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Abstract—In this paper, we aim to improve segmentation
performance and uncertainty calibration within a fixed compu-
tational budget. We propose PyramidEnsembles, which contain
members ranging from small over medium and large, to over-
come one major problem in applying neural networks to the
automotive domain: the trade-off between model performance
and overconfidence in the uncertainty predictions. PyramidEn-
sembles use multiple models of different sizes from the same
family in order to combine their strengths: good segmentation
performance and well-calibrated uncertainties. We focus our
experiments on EfficientNet-based segmentation models applied
to the Cityscapes dataset, which is widely used in the field
of autonomous driving. We evaluate single models, uniform
ensembles (one architecture repeated) and PyramidEnsembles
(combination of different model capacities) composed of the
EfficientNet model family. Our evaluations show that within the
same computational budget, PyramidEnsembles can outperform
a single model in terms of segmentation performance while
providing better calibrated uncertainties. Scaling over different
computational budgets shows that this performance gap increases
further. Different uniform ensembles offer a comparable segmen-
tation or uncertainty calibration performance: 3 copies of the
EfficientNet-B3 achieve an IoU of 0.7195 while an ensemble of
7 EfficientNet-B0 models yields an Expected Calibration Error
(ECE) of 0.0667. One PyramidEnsemble containing an instance
of EfficientNet-B0 through B3 is a close second on either metric at
0.7188 IoU and 0.0698 ECE and offers a better trade-off between
segmentation performance and uncertainty calibration in this
computational budget.

Index Terms—Uncertainty Estimation, Semantic Segmentation,
Ensembles, EfficientNet, Cityscapes

I. INTRODUCTION

In the field of robotics and automated driving, image classi-
fication and segmentation are employed to extract information
from camera images. Besides model performance on this
primary task, the trustworthiness of these predictions is equally
important. Uncertainty estimation aims to quantify the model’s
confidence in its prediction and helps downstream processes
to adjust their trust into the provided scene information.

A key difficulty in this field is that larger neural networks
(NNs) typically perform well on the primary task, but tend
to be overconfident in their predictions. Smaller models yield
less confident predictions at the price of overall subpar classi-
fication/segmentation performance. However, their confidence
better matches the actual accuracy of the associated predic-
tions, resulting in a better calibrated uncertainty estimate [1].
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Ensembles query multiple models and combine their pre-
dictions. This machine learning technique has long been used
to improve model performance. In addition, they are known
to produce better calibrated uncertainty estimates. However,
ensembles are often considered unsuitable for real-time appli-
cations due to their increased computational complexity. Over
time, several approaches have been developed to decrease the
computational budget by exploiting the structure of the used
models.

In this paper, we propose PyramidEnsembles as a new
model selection method that includes models with different
capacities. We group models ranging from small to large
and aim to combine their respective strengths: segmentation
performance paired with well-calibrated uncertainties.

To evaluate the suitability of our approach for the auto-
mated driving scenario, we compare single models, uniform
ensembles and PyramidEnsembles within the same computa-
tional budget. This shows PyramidEnsembles to strike a better
balance in terms of segmentation performance and uncertainty
calibration on the Cityscapes Dataset [2].

II. RELATED WORK

Theoretical derivations of model uncertainty begin with a
Bayesian approach: By determining the posterior distribution
of model parameters, we obtain the probability associated
with each prediction. However, the actual distribution is often
computationally intractable [3].

Monte Carlo Dropout is used to approximate Bayesian
inference in neural networks [4]. Dropout randomly masks a
fraction of model weights and creates slightly different models
in each run. By repeatedly sampling from exponentially many
subnetworks, we can approximate the posterior distribution of
the model. In practice, the estimate converges after about 50
iterations. However, this considerably increases the test-time
computational complexity of the model [4].

Ensembles combine multiple models trained in different
ways: for example, by bagging, boosting, with different ini-
tialization, hyperparameters, or architectures. This increases
the diversity of models compared to Dropout, so that a few
models are sufficient to obtain a good approximation of the
output distribution [4]. Furthermore, ensembles help mitigate
the overconfidence exhibited by individual models, making the
predicted softmax score a more reliable estimate of the model’s
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Fig. 1. Uniform Ensembles use equally sized models to improve segmentation performance and uncertainty calibration over a single model. PyramidEnsembles
combine members with varying model capacity to join their strength: good calibration in small models and better segmentation performance with larger ones.

