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Abstract—In the context of MDPs with high-dimensional states,
downstream tasks are predominantly applied on a compressed,
low-dimensional representation of the original input space. A
variety of learning objectives have therefore been used to attain
useful representations. However, these representations usually
lack interpretability of the different features. We present a
novel approach that is able to disentangle latent features into
a controllable and an uncontrollable partition. We illustrate that
the resulting partitioned representations are easily interpretable
on three types of environments and show that, in a distribution
of procedurally generated maze environments, it is feasible
to interpretably employ a planning algorithm in the isolated
controllable latent partition.

Index Terms—representation learning, interpretability, rein-
forcement learning

I. INTRODUCTION

Learning from high-dimensional data remains a challenging
task. Particularly for reinforcement learning (RL) [1], the
complexity and high dimensionality of the Markov Decision
Process (MDP) [2] states often leads to complex or intractable
solutions. In order to facilitate learning from high-dimensional
input data, an encoder architecture can be used to compress
the inputs into a lower-dimensional latent representation. To
this extent, a plethora of work has successfully focused on
discovering a compressed encoded representation that accom-
modates the underlying features for the task at hand [3]–[5].

The resulting low-dimensional representations however sel-
dom contain specific disentangled features, which leads to
disorganized latent information. This means that the individual
latent states can represent the information from the state in
any arbitrary way. The result is a representation with poor
interpretability, as the latent states cannot be connected to
certain attributes of the original observation space (e.g, the x-
y coordinates of the agent). Prior work in structuring a latent
representation has shown notions and use of interpretability
in MDP representations [6]. When expanding this notion
of interpretability to be compatible with RL, it has been
argued that the controllable features should be an important
element of a latent representation, since it generally represents
what is directly influenced by the policy. In this light, [7]
have introduced the concept of isolating and disentangling
controllable features in a low-dimensional maze environment,
by means of a selectivity loss. Furthermore, [8] provides an
object-centric approach to isolate distinct objects in MDPs and
[9] shows theoretical foundations for this isolation in a weakly-
supervised controllable setting. Controllable features however

only represent a fragment of an environment, where in many
cases the uncontrollable features are of equal importance.
For example, in the context of a distribution of mazes, for
the prediction of the next controllable (agent) state following
an action, the information about the wall structure is crucial
(see Fig. 1). We therefore hypothesize that a thorough rep-
resentation should incorporate controllable and uncontrollable
features, ideally in a disentangled, interpretable arrangement;
Intepretability is crucial for future real-world deployment [10],
while an additional benefit would be that the separation of the
controllable and uncontrollable features can be exploited in
downstream algorithms such as planning.

Our contribution consists of an algorithm that, showcased in
three different MDP settings, explicitly disentangles the latent
representation into a controllable and an uncontrollable latent
partition. This is highlighted on three types of environments,
each with a varying class of controllable and uncontrollable
elements. This allows for a precise and visible separation of
the latent features, improving interpretability, representation
quality and possibly moving towards a basis for building
causal relationships between an agent and its environment. The
unsupervised learning algorithm consists of both an action-
conditioned and a state-only forward predictor, along with a
contrastive and an adversarial loss, which isolate and disen-
tangle the controllable versus the non-controllable features.
Furthermore, we show an application of learning and planning
on the human-interpretable disentangled latent representation,
where the properties of disentanglement allow the planning
algorithm to operate solely in the controllable partition of the
latent representation.

II. RELATED WORK

1) General Representation Learning: Many works have
focused on converting high-dimensional inputs to a compact,
abstract latent representation [11]. Learning this representation
can make use of auxiliary, unsupervised tasks in addition to
the pure RL objectives [4]. One way to ensure a meaningful
latent space is to implement architectures that require a pixel
reconstruction loss such as a variational [12] or a deterministic
[13] autoencoder. Other approaches combined reward recon-
struction with latent prediction [14], pixel reconstruction with
planning [15] or used latent predictive losses without pixel
reconstruction [5].

