
Designing Large-Scale Intelligent Collaborative Platform for Freight
Forwarders

Pang Jin Tan1, Shih-Fen Cheng1, and Richard Chen2

Abstract— In this paper, we propose to design a large-scale
intelligent collaborative platform for freight forwarders. This
platform is based on a mathematical programming formulation
and an efficient solution approach. Forwarders are middlemen
who procure container capacities from carriers and sell them
to shippers to serve their transport requests. However, due to
demand uncertainty, they often either over-procure or under-
procure capacities. We address this with our proposed platform
where forwarders can collaborate and share capacities, allowing
one’s transport requests to be potentially shipped on another
forwarder’s container. The result is lower total costs for all
participating forwarders. The collaboration can be formulated
as an integer linear program we call the Freight Forwarders’
Collaboration Problem (FFCP). It is a variant of the bin-
packing problem, hence it is NP-Hard. In order to solve
large-scale FFCP instances efficiently, we propose a two-step
approach involving an initial greedy assignment followed by a
fine-tuning step. Computational experiments have shown that
our approach can offer a significant reduction of run-time
between 77% and 97%, without any loss of solution quality.

I. INTRODUCTION

In today’s global supply chain, freight forwarders play a

pivotal role as crucial facilitators connecting shippers with

carriers. Forwarders first secure transport capacities from

carriers at discounted rates, thanks to the substantial volumes

they handle. They then resell these capacities to multiple

shippers, often bundled with additional services such as

customs brokerage. For shippers, this not only streamlines

the shipping process, but it also proves to be cost-effective

compared to purchasing capacities directly from carriers.

The forwarding industry, however, has its own set of

challenges, particularly in capacity management. Due to

demand uncertainty from the shippers, accurately forecasting

capacity requirements becomes a daunting task for for-

warders. Procuring too much capacity has a negative effect

on profitability, while insufficient capacity leads to lost sales.

To address these systemic inefficiencies, we propose a

Digital Marketplace for Forwarders. This platform aims to fa-

cilitate collaboration among participating forwarders, helping

each of them to reduce their operating costs. Here is how it

works. Each forwarder first puts forward its capacities (that it

has procured) and its transport requests (that it has promised

to ship for its clients, i.e. the shippers) to the platform.

With visibility across all capacities and transport demands,

the platform optimally reallocates requests among available

capacities, independent of specific forwarders. This approach

1Pang Jin Tan and Shih-Fen Cheng are with the School of Com-
puting and Information Systems, Singapore Management University,
{pangjin.tan.2021,sfcheng}@smu.edu.sg

2Richard Chen can be reached at rchen25@gmail.com

results in a significantly lower total shipping cost for all re-

quests, as compared to the case where each forwarder solely

utilizes its own capacities. The process of assigning requests

to boxes can be formulated as an integer linear program. To

solve practical real-world large-scale scenarios, we propose

a two-step approach combining a greedy approach with an

exact fine-tuning step.

The next section provides a review of related work. In the

subsequent section, we formulate the Freight Forwarders’

Collaboration Problem (FFCP), an integer linear program

that assigns requests to services down to the container level

for a group of forwarders. To expedite the solving of the

integer linear program, we propose a two-step approach.

First, we perform a greedy assignment. Then, in the second

step, we fine-tune the solutions to achieve optimality. Finally,

we present our experimental results and discuss managerial

insights.

II. RELATED WORK

Our work is most closely related to collaborative trans-

portation. Generally, literature in collaborative transportation

can be classified into the collaboration of the following

categories: carriers, forwarders, and shippers. Carrier col-

laboration has been studied quite extensively, especially

for both Full-Truck-Load (FTL) and Less-than-Truck-Load

(LTL) trucking. Li et al. [1] proposed a single-lane request

approach for FTL trucking, where buyers and sellers submit

multiple requests but a central coordinator picks one lane

to be exchanged which increases social welfare the most.