(un-)certainty. However, storing multiple models increases
memory consumption and cache pressure.

While ensembles work well with fewer than 50 forward
passes, they are still more expensive than a single model.
This motivates recent work on more efficient ensembles:
BatchEnsemble [5] decomposes the parameters into one
weight shared among the ensemble members and a binary
mask that selects different elements from the shared weight for
each member. This saves both persistent and random-access
memory, but does not substantially reduce the computational
budget compared to standard ensembles [5].

PackedEnsembles [6] use grouped convolutions to combine
the ensemble members into a single CNN. Using the same
number of groups in each convolutional layer separates data
flow between ensemble members. This formulation better
utilizes device parallelization and reduces the total number of
parameters, yielding a less computationally costly ensemble.

Temporal ensembles like [7] propose an optimization for
image streams – an application often limited by computational
cost. They unravel the ensemble over time, with each frame
being processed by another ensemble member. For static
scenes, this would return the original ensemble output once
each member participated. For dynamic scenes, an optical
flow module is added to track the image patches through
time. Along a sequence of patches, the ensemble output can
be aggregated as usual. While this formulation reduces the
computational complexity per step, it adds latency to the
uncertainty estimation. This is undesirable because, intuitively,
the uncertainty estimate is most useful for the first detection –
which should also be the most uncertain. When the object is
re-identified in successive frames, the models’ confidence can
increase. Neither of these properties can be observed here, be-
cause inference with a single model per time step incentivizes
to choose a comparably large and therefore overconfident
one. This initial prediction can then be balanced out as more
members contribute. However, beyond the longer latency until
a reliable uncertainty estimate is available, the intermediate
values behave counter intuitively, as the initial predictions
are associated with overconfident uncertainties rather than a
cautious start.

Our work resembles [8] more closely. Their results suggest
that within the same computational budget, uniform ensembles
can outperform a single model. We build upon this and

additionally investigate the ensembles’ predictions in terms of
uncertainty calibration. Instead of uniform ensembles formed
by models of equal capacity, we consider the more generic
case of ensembles with members of varying capacity.

III. METHODOLOGY

Motivated by smaller models producing better calibrated
predictions, while larger models have an advantage in terms
of task-performance, we propose to join CNNs with different
model capacities (from small to large – resembling a pyramid)
into one ensemble (see Fig. 1). This combination allows
each member to play to its respective strength and yields an
improved model in both performance on the primary task and
calibration of uncertainty estimates.

Combining only small models shows diminishing returns
after a few ensemble members. While their joint effort pro-
duces very well calibrated uncertainties, the task-performance
reaches an upper bound [9]. Coalescing larger models im-
proves task-performance at the cost of less accurate uncer-
tainty estimates – due to fewer models fitting into the same
computational budget.

Our PyramidEnsemble approach is facilitated by families of
classification CNNs, which are used as encoders in segmen-
tation models. A family of models shares the same sequence
of layers (architecture) but allows to derive models of varying
capacities by scaling a base model. Many recent works like
MobileNets [10], EfficientNet [11] or ConvNeXt [12] propose
models in such a way. Each family defines a number of models
ranging from small to large. PyramidEnsembles are created
on the basis of such families by including several models
with the same architecture (e.g. MobileNet or EfficienNet)
but different capacities (e.g. EfficientNet-B0 and EfficientNet-
B3). This allows to include relatively large models, which can
contribute their segmentation performance and, on the other
hand, a couple of smaller models, which contribute better
calibrated uncertainties. Including more and smaller models
in the ensemble benefits uncertainty calibration. Overall, Pyr-
amidEnsembles should provide a better trade-off compared to
uniform ensembles and outperform singular models within the
same compute budget.

The compositional architecture of PyramidEnsembles gives
rise to an additional degree of freedom over uniform en-
sembles: by including multiple members of varying capacity,
exponentially many ensembles can be formed. Let F be a
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Fig. 2. Our main experiment compares a single EfficientNets-B0 through B5 against PyramidEnsembles build from smaller Efficient-Nets. While ECE is
to be minimized, we flip the y-axis s.t. both metrics are improving upwards. IoU is comparable between different ensemble compositions, ECE favors large
ensembles with smaller models. Single models are outperformed by any equally sized ensemble in both regards.