2) Representing controllable features: In representation
learning for RL, a focus on controllable features can be
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Fig. 1: Visualization in a maze environment of four random pixel observations s ∈ R48×48 (left) and the encoded observations
z = f(s; θenc) ∀s ∈ S (right). On the right, we can see the disentanglement of the controllable latent zc ∈ R2 on the
horizontal axes, and the uncontrollable latent zu ∈ R1 on the vertical axis. The encoder is trained on high-dimensional tuples
(st, at, rt, st+1), sampled from a replay buffer B, gathered from random trajectories in the four maze environments shown on
the left. All possible states in all four mazes are encoded and plotted with the transition prediction for each possible action,
revealing a clear disentanglement between the controllable latents (agent x-y position) and the uncontrollable latent (wall
architecture). Note that all samples are taken from the same buffer, filled with samples from all four mazes.

beneficial as these features are strongly influenced by the
policy [7]. This can be done using generative methods [16],
but is most commonly pursued using an auxiliary inverse-
prediction loss; predicting the action that was taken in the
MDP [3]. The work in [17], [18] builds a latent representation
with an emphasis on the controllable features of an environ-
ment with inverse-prediction losses, and uses these features to
guide exploratory behavior. Furthermore, [19] employs multi-
step inverse prediction to successfully encompass controllable
features in their representation. However, these works have
not retained the uncontrollable features in their representation,
which is a key aspect in our work.

3) Partitioning a latent representation: Sharing similarity
in terms of the separation of the latent representation, [20]
disentangles the latent representation in the domain adaptation
setting into a task-relevant and a context partition, by means
of adversarial predictions with gradient reversals and cyclic
reconstruction. In [21], a reconstruction-based adversarial ar-
chitecture is used that divides a latent representation into
reward-relevant and irrelevant features. Related work in [22]
attempts to divide the latent representation of the model-based
RL algorithm Dreamer [15], using action-conditioned and
state-only forward predictors, into controllable, uncontrollable
and their respective reward relevant and irrelevant features.
As compared to [22], we focus on reward-free unsupervised
representation learning and empirically prove the separation in
a low-dimensional, structured setting.

4) Interpretable representations in MDPs: More closely
related to our research is [7], which connects individual
latent dimensions to independently controllable states in a
maze using a reconstruction loss and a selectivity loss. The
work in [6] visualizes the representation of an agent and its
transitions in a maze environment, but does not disentangle
the agent state in its controllable and uncontrollable parts,

which limits the interpretability analysis and does not allow
simplifications during planning. Furthermore, [8] shows an
object-oriented approach to isolate different (controllable) fea-
tures, using graph neural networks (GNN’s) and a contrastive
forward prediction loss, but does not discriminate between
controllable and uncontrollable features. Continued work in
this direction focuses on theoretical foundations for an encoder
to structurally represent a distinct controllable object [9].
We aim to progress the aforementioned lines of research by
using a representation learning architecture that disentangles
an MDP’s latent representation into interpretable, disentangled
controllable and uncontrollable features. Finally, we show that
having separate partitions of controllable and uncontrollable
features can be exploited in a planning algorithm.

III. PRELIMINARIES

We consider an agent acting within an environment, where
the environment is modeled as a discrete Markov Decision
Process (MDP) defined as a tuple (S,A, T,R, γ). Here, S
is the state space, A is the action space, T : S × A → S
is the environment’s transition function, R : S × A → R
is the environment’s reward mapping and γ is the discount
factor. We consider the setting where we have access to a
replay buffer (B) of visited states st ∈ S that were followed
by actions at ∈ A and resulted in the rewards rt ∈ R and
the next states st+1. One entry in B contains a tuple of past
experience (st, at, rt, st+1). The agent’s goal is to learn a
policy π : S → A that maximizes the expectation of the
discounted return V π(s) = Eτ [

∑∞
t=0 γ

tR(st, at) | st = s],
where τ is a trajectory following the policy π.

Furthermore, we examine the setting where a high-
dimensional state (st ∈ Rv) is compressed into a lower-
dimensional latent state zt ∈ Z = Rw where Z represents
the latent space with w ≤ v. This is done by means of a
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Fig. 2: Overview of the disentangling architecture, with dashed lines representing gradient propagation and green rectangles
representing parameterized prediction functions. An observation st is encoded into a latent representation consisting of two
parts; zct and zut , which represent controllable and uncontrollable features respectively. These separated representations are
then independently used to make action-conditioned, state-only and adversarial predictions in order to provide gradients to the
encoder that disentangle the latent representation zt into controllable (zct ) and uncontrollable (zut ) partitions.

neural network encoding f : S → Z where f represents the
encoder.