Lai et al. [2] extended the approach by allowing multiple

requests hence making the connection to bundle generation

and pricing. Freight consolidation is also often seen as a

strategy in collaborative transportation. Zhang et al. [3] stud-

ied fair allocation for shippers who ship via a consolidation

center. Similarly, Lai et al. [4] studied a shipper consortium

problem where shippers hand over LTL shipments to a

logistics service provider who then decides optimal routes

to consolidate and route shipments, and then allocates cost

back to shippers.

On the other hand, air carriers and ocean liners col-

laboration are typically studied under alliance formation

hence they typically utilize a cost allocation approach ([5],

[6]). However, freight forwarder collaboration is much less

studied. The most relevant for us is capacity sharing by Lai et

al. [7]. In their model, forwarders collaborate to first procure

capacity during the pre-freight season at a discount. During

freight season, they would then each bid for lanes depending

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1767

on their actual demand. The authors proposed an auction

mechanism that guarantees truthful bidding.

Another stream of work related to ours is on bin-packing.

Delorme et al. [8] reviewed exact algorithms using branch-

and-bound, branch-and-price, and constraints programming.

The classic paper on approximation schemes by Johnson [9]

introduced First Fit, Next Fit, Best Fit, Worst Fit, Any Fit,

and their extensions. Different variants of the bin-packing

problem have also been studied extensively. Lodi et al. [10]

and Berkey and Wang [11] studied the two-dimensional case.

Martello et al. [12] and Lodi et al. [13] studied the three-

dimensional case. Seiden [14] studied online bin-packing.

Finally, the bin-packing problem with variable cost and size,

where our problem is a special case, is studied by Kang et

al. [15], Pisinger et al. [16], and Crainic et al. [17].

III. PROBLEM FORMULATION

In this section, we formally describe the Freight For-

warders’ Collaboration Problem (FFCP). As mentioned ear-

lier, forwarders act as middlemen between shippers and

carriers. Typically twice a year, once for the winter season

and once for the summer season, a forwarder procures

capacities from its partner carriers for different port pairs

(a port pair refers to the transport service connecting a

pair of origin and destination ports). During this process, a

forwarder would analyze historical trends and negotiate with

carriers for more discounts for services that are expected

to have higher demand. As the freight season approaches,

the forwarder receives transport requests from shippers and

meets these requests using the procured capacities.

In this paper, we focus on Less-than-Container-Load

(LCL) shipments for ocean freight. In other words, ship-

pers need only partial space in a container rather than a

full container. To better utilize the procured capacities, a

forwarder would consolidate multiple LCL shipments of

different sizes into a single container. The more efficient

the consolidation strategy, the higher the profit the forwarder

earns. The consolidation problem can be viewed as a one-

dimensional bin-packing problem.

We now look at a concrete example to illustrate the points

above. Table I lists the demands Forwarder A receives. There

are 4 transport requests with different sizes. The first three

originate from USLAX and destine for CNSHA, while the

last one is from DEHAM to SGSIN. From the supply side,

Forwarder A has procured 2 containers for the USLAX-

CNSHA service at $900 per container, and 1 container for the

DEHAM-SGSIN service at $1200 per container, as shown in

Table II. A container is assumed to be 20ft, with a capacity of

around 30 cubic meters (cbm). As such, requests 1 and 2 can

be consolidated into one container since they both require the

same service; requests 3 and 4 have to be shipped in separate

containers. As such, the total incurred cost is $3000.

In practice, it is challenging for forwarders to forecast

accurately what the freight demand would be like. Often a

forwarder might end up with over-supply for some services

and under-supply for others. However, if multiple forwarders

could collaborate by sharing their capacities, this could help

TABLE I

FORWARDER A’S DEMAND.

Request Volume (cbm) Service Required
1 14 USLAX-CNSHA
2 12 USLAX-CNSHA
3 10 USLAX-CNSHA
4 15 DEHAM-SGSIN

TABLE II

FORWARDER A’S SUPPLY.