Fig. 3. We further compare against Uniform Ensembles. We vary the number of ensemble members for three EfficientNet encoders which shows comparable
segmentation results outperforming the single models, too. The segmentation performance of B0-Ensembles is limited but with good calibration results.
Ensembles of larger models can improve segmentation results at the cost of worse uncertainty calibration, causing Uniform Ensembles to not scale as well
as PyramidEnsembles. Our best performing Pyramid B(0+1+2+3) is included for reference. It shows comparable segmentation performance with superior
uncertainty calibration results. (ECE’s y-axis is flipped again s.t. both metrics are improving upwards.)

set of encoders, with each member f i varying in capacity.
Encoders in F are not limited to originate from the same
family, but this simplification is considered here. Ensem-
bles are a tuple constructed from one or more f i without
limits on diversity or repetition. Uniform ensembles contain
one model architecture f i z times: eu = (f i

0, . . . , f i
z).

PyramidEnsembles, on the other hand, contain models of
various sizes: up = (f i

0, f
j
1 , . . . , fk

z ) with the model ca-
pacity Ci = GMAC(f i) varying (without loss in generality:
increasing) between members Ci ≤ Cj ≤ · · · ≤ Ck. Com-
pared to uniform ensembles, this causes PyramidEnsembles
to create a much larger landscape of possible ensembles:
E = {(f i

0, . . . , f j
z )} ⊆ F ×F ×· · ·×F . An example of such

a combination is a PyramidEnsemble of the largest and the
smallest available encoder, skipping all medium-sized variants

in-between.
This increased hyperparameter space makes evaluating the

performance of all feasible PyramidEnsembles more difficult.
However, our results suggest that selecting members consec-
utively, and maximizing ensemble size, performs favorably
compared to including fewer but larger models in both aspects:
segmentation performance and uncertainty estimation quality.
Therefore, we will limit ourselves to using consecutive family
members (f i, f i+1, . . . , fz) with Ci < Ci+1 s.t. ∄ fk ∈
F with Ci < Ck < Ci+1.

ŷ =
1

z

∑
i∈e

f i(x) (1)

û = 1− softmax(ŷ) (2)
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The ensemble output ŷ of an ensemble e ∈ E is the
average of each member model prediction (see Eq. 1). As
metric of the prediction’s uncertainty estimation û, we use
the complementary output probability (see Eq. 2).

A second key aspect of our proposed method is the com-
parison of models within one compute budget. We argue that
at a comparable level of Multiply-Accumulates (MACs) an
ensemble of smaller models can outperform a single model.
This effect is especially pronounced for large models, probably
due to overfitting, as shown in [8].

Furthermore, an ensemble can be beneficial for latency
critical systems, since preliminary results are available earlier.
When processing members in parallel or sequentially starting
with the smallest, the prediction from the smallest model
will be available sooner than from the single (ensemble-sized)
model. Additionally, the prediction from the smallest member
will already provide a relatively good uncertainty calibration.
Hence, it might be beneficial to allow for incremental output
from the ensemble in order to provide follow-up components
an uncertain, but maybe faster prediction. Later models can
contribute better segmentation results and finalize the associ-
ated uncertainty estimate.

IV. EVALUATION

We test our approach on a semantic segmentation task
using EfficientNet [11] as model family. Their model scaling
approach creates a wide range of model capacities, from which
we select the range of EfficientNet-B0 through B5 for our
experiments. Inference with larger models like B6 and B7
drops to 15 images per second or less even on Nvidia-A100s
and hence will be out of reach for embedded systems operating
near real-time. On top of the EfficientNet encoder, we deploy
LR-ASPP as a segmentation decoder [13].

Since only the encoder differs between different architec-
tures of our evaluated models, we will refer to our complete
segmentation model in the following only by the name of its
encoder. Furthermore, figures may skip the EfficientNet prefix
and use B0 through B5 as a shorthand. PyramidEnsembles
indicate their members with B(i + ... + j) for an ensemble
containing one model each. Uniform Ensembles have the
shorthand of z × Bi for an ensemble containing z copies of
our EfficientNet-Bi based segmentation model.

We evaluate our proposal on the urban scene-parsing dataset
Cityscapes [2]. As training set, we utilize the finely annotated
images at a resolution of 512 × 1024 pixels. We train for
15k steps and optimize the model with AdamW starting at a
learning rate of 1 × 10−3 and a weight decay of 0.02. The
learning rate is reduced following a cosine decay down to
1× 10−7 during training.