IV. ALGORITHM

We aim for an interpretable and disentangled representation
of the controllable and uncontrollable latent features. We
define controllable features as the characteristics of the MDP
that are predominantly affected by any action a ∈ A, such as
the position of the agent in the context of a maze environment.
The uncontrollable features are those attributes that are not or
only marginally affected by the actions. We show that the
proposed disentanglement is possible by designing losses and
gradient propagation through two separate parts of the latent
representation. Specifically, to assign controllable information
to the controllable latent partition, the gradient from an action-
conditioned forward predictor is propagated through it. To
assign uncontrollable information to the uncontrollable latent
partition, the gradient from a state-only forward predictor is
propagated through it. The remaining details will be provided
in the rest of this Section.

We consider environments with high-dimensional states,
represented as pixel inputs. These pixel inputs are subse-
quently encoded into a latent representation zt = (zc, zu) ∈
Z ∈ Rnc+Rnu , with the superscripts c and u representing the
controllable and uncontrollable features, and the superscripts
nc and nu representing their respective dimensions. The
compression into a latent representation S → Z is done by
means of a convolutional encoder, parameterized by a set of
learnable parameters θenc according to:

zt = (zct , z
u
t ) = f(st; θenc). (1)

An overview of the proposed algorithm is illustrated in Fig. 2
and the details are provided hereafter. In this section, all losses

and transitions are given under the assumption of a continuous
abstract representation and a deterministic transition function.
The algorithm could be adapted by replacing the losses
related to the internal transitions with generative approaches
(in the context of continuous and stochastic transitions) or a
log-likelihood loss (in the context of stochastic but discrete
representations).

A. Controllable Features

To isolate controllable features in the latent representation,
zct is used to make an action-conditioned forward prediction
in latent space. In the context of a continuous latent space and
deterministic transitions, zc is updated using a mean squared
error (MSE) forward prediction loss Lc =

∣∣ẑct+1 − zct+1

∣∣2,
where ẑct+1 is the action-conditioned residual forward predic-
tion of the parameterized function Tc(z, a; θc) : Z ×A → Z:

ẑct+1 = Tc(zt, at; θc) + zct (2)

and the prediction target zct+1 is part of the encoder output
f(st+1; θenc). Note that the full latent state zt is necessary in
order to predict ẑct+1 (e.g. the uncontrollable features could
represent a wall or other static structure that is necessary
for the prediction of the controllable features). Furthermore,
the uncontrollable latent partition input zut is accompanied
by a stop gradient to discourage the presence of controllable
features in zu. When minimizing Lc, both the encoder (θenc)
as well as the predictor (θc) are updated, which allows shaping
the representation zc as well as learning the internal dynamics.

B. Uncontrollable Features

To express uncontrollable features in the latent space, zut
is used to make a state-only (not conditioned on the action
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at) forward prediction in latent space. This enforces uncon-
trollable features within the uncontrollable latent partition zu,
since features that are action-dependent cannot be accurately
predicted with the preceding state only. Following a residual
prediction, zu is then updated using a MSE forward prediction
loss Lu =

∣∣ẑut+1 − zut+1

∣∣2, with ẑut+1 defined as:

ẑut+1 = Tu(z
u
t ; θu) + zut (3)

and Tu(z
u; θu) : Z → Z representing the parameterized

prediction function. The target zut+1 is part of the output of
the encoder f(st+1; θenc). When minimizing Lu, both θenc
and θu are updated. In this way the loss Lu drives the latent
representation zu, which is conditioned on θenc according to
(zct , z

u
t ) = f(st; θenc), to only represent the features of st that

are not conditioned on the action at.

C. Avoiding Predictive Representation Collapse

Minimizing a forward prediction loss in latent space Z
is prone to collapse [6], [14], due to the convergence of
Lc and Lu when f(st; θenc) is a constant ∀ st ∈ S. To
avoid representation collapse when using forward predictors,
a contrastive loss is used to enforce sufficient diversity in the
latent representation:

LH1 = exp
(
− Cd

∥∥zt − z̄t
∥∥
2

)
(4)

where Cd represents a constant hyperparameter and z̄t is a
‘negative’ batch of latent states zt, which is obtained by
shifting each position of latent states in the batch by a random
number between 0 and the batch size. In the random maze
environment, an additional contrastive loss is added to further
diversify the controllable representation:

LH2 = exp
(
− Cd

∥∥zct − z̄ct
∥∥
2

)
(5)

where zct is obtained from randomly sampled trajectories.
This additional regularizer proved neccessary to avoid collapse
of zc when moving to a near infinite number of possible
mazes. The resulting contrastive loss LH for the random maze
environment then consists of 0.5LH1

+ 0.5LH2
. The total

loss used to update the encoder’s parameters now consists of
Lenc = Lc + Lu + LH .