Service Cost per container Supply
USLAX-CNSHA $900 2
DEHAM-SGSIN $1200 1

alleviate the supply issues. There is yet another advantage

of collaboration. For the same service, different forwarders

negotiate different rates with their carriers. As such, there

would be additional cost savings if a forwarder uses a

container belonging to a different forwarder for the same

service at a lower cost. We will now illustrate this by

introducing the supply and demand of Forwarder B and

explaining how Forwarders A and B can collaborate.

TABLE III

FORWARDER B’S DEMAND.

Request Volume (cbm) Service Required
1 6 USLAX-CNSHA
2 6 USLAX-CNSHA
3 6 USLAX-CNSHA
4 6 USLAX-CNSHA
5 15 DEHAM-SGSIN

TABLE IV

FORWARDER B’S SUPPLY.

Service Cost per container Supply
USLAX-CNSHA $1000 2
DEHAM-SGSIN $1100 1

Table III shows the demand from Forwarder B and Table

IV shows the supply of Forwarder B. Note that without

collaboration, Forwarder B would incur a total cost of $2100,

and hence the combined incurred costs of shipping requests

for both Forwarders A and B would be $5100. Now suppose

they collaborate by allowing requests to be shipped on a

container procured by other forwarders. Note that the first

three requests of Forwarder A and the first four requests

of Forwarder B are all shipped from USLAX to CNSHA.

We can minimize cost by assigning requests 1 and 3 from

Forwarder A and request 1 from Forwarder B to the first

container that belongs to Forwarder A. We then assign

request 2 from Forwarder A and requests 2, 3, and 4 from

Forwarder B to the second container of Forwarder A. The

total shipping cost for USLAX-CNSHA is $1800. Likewise,

1768

both DEHAM-SGSIN requests can be consolidated into a

container procured by Forwarder B for a cost of $1100. The

combined incurred cost is $2900, which is significantly lower

than the case without collaboration.

In the case without collaboration, each individual for-

warder solves a bin-packing problem to minimize the number

of containers required. With collaboration, the problem is

not just minimizing the number of containers but rather

minimizing total cost where each bin has a cost factor. This

is formulated as an integer linear program called FFCP as

below. Note that we we do not keep the association of

requests to forwarders. Instead, we simply formulate our

problem as one assigning a set of requests to a set of

containers. Associations to the forwarders are made implicit.

Index Sets

• R: the set of requests, indexed by r.

• S: the set of services, indexed by s.

• Rs: the set of requests that can be assigned to service

s.

• Sr: the set of services that is feasible for request r.

Parameters

• cs: the cost per container on service s.

• ns: the number of containers available on service s.

• vr: the volume of request r.

• vmax: the max volume of a box.

Decision variables

• xi
r,s: 1 if request r is shipped on service s box i, 0

otherwise.

• yis: 1 if service s box i is used, 0 otherwise.

Model FFCP

min
∑

s∈S

ns∑

j=1

csy
i
s (1)

s.t. (2)

∑

s∈Sr

ns∑

i=1

xi
r,s = 1, ∀r ∈ R, (3)

∑

r∈Rs

vrx
i
r,s ≤ vmaxyis, ∀s ∈ S, i = 1, ...ns, (4)

xi
r,s, y

i
s ∈ {0, 1}. (5)

The objective is to minimize the total cost of shipping

all the requests. Constraint (3) ensures that each request

is assigned to exactly one of the containers. Constraint (4)

ensures that the total volume of requests fitted in a container

does not exceed maximum capacity. Constraint (5) ensures

assignment variables are binary.

IV. SOLUTION APPROACH

In this section, we describe our solution approach to solve

FFCP. Figure 1 provides a visualization of the assignment

problem. Each vertex on the left represents a request. We

see that it is indexed by a forwarder and a request number,

for example, rA,1 represents Forwarder A request 1, and so

on. The vertices on the right represent the different services

available. The supply is not shown for brevity, but the costs

are shown to illustrate that different forwarders have procured

different rates for the same port pairs. The edges of the graph

show possible assignments between requests and services.