IoU =
Tp

Tp + Fp + Fn
(3)

ECE =

N∑
i=0

bini|certaintyi − accuracyi| (4)

We compute two metrics in order to determine good and
well-calibrated classifiers simultaneously: For segmentation
performance, we calculate the Jaccard Index / Intersection-
over-Union (IoU, see Eq. 3). IoU compares the amount of
correctly classified pixels Tp with the sum of false positively
Fp and negatively Fm classified pixels. Uncertainty calibration
is measured by the Expected Calibration Error (ECE, see [14]
and Eq. 4 following, [15]). ECE bins predictions according
to their certainties (we use N = 15 bins) and compares the
accuracy in each bin with the average certainty. For example,
at a certainty level of around 0.8 approximately 80 % of
predictions should be correct and the absolute difference to
this correctness represents the calibration error. Furthermore,
this value is scaled by the fraction of data points bini in
each interval. Computing the absolute error penalizes over-
and underconfidence equally. The detriment of deviation in
either direction may be application specific, but in our case
both cases are considered important.

ECE requires ground truth annotations, but the Cityscapes
test annotations are not public. Consequently, we report results
as mean over the validation split which could bias results since
the validation set was also used to establish hyperparameters.
However, only training of individual models was considered
during parameter selection. Ensembles were created without
additional cross-check against the validation set. Therefore,
uniform and pyramid ensembles are treated equally and com-
paring single models with PyramidEnsembles should favor the
baseline.

Our first experiment compares PyramidEnsembles against
single EfficientNets across different compute budgets (from
B0 through B5). We plot segmentation performance (IoU)
and uncertainty calibration (ECE) relative to their computation
cost – measured as Giga-MACs (GMACs). The results (Fig.
2) show that segmentation performance of a single model
increases together with the compute budget, but at diminishing
returns. Simultaneously, ECE deteriorates as the model size
grows.

PyramidEnsembles outperform the single model across sev-
eral budgets and in both IoU and ECE, with the margin
increasing for larger compute budgets – matching observations
in [8]. Ensembles containing larger models (e.g., B(2+3)) still
yield better segmentation performance at the cost of worse
uncertainty calibration. However, pairing more but smaller
models achieves comparable segmentation performance (for
example B(0+1+2) vs. B(2+3)) with better uncertainty esti-
mates on the same budget. Following this trend, B(0+1+2+3)
combines the four smallest encoders and outperforms all
other PyramidEnsembles and single models in terms of IoU
and ECE, while featuring a compute budget comparable to
EfficientNet-B5.

In addition to comparing single models with PyramidEn-
sembles, we repeat our experiments with uniform ensem-
bles. Fig. 3 shows these runs grouped by encoder type
and enumerating different ensemble sizes ranging from two
through the extent of comparable model capacities. The key
difference with uniform ensembles is their intricate balance:

692



while ensembles of EfficientNet-B0s improve in task per-
formance and yield very well calibrated uncertainties, both
suffer from diminishing returns as the ensemble grows. One
step up, ensembles of B1s improve segmentation results with
diminished calibration performance, but appear to be on-par
with PyramidEnsembles overall. However, EfficientNet-B3s
can only improve segmentation by a small amount, while
their ECE deteriorates considerably. Selected results in Table I
show two separate uniform ensembles yield best results, while
one PyramidEnsemble comes in second in both metrics and
represents a good compromise.

Furthermore, we include Monte Carlo Dropout (MCD) in
our evaluation. Combining 7 of our smallest models already
matches the compute budget of the largest model at around
200 GMACs which we focus our evaluation on. In literature,
however, 50 iterations are suggested for good estimates. We
therefore limit the encoder to a deterministic forward pass
and only apply test-time dropout on the feature embeddings.
This corresponds to only sampling the decoder weights. Ad-
ditionally, these models were trained with dropout, unlike
our single and ensembles models. Under MCD, the test-time
compute budget increases from 125.8 GMACs to 168.6 for
our EfficientNet-B4 based model and grows from 204.1 to
251.6 GMACs for the EfficientNet-B5 based one. Compared
to single models, the MCD EfficientNet-B4 outperforms both
the single EfficientNet-B4 and -B5 in both IoU and ECE at a
lower GMAC count. On the other hand, both MCD variants
trail uniform and PyramidEnsembles with even lower GMAC
counts by a wide margin.