D. Guiding Feature Disentanglement with Adversarial Loss

When using a controllable latent space zc ∈ Rx, x ∈ N,
where x > g, with g representing the number of dimensions
needed to portray the controllable features, some information
about the uncontrollable features in the controllable latent
representation might be present. This is due to the non-
enforcing nature of Lc, as the uncontrollable features are
equally predictable with or without the action. To ensure that
no information about the uncontrollable features is kept in the
controllable latent representation, an adversarial component is
added to the architecture in Fig. 2. This is done by updating
the encoder with an adversarial loss Ladv and reversing the
gradient [23]. The adversarial loss is defined as

Ladv =
∣∣ẑut − zut

∣∣2, (6)

with ẑut = Tadv(z
c
t ; θadv), where ẑut is the uncontrollable

prediction of the parameterized function Tadv(z
c; θadv) : Z →

Z and zut is the target. Intuitively, since the parameters of
Tadv(z

c; θadv) are being updated with Ladv and the parameters
of f(s; θenc) are being updated with −Ladv , the prediction
function can be seen as the discriminator and the encoder
can be seen as the generator [24]. The discriminator tries to
give an accurate prediction of the uncontrollable latent zu

given the controllable latent zc, while the generator tries to
counteract the discriminator by removing any uncontrollable
features from the controllable representation. In our case, the
predictor is a multi-layer perceptron (MLP), which means that
minimizing Ladv enforces that no nonlinear relation between
zc and zu can be learned. We hypothesize that this is a deter-
ministic approximation of minimizing the Mutual Information
(MI) between zu and zc. When using the adversarial loss,
the combined loss propagating through the encoder consists
of Lenc = Lc + Lu + LH − Ladv . Here the minus term in
−Ladv represents a gradient reversal to the encoder. Note that
the losses are not scaled, as this did not prove to be necessary
for the experiments conducted.

Algorithm 1 Interpretable (Un)Controllable Features

1: Initialize θenc, θc, θu, θadv
2: for iteration = 1, 2, . . . , N do
3: Sample batch of tuples {st, at, st+1}
4: Encode observations: f(s; θenc) = {zc, zu}
5: Predict ẑct+1 = Tc(z

c
t , z

u
t , a; θc) + zct // detach zut

6: Predict ẑut+1 = Tu(z
u
t ; θu) + zut

7: Predict ẑut = Tadv(z
c
t ; θadv)

8: Compute losses Lc,Lu,−Ladv,LH

9: Update parameters θenc, θc, θu, θadv
10: end for

E. Downstream Tasks

By disentangling a latent representation in a controllable and
an uncontrollable part, one can more readily obtain human-
interpretable features. While interpretability is generally an
important aspect, it is also important to test how a notion
of human interpretability affects downstream performance,
as it is generally desired to strike a good balance between
interpretability and performance. This is examined by training
an RL agent on the learned and subsequently frozen latent
representation. The action at is chosen following an ϵ-greedy
policy, where a random action is taken with a probability ϵ, and
with (1− ϵ) probability the policy π(z) = argmax

a∈A
Q(z, a; θ)

is evaluated, where Q(z, a; θ) is the Q-network trained by
Deep Double Q-Learning (DDQN) [25], [26]. The Q-network
is trained with respect to a target Yt:

Yt = rt + γQ(zt+1, argmax
a∈A

Q(zt+1, a; θ); θ
−) . (7)

With γ representing the discount factor and θ− the target
Q-network’s parameters. The target Q-network’s parameters
are updated as an exponential moving average of the original
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parameters θ according to: θ−k+1 = (1−τ)θ−k +τθk, where sub-
script k represents a training iteration and τ represents a hyper-
parameter controlling the speed of the parameter update. The
resulting DDQN loss is defined as LQ =

∣∣Yt −Q(zt, a; θ)
∣∣2.

The full computation of all losses is shown in pseudocode in
Algorithm 1.