Fig. 1. Assigning requests to services for the reformulated approach.

Our next observation is that the FFCP can be decomposed

into non-overlapping sub-problems where each sub-problem

deals with a group of services that belong to the same port-

pairs. This makes sense because if a request is supposed to

be shipped on say service USLAX-CNSHA of a forwarder,

then the request can be shipped on any other service offered

by other forwarders as long as it is serving USLAX-CNSHA.

Figure 2 illustrates our point. Instead of solving FFCP in its

entirety, we break down the problem into groups of services,

each group having services for the same port-pair, and solve

each sub-problem separately. The total cost is simply the sum

of the minimal cost for each sub-problem.

Fig. 2. Request-service assignments decomposed into non-overlapping sub-
problems.

Finally, we turn our focus to solving the sub-problem,

which is a special case of FFCP where each request can be

assigned to any of the services. We take a two-step approach

to solve this special case of FFCP. In the first step, we

1769

obtain an initial solution by greedily assigning requests to

a container with the first fit decreasing heuristic. This gives

us a feasible solution and an upper bound on the number of

containers needed for each service, n′
s. In the second step, we

solve the special case of FFCP but the number of containers

available for each service is now updated to n′
s, as obtained

in the first step, instead of the original ns.

Here is an illustration of the two-step approach to solving

the sub-problem involving the USLAX-CNSHA port-pair

assuming Forwarder A and Forwarder B collaborate. On the

demand side, there are seven combined requests of size 14

cbm, 12 cbm, 10 cbm, 6 cbm, 6 cbm, 6 cbm, 6 cbm sorted

in decreasing volume. On the supply side, there are four

combined containers available with unit costs of $900, $900,

$1000, $1000, sorted in increasing order.

In the first step, we repeatedly assign requests with the

next largest volume to an available container with the lowest

cost. Hence, the 14 cbm and 12 cbm requests are assigned to

the first $900 container, but the 10 cbm request is assigned to

the second $900 container. Next, the 6 cbm request cannot be

fitted into the first container and hence needs to be assigned

to the second container. Likewise, we can fit two more 6

cbm requests into the second container. Finally, for the last

6 cbm request, we need a third container which is the $1000

container. This gives us a feasible assignment and hence we

know that the optimal solution would not take more than two

$900 containers and one $1000 container. Note that the actual

supply is two $900 containers and two $1000 containers.

In the second step, we solve the following integer linear

program exactly.

min
∑

s∈S

ns∑

i=1

csy
i
s (6)

s.t. (7)

∑

s∈S

ns∑

i=1

xi
r,s = 1, ∀r ∈ R, (8)

∑

r∈R

vrx
i
r,s ≤ vmaxyis, ∀s ∈ S, i = 1, ..., ns, (9)

xi
r,s, y

i
s ∈ {0, 1}, (10)

where:

• R = {1, 2, 3, 4, 5, 6, 7},

• S = {1, 2},

• n1 = 2, n2 = 1,

• c1 = 900, c2 = 1000,

• v1 = 14, v2 = 12, v3 = 10, v4 = v5 = v6 = v7 = 6,

• vmax = 30.

The optimal solution is obtained by assigning the 14 cbm,

10 cbm, and 6 cbm requests to one $900 container and

the remaining requests to another $900 container. Note that

we now use one less container as compared to the greedy

approach in the first step.