Considering this trade-off between the three metrics, IoU,
ECE and GMACs we visualize the Pareto optimal models in
Figure 4. We can see that single models are only competitive
for low compute budgets, where no ensembles can be formed
from the given set of base models. Larger models and ones
including MCD are outperformed by ensembles. Uniform
ensembles and especially the various ensembles based on
EfficientNet-B0 represent an optimal area in the regime of
lower IoU performance but superior uncertainty calibration,
visible in the string of uniform models in the center. Towards
the area of increased IoU, PyramidEnsembles begin to domi-
nate and outperform all but one uniform ensemble.

In summary, we argue that PyramidEnsembles scale better
since growing compute budges are matched with improve-
ments in both segmentation performance and uncertainty
calibration (for example, by using B(0+1), B(0+1+2) and
B(0+1+2+3)). An obvious downside of PyramidEnsembles is
the need for model families and the resulting limited number of
ensemble options. This is counterbalanced by the diminishing
return of increasing the ensemble size for uniform ensembles.
Consequently, we consider PyramidEnsembles the superior
choice if a model family is available and accurate uncertainty
prediction is necessary.

V. CONCLUSION

We propose PyramidEnsembles, a new ensemble method,
which combines members of varying model capacity from

Efficient-Net(s) IoU ↑ ±σ ECE ↓ ±σ GMACs ↓
B0 0.668 ± 0.0061 0.076 ± 0.0011 29.2
B1 0.683 ± 0.0050 0.0782 ± 0.0012 47.4
B2 0.682 ± 0.0061 0.0797 ± 0.0011 55.3
B(0+1) 0.701 ± 0.0052 0.0715 ± 0.0014 76.6
B3 0.695 ± 0.0066 0.0785 ± 0.0012 78.3
B4 0.695 ± 0.0075 0.0815 ± 0.0013 125.8
B(0+1+2) 0.710 ± 0.0056 0.0706 ± 0.0012 131.9
50 × B4 (MC) 0.6982 ± 0.004 0.0787 ± 0.0008 168.6
B5 0.697 ± 0.0067 0.0817 ± 0.001 204.1
7 × B0 0.7077 ± 0.0012 0.0667 ± 0.0006 204.4
B(0+1+2+3) 0.7188 ± 0.0033 0.0698 ± 0.0008 210.2
3 × B3 0.7195 ± 0.004 0.0728 ± 0.0005 234.7
5 × B1 0.7182 ± 0.002 0.0702 ± 0.0004 237.1
50 × B5 (MC) 0.6989 ± 0.0048 0.0796 ± 0.0009 251.6

TABLE I
SELECTED RESULTS FOR SINGLE MODELS, UNIFORM AND PYRAMID

ENSEMBLES GROUPED BY COMPUTE BUDGET WITH FOCUS ON THE 200
GMACS GROUP. IOU AND ECE ARE AVERAGED OVER 11 RUNS AND

REPORTED WITH STANDARD DEVIATION σ.

Fig. 4. Overview of the trade-offs of GMACs, IoU and ECE for all non-
dominated ensembles. The types indicate the ensemble type, whereas the size
of the markers indicate the size of the ensemble.

one neural network family. We compare them with individual
models, Monte Carlo dropout and uniform ensembles within
the same computational budget. Our results indicate that Pyr-
amidEnsembles outperform single larger models and Monte
Carlo dropout in terms of segmentation (IoU) and uncertainty
calibration performance (ECE). Furthermore, while some uni-
form models yield comparable segmentation performance,
they suffer from diminishing returns when adding further mod-
els. Creating uniform ensembles from larger models increases
segmentation performance, but causes calibration performance
to decline. This shows PyramidEnsembles to combine the
strength of small models (better calibrated uncertainties) with
the segmentation performance of larger models. Furthermore,
they offer better scaling behavior by improving both metrics
as the computational budget increases.

Future work needs to investigate more generic Pyramid-
Ensemble strategies including repetitions of member models.
Additionally, more model families should be investigated with
a wider range of compute budgets. The increase in hyper-
parameter space may need more sophisticated approaches
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to the search for optimal hyperparameters, like Evolutionary
Algorithms. Finally, evaluating PyramidEnsembles uncertainty
estimation in cross- and out-of-domain settings is necessary in
order to apply it in real-world scenarios.
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