V. EXPERIMENTS

In this section, we showcase the disentanglement of con-
trollable and uncontrollable features on three different envi-
ronments, the complexity of which is in line with prior work
on structured representations [6]–[9], [27]: (i) a quadruple
maze environment, (ii) the catcher environment and (iii) a
randomly generated maze environment. The first environment
yields a state space of 119 different observations, and is
used to showcase the algorithm’s ability to disentangle a low-
dimensional latent representation. The catcher environment
examines a setting where the uncontrollable features are not
static, and the random maze environment is used to showcase
disentanglement in a more complex distribution of over 25
million possible environments, followed by the application of
downstream tasks by applying reinforcement learning (DDQN)
and a latent planning algorithm running in the controllable
latent partition . The base of the encoder is derived from [28]
and consists of two convolutional layers, followed by a fully
connected layer for low-dimensional latent representations or
an additional CNN for a higher-dimensional latent represen-
tation such as a feature map. In all environments, the encoder
f(s; θenc) is trained from a buffer B filled with transition
tuples (st, at, rt, st+1) from random trajectories. Note that,
in interpretability, there is generally not a specific metric to
optimize for. In order to produce interpretable representations,
finding the right hyperparameters required manual (human)
inspection of the plotted latent representations.

A. Quadruple Maze Environment

The maze environment consists of an agent and a selection
of four distinct, handpicked wall architectures. The environ-
ment’s state is provided as pixel observations st ∈ R48×48,
where an action moves the agent by 6 pixels in each direction
(up, down, left, right) except if this direction is obstructed
by a wall. We consider the context where there is no reward
(rt = 0 ∀ (st, at) ∈ (S,A)) and there is no terminal state.

We select a two-dimensional controllable representation
(zc ∈ R2) and a one-dimensional uncontrollable representation
(zu ∈ R1). The experiments are conducted using a buffer B
filled with random trajectories from the four different basic
maze architectures. The encoder’s parameters are updated us-
ing Lenc in Section IV-C with LH = LH1

. After 50k training
iterations, a clear disentanglement between the controllable
(zc) and uncontrollable (zu) latent representation can be seen
in Fig. 1. One can observe that the encoder is updated so that
the one-dimensional latent representation zu learns different
values that define the type of wall architecture.

(a) Without Ladv

−1
0
1 0

5 0

50

−1
0
1 0

5 0

50

−1
0
1 0

5 0

50

−1
0
1 0

5 0

50

−1
0
1 0

5 0

50

−1 0 1
−1

0
1

0 5

0

5
0 50

0

50

(b) With Ladv

Fig. 3: Visualization of the latent feature disentanglement in
the catcher environment after 200k training iterations, with
zt = f(st; θenc) ∈ R2 +R6×6. In (a) and (b), the left column
shows zct , the middle column is a feature map representing zut
and the right column is the pixel state st. The dashed lines
separate observations where the ball position or the paddle
position is kept fixed for illustration purposes. zc tracks the
agent position while zu tracks the falling ball. In b), note that
even when having a two-dimensional controllable state, the
adversarial loss in b) makes sure that distinct ball positions
have a negligible effect on zc (left column), even when the
high-level features of the agent and the ball might be hard to
distinguish.

B. Catcher Environment

As opposed to the maze environment, the catcher envi-
ronment encompasses uncontrollable features that are non-
stationary. The ball is dropped randomly at the top of the
environment and is falling irrespective of the actions, while
the paddle position is directly modified by the actions. The
environment’s states are defined as pixel observations st of
size R51×51. At each time step, the paddle moves left or
right by 3 pixels. Since we are only doing unsupervised
learning, we consider the context where there is no reward
(rt = 0 ∀ (st, at) ∈ (S,A)) and an episode ends whenever
the ball reaches the paddle or the bottom.

We take zc ∈ R2 and zu ∈ R6×6. To test disentanglement,
zc is of a higher dimension than needed since the paddle
(agent) only moves on the x-axis and would therefore require
only one feature. To show disentanglement, the redundant
dimension of zc should not or negligibly have information
about zu. The encoder’s parameters are updated according to
Algorithm 1 with LH = LH1

. After training the encoder for
200k iterations, a selection of state observations st and their
encoding into the latent representation z = (zc, zu) can be
seen in Fig. 3. A clear distinction between the ball and paddle
representations can be observed, with the former residing in
zu and the latter in zc.
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C. Random Maze Environment