V. EXPERIMENTAL SETUP

We discuss our computational experiments in this section

and the next. We set up three different experiments to

better understand our proposed two-step approach. In the

first experiment, we vary the instance size from 10 services

and 100 requests to 80 services and 800 requests. In the

second experiment, we focus only on the case where each

request can be assigned to any of the services. In the

third experiment, we generate instances parameterized by

forwarders explicitly, rather than instances based on requests

and services. In all the experiments, we compare the solution

quality and run-time of the proposed two-step approach with

the exact approach. The experiments are conducted on a 144-

core server with Intel Xeon Gold 6154 CPUs clocked at

3GHz, and a total RAM of 512GB running Rocky Linux

8.7. The models were implemented in Python and solved

using ILOG CPLEX 22.1.

In the first experiment, a scenario is parameterized by the

number of requests NR and the number of services NS . Each

request is characterized by a port-pair and a volume. Each

service is characterized by a port-pair, a cost-per-container,

and a supply. Our first step is to generate a volume for

each request, drawn from U(1, 29). Here, U(a, b) refers

to a uniform distribution with lower bound a and upper

bound b. Then, for each service, we generate a cost-per-

container drawn from U(800, 1200) and a supply drawn from

U(15, 50). Our next step is to associate a port pair for each

request and each service. We first generate M , the number

of port-pairs with M ≤ min(NR, NS). To ensure that every

port pair gets assigned, we first assign the first M requests

and first M services to each of the M port pairs. For the

remaining requests, we randomly assign to each of them a

random port pair. We do likewise for the remaining services.

In the second experiment, we focus only on single port

pairs. In the case of single port pairs, each request can be

assigned to any of the services. As explained earlier, an

instance of FFCP can be decomposed into non-overlapping

sub-problems involving different port pairs. The size of the

biggest sub-problem will impact the overall run-time for an

instance of FFCP and that is the reason for studying the

sub-problem separately. To generate scenarios for single port

pairs, we generate a random volume drawn from U(1, 29) for

each request. As for each service, we generate a cost drawn

from U(800, 1200) and a supply drawn from U(15, 50).
Instead of associating random port pairs to requests and

services, we simply allow each request to be assignable to

all of the services.

In the third experiment, we generate instances parameter-

ized by forwarders’ profiles. First, given the number of port

pairs M , we generate ms services for each port pair, where

ms is drawn from U(1, 5). For each service, we generate

a cost drawn from U(800, 1200) and a supply drawn from

U(15, 50). Now we have all services where each service

is associated with a port-pair, we can assign services to

forwarders. For each forwarder, we iterate through each port-

pair, and with a probability p we assign the port-pair to the

forwarder. The specific service assigned is randomly chosen

from the remaining unassigned services of the same port pair.

The process is repeated until all services are assigned.

1770

VI. RESULTS

The first experiment studies the run-time for different

instance sizes ranging from 10 services and 100 requests

to 80 services and 800 requests. Fig 3 shows the results.

The run-time of the two-step approach is significantly lower

than the run-time of the exact approach. In these instances,

the reduction ranges from 81% to 97%. In general, run-time

increases with instance size. However, we also see that for

the larger instance size involving 60, 70, and 80 services,

the run-time does not seem to increase. The reason is that

while instance size plays an important part, it is the size

of the biggest sub-problem that is the main driving factor

for the overall run time. We also highlight that the solutions

obtained via the two-step approach are the same as those

generated using the exact approach.

Fig. 3. Run-time for different instance sizes.

In the second experiment, we focus on instances where

each request can be assigned to any of the services. In other

words, we focus on solving the sub-problems. These sub-

problem instances are also parameterized by the number of

services and the number of requests. However, the number of

services is typically not that large in practice. We investigate

the run time of both the exact and two-step approaches for

cases where the number of services ranges from 2 to 5 and

the number of requests ranges from 10 to 90. The results

are shown in Figure 4. Our two-step approach consistently

outperforms the exact approach in terms of solution run time.

For a given number of services, the run time is quadratic in

the number of requests for the exact approach, whereas the

run time is linear in the number of requests. Furthermore,

the run-time savings is greater as the number of services

increases. In these instances, the maximum run-time savings

range from 77% to 96%. There is also no loss of solution

quality for the instances in the second experiment.

