to a lower IGD+ values than

non-ND concepts). In contrast, the relative difficulty among

the concepts in Problem 10 varies due to differences in the

number of decision variables. Intuitively, concepts with a

higher number of variables are expected to encounter greater

convergence difficulty. Fig. 16b confirms the intuition, show-

ing that the convergence rate of each concept differs and

follows a descending order with an increase in the number

of decision variables for the concepts. Note that the plots in

Fig. 16 correspond to runs that achieved a median IGD+ value

for the sequential approach on Problems 8 and 10. The codes
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Fig. 15. Premature elimination of nondominated C3 in Problem 10: comparing
overall PF (top) and concept-wise resource allocation (bottom) between
sequential (left) and simultaneous (right) approaches.

and data used for the above analyses can be obtained from the

first author for research purposes.
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Fig. 16. (a) Similar level of convergence difficulty among concepts of Problem
8; (b) mixed level of convergence difficulty among concepts of Problem 10.

From the discussion above, it can be understood that in

the current form, the test problems lack sufficient challenges

in the search landscape, as well as the ability to easily scale

or control the difficulty of the problems. Thus, while they

may serve as good illustrations, they may not provide realistic

challenges for the development of advanced MCO algorithms,

highlighting the need for further research in MCO problem

construction.

Lastly, it is worth noting that in addition to the test

problems discussed above, a number of practical case stud-

ies have also been modelled in MCO format. Real-world

MCO problems often involve complex simulations, physical

experiments, or computationally intensive models to evaluate

the objective functions and/or constraints. For example, the

objective functions of lattice structure [3], rigidified inflatable

structure [16], commuter aircraft [23] etc. problems require
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computationally intensive simulations. These evaluations can

be time-consuming and resource-intensive, limiting the num-

ber of function evaluations that an optimization algorithm can

perform. Moreover, many real-world MCO problems exhibit

highly nonlinear and black-box constraint functions (e.g.,

rigidified inflatable structure [16]). They may also involve

equality constraints (e.g., aegis UAV problem [24]) that make

the problems particularly challenging for metaheuristic meth-

ods. These features form additional considerations for the

design of more practical test functions for benchmarking MCO

algorithms.

IV. CONCLUSION AND FUTURE RESEARCH

The primary objective of this study is to review some

existing test problems in the multi-objective MCO field and

highlight some of their limitations. For the future develop-

ments of advanced MCO algorithms, these research gaps could

be targeted in order to develop more diverse and challenging

test problem suites. A potential approach to develop MCO

test problems, as presented in [25]–[28], can be utilizing

problems from existing test suites as concepts. Each problem

from the existing test suites may represent a distinct concept

characterized by its objective functions, constraints, and deci-

sion variables. By combining multiple such concepts, we can

generate more practical MCO problems and incorporate spe-

cific challenges as needed. The authors are currently working

along these lines to come up with a benchmark generator and

specific instances that span a range of practical and theoretical

challenges. In addition, the development of more advanced

algorithms will also be investigated in future works.
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