The random maze environment is similar to the maze envi-
ronment from Section V-A, but consists of a large distribution
of randomly generated mazes with complex wall structures.
The environment’s state is provided as pixel observations
st ∈ R48×48, where an action moves the agent by 6 pixels
in each direction. We consider zc ∈ R2 and zu ∈ R6×6.
This environment tests the generalization properties of a
disentangled latent representation, as there are over 25 million
possible maze architectures, corresponding to a probability
of less than 4 · 10−8 to sample the same maze twice. Note
that because zc is 2-dimensional, results with and without
adversarial loss are in practice extremely close. After 50k
training iterations, the latent representation z = (zc, zu) shows
an interpretable disentanglement between the controllable and
the uncontrollable features (see Fig. 4a). A clear distinction
between the agent and the wall structure can be found inside
zc and zu. Note that Instead of using a single dimension
to ‘describe’ the uncontrollable features zu (see Fig. 1),
using a feature map for zu allows training an encoding that
provides a more interpretable representation of the actual wall
architecture.

1) Reinforcement Learning: In order to verify whether a
human-interpretable disentangled latent encoding is informa-
tive enough for downstream tasks, we formalize the random
maze environment into an MDP with rewards. The agent
acquires a reward rt of -0.1 at every time step, except when
it finds the key in the top right part in which case it acquires
a positive reward of 1. The episode ends whenever a positive
reward is obtained or a total of 50 environment steps have
been taken. For each new episode, a random wall structure is
generated, and the agent starts over in the bottom left section
of the maze (see Fig. 5). To see whether an interpretable
disentangled latent representation is useful for RL, we compare
different scenarios of (pre)training; (i) An encoder pretrained
for 50k iterations to attain the representation in Fig. 4a and
subsequently trained with DDQN for 500k iterations (ii) an en-
coder identical to the aforementioned but trained with DDQN
and a planning algorithm (iii) an encoder pretrained for 50k
iterations with Linv instead of Lc and subsequently trained
with DDQN for 500k iterations (iv) an encoder purely trained
with DDQN gradients for 500k iterations. The resulting per-
formances are compared in Fig. 5. We find that a disentangled
structured representation is suitable for downstream tasks, as it
achieves comparable performance to training an encoder end-
to-end with DDQN for 500k iterations. Although performance
is similar, Fig. 4b shows that an encoder updated solely with
the DDQN gradient can lose any form of interpretability.
Moreover, we show in Fig. 5 that a representation trained with
an inverse prediction loss instead of a state-action forward
prediction loss leads to poor downstream performance in the
random maze environment.

2) Planning: As seen in Fig. 4a, after pre-training with the
unsupervised losses, an interpretable disentangled representa-
tion with the corresponding agent transitions is obtained. Due
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Fig. 4: A plot of the latent representation for all observations
in a single randomly sampled maze when training with the
aforementioned losses (a), and when end-to-end updating the
encoder with only the Q-loss LQ from DDQN for 500k
iterations (c). The left column shows the controllable latent
zct ∈ R2 with the current state in blue, the remaining states in
red, and the predicted movement due to actions as different
colored bars for each individual action. The middle column
shows the uncontrollable latent zut ∈ R6×6 and the right
column shows the original state st ∈ R48×48. Evidently, the
representation in (b) seems to have very little structure at all,
showing that a representation that is optimized without prior
structural incentives will often represent a black box.

to this disentanglement of the controllable and uncontrollable
features, we can employ prior knowledge that the uncontrol-
lable features are static, and employ latent planning in the con-
trollable latent space only (see Fig. 6). The planning algorithm
used is derived from [29], and is used to successfully plan only
in the controllable partition of the latent representation zc,
while freezing the input for zu regardless of planning depth.
It can be observed that even when planning with a relatively
small depth of 3, we achieve better performance than the pre-
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Fig. 5: Performance of different (pre)trained representations
on the random maze environment, measured as a mean (full
line) and standard error (shaded area) over 5 seeds. The
‘Interpretable’ setting uses an encoder pre-trained with 50k
iterations to acquire a representation as in Fig. 4a, after which
the encoder is frozen and a Q-network is trained on top with
DDQN for 500k iterations. The ‘Interpretable + Planning’
curve is similar to the ‘Interpretable’ setting but uses DDQN
with a planning algorithm in the controllable partition of the
latent space with a depth of 3. The ‘DDQN’ setting uses
an encoder trained end-to-end with only DDQN for 500k
iterations and the ‘Inverse Prediction’ setting is equal to the
’Interpretable’ setting but has an encoder pre-trained with an
’inverse’ action prediction loss instead of Lc.

trained representation with an ϵ-greedy policy and than the
purely DDQN-updated encoder.