In the third experiment, we generate scenarios based on

forwarders’ profiles. First, we observe that there is significant

savings in terms of combined costs across all forwarders

when they collaborate. The savings range from 15% to 25%

as shown in Table V. Furthermore, the three scenarios depict

different scales of collaboration. As the number of collab-

orating forwarders increases, there is a higher chance for a

request to find a matching service from a different forwarder.

This in turn makes the problem harder to solve. The results in

table VI show that our proposed two-step approach performs

significantly better, especially for scenarios with a larger

number of forwarders. Moreover, the solutions generated by

our two-step approach are the same as those generated by

the exact approach.

TABLE V

RUN-TIME FOR DIFFERENT FORWARDERS’ CONFIGURATIONS.

Scenario
Cost (without
collaboration)

Cost (with
collaboration)

10 forwarders, 47 requests,
20 services, 10 port-pairs

32660 27895

15 forwarders, 150 requests,
74 services, 20 port-pairs

117731 89112

20 forwarders, 338 requests,
106 services, 20 port-pairs

237281 176902

TABLE VI

RUN-TIME FOR DIFFERENT FORWARDERS’ CONFIGURATIONS.

Scenario Exact(s) Two-steps(s)
10 forwarders, 47 requests,
20 services, 10 port-pairs

1.98 0.43

15 forwarders, 150 requests,
74 services, 20 port-pairs

21.50 0.92

20 forwarders, 338 requests,
106 services, 20 port-pairs

209.98 1.38

VII. CONCLUSION

In this paper, we introduce the Freight Forwarders’ Collab-

oration Problem. The motivation comes from the observation

that freight forwarders often find it challenging to procure the

right capacities to serve their transport requests. Over-supply

or under-supply of capacities can happen often. We propose

that freight forwarders collaborate by sharing their capacities.

In other words, a forwarder’s transport requests can be

assigned to a container procured by another forwarder. The

combined shipping costs of all the forwarders to satisfy the

demands can therefore be potentially lower. The assignment

of transport requests to containers can be formulated as

an integer linear program we call the Freight Forwarders’

Collaboration Problem (FFCP).

Noting that FFCP is a variant of the bin-packing problem

and hence NP-Hard, we need to seek an efficient solution for

large-scale instances of FFCP. We first note that FFCP can be

decomposed into non-overlapping sub-problems. Each sub-

problem is then solved with a two-step approach. In the first

step, we repeatedly assign the next biggest request to the

cheapest container that has available space. This gives us a

feasible assignment and also upper bounds on the number of

containers required for each service. In the second step, we

use these upper bounds to solve FFCP sub-problems exactly.

The strategy of first using greedy to bound our problem

1771

Fig. 4. Run-time comparison for number of services = 2,3,4,5.

which is then solved exactly in a second step proves to be

efficient in many large-scale instances.

To study the performance of the proposed two-step ap-

proach, we conduct three experiments. In the first exper-

iment, we vary the instance size of FFCP. The two-step

approach has a lower run-time as compared to the exact

approach with reduction ranging from 81% to 97%. In the

second experiment, we vary the instance of the sub-problem

of FFCP. This is the case where each request can be assigned

to any of the services. The two-step approach also has a

lower run-time as compared to the exact approach with re-

ductions ranging from 77% to 96%. In the third experiment,

we generate instances based on forwarders’ profiles. The

run-time savings are more significant when there is more

collaboration between the forwarders. We also note that in

all the experiments, the resulting objective values are the

same as those generated based on the exact approach.

In conclusion, our proposed two-step approach provides

a practical way to solve the FFCP for real-life instances.

This is an important first step towards achieving forwarders’

collaboration as we have demonstrated an efficient method

to optimally assign requests to capacities for a group of

collaborating forwarders. For future work, we shall study

incentive mechanisms for a successful implementation of

such a collaboration.

ACKNOWLEDGMENT

This research is supported in part by the Ministry of Ed-

ucation, Singapore, under its Social Science Research The-

matic Grant (MOE Reference Number: MOE2020-SSRTG-

018)).

Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the author(s)

and do not reflect the views of the Ministry of Education,

Singapore.

REFERENCES

[1] J. Li, G. Rong, and Y. Feng, “Request selection and exchange
approach for carrier collaboration based on auction of a single request,”
Transportation Research Part E: Logistics and Transportation Review,
vol. 84, pp. 23–39, 2015.

[2] M. Lai, X. Cai, and Q. Hu, “An iterative auction for carrier collabora-
tion in truckload pickup and delivery,” Transportation Research Part
E: Logistics and Transportation Review, vol. 107, pp. 60–80, 2017.

[3] W. Zhang, N. A. Uhan, M. Dessouky, and A. Toriello, “Moulin
mechanism design for freight consolidation,” Transportation Research
Part B: Methodological, vol. 116, pp. 141–162, 2018.

[4] M. Lai, X. Cai, and N. G. Hall, “Cost allocation for less-than-truckload
collaboration via shipper consortium,” Transportation Science, vol. 56,
no. 3, pp. 585–611, 2022.

[5] R. Agarwal and Ö. Ergun, “Network design and allocation mechanisms
for carrier alliances in liner shipping,” Operations Research, vol. 58,
no. 6, pp. 1726–1742, 2010.

[6] L. Houghtalen, Ö. Ergun, and J. Sokol, “Designing mechanisms for
the management of carrier alliances,” Transportation Science, vol. 45,
no. 4, pp. 465–482, 2011.

[7] M. Lai, W. Xue, and Q. Hu, “An ascending auction for freight
forwarder collaboration in capacity sharing,” Transportation Science,
vol. 53, no. 4, pp. 1175–1195, 2019.

[8] M. Delorme, M. Iori, and S. Martello, “Bin packing and cutting stock
problems: Mathematical models and exact algorithms,” European
Journal of Operational Research, vol. 255, no. 1, pp. 1–20, 2016.

[9] D. S. Johnson, “Fast algorithms for bin packing,” Journal of Computer
and System Sciences, vol. 8, no. 3, pp. 272–314, 1974.

[10] A. Lodi, S. Martello, and D. Vigo, “Recent advances on two-
dimensional bin packing problems,” Discrete Applied Mathematics,
vol. 123, no. 1-3, pp. 379–396, 2002.

[11] J. O. Berkey and P. Y. Wang, “Two-dimensional finite bin-packing
algorithms,” Journal of the Operational Research Society, vol. 38,
no. 5, pp. 423–429, 1987.

[12] S. Martello, D. Pisinger, and D. Vigo, “The three-dimensional bin
packing problem,” Operations Research, vol. 48, no. 2, pp. 256–267,
2000.

[13] A. Lodi, S. Martello, and D. Vigo, “Heuristic algorithms for the three-
dimensional bin packing problem,” European Journal of Operational
Research, vol. 141, no. 2, pp. 410–420, 2002.

[14] S. S. Seiden, “On the online bin packing problem,” Journal of the
ACM (JACM), vol. 49, no. 5, pp. 640–671, 2002.

[15] J. Kang and S. Park, “Algorithms for the variable sized bin packing
problem,” European Journal of Operational Research, vol. 147, no. 2,
pp. 365–372, 2003.

[16] D. Pisinger and M. Sigurd, “The two-dimensional bin packing problem
with variable bin sizes and costs,” Discrete Optimization, vol. 2, no. 2,
pp. 154–167, 2005.

[17] T. G. Crainic, G. Perboli, W. Rei, and R. Tadei, “Efficient lower bounds
and heuristics for the variable cost and size bin packing problem,”
Computers & Operations Research, vol. 38, no. 11, pp. 1474–1482,
2011.

1772