VI. LIMITATIONS

While the work presented here provides a step towards a
better understanding of disentangling controllable and uncon-
trollable features within an encoder architecture, there remain
some limitations that we must acknowledge, and which can
provide a basis for future research.

First, our method’s effectiveness was predominantly demon-
strated on environments with relatively simple underlying
dynamics. In these environments, the disentanglement process
was easier to achieve due to the limited complexity of internal
dynamics present. As we begin to transfer our approach to
more complex environments characterized by more extensive
internal dynamics, there can arise two problems; The first
being that the separation of controllable from uncontrollable
features may not be as clear-cut in more complex MDPs, but
can be more on a spectrum, complicating the fundamental
differences between a state-only and a state-action forward
predictor. The second being that interpretability will be harder
to enforce when there are a large number of underlying factors
of variation. As distinct seeds can give different orderings
and signs of the neurons in the final layer of the encoder,
identifying a factor of variation can become exponentially
harder for more complex environments.

(a) Planning depth 3

(b) Planning depth 9

Fig. 6: Visualization of the latent representation through an
actual planning iteration utilizing a planning depth of 3 (a) and
a planning depth of 9 (b), with the controllable representation
zc ∈ R2 (left), the uncontrollable representation zu ∈ R6×6

(middle) that is kept static throughout planning depth and the
original pixel input st ∈ R48×48 (right). The translucent red
dots represent every possible encoded state in the random
maze environment, the full blue dot represents the current
encoded state, the red dots represent intermediate encoded
states estimated by planning and the green dot represents
the final predicted state as chosen by the planning algorithm,
consistent with its depth.

Lastly, while our work showed that an action-conditioned
forward predictor could be preferred over an inverse predictor
in some environments for isolating controllable features, it
may not hold for all scenarios. The inherent properties of
different environments might show a necessity of using differ-
ent predictors. Consequently, there could very well be MDPs
where our current approach might not provide the same level
of disentanglement showed in the MDPs used in this paper.

Despite these limitations, we believe our work provides
a strong foundation upon which future research can build
and further extend the possibilities of achieving a highly
interpretable latent representation through disentanglement of
controllable and uncontrollable features.

VII. CONCLUSION AND FUTURE WORK

We have shown the possibility of disentangling controllable
and uncontrollable features in an encoder architecture, strongly
increasing the interpretability of the latent representation while
also showing the potential use of this for downstream learning
and planning, even in a single latent partition. This disen-
tanglement of controllable and uncontrollable features in the
latent representation of high-dimensional MDPs was achieved
by propagating an action-conditioned forward prediction loss
and a state-only forward prediction loss through distinct sec-
tions of the latent representation. Additionally, a contrastive
loss and an adversarial loss were used to respectively avoid
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collapse and further disentangle the latent representation. Fi-
nally, by employing forward prediction in latent space, we
were able to successfully run a planning algorithm while
leveraging the properties of the environment. In particular,
the disentanglement of controllable and uncontrollable features
allowed us to keep zu frozen regardless of planning depth in
the context of a distribution of randomly generated mazes, i.e.
we only do forward prediction in zc.

Future work could focus on gradually transferring our
notion of disentanglement and interpretability to environments
with more extensive underlying internal dynamics. Further
work could also look at the ordering of the latent dimensions,
as a latent representation is often arbitrarily ordered. This
means that distinct seeds will lead to a different ordering
and sign of the neurons in the final layer of the encoder. For
example, if seed one would give agent position +x and +y for
neurons 1 and 2 respectively, then seed two could give agent
position -y and +x to the same neurons. As we are additionally
using a contrastive loss while learning our representation, these
results are compliant with the theory that a contrastive loss can
recover the original latent information up to an orthogonal
linear transformation [30].

Certain benefits can be obtained as well with a particular
design of the encoder architecture, as we have done in this
paper using estimates of the necessary dimensions of zc and
zu for the different MDP environments. This can be seen as
an inductive bias to aid disentanglement, as mentioned in [31].
Succeeding work could also focus on finding more algorithmic
benefits of this disentanglement of controllable/uncontrollable
features in more complex environments. For example, in the
context of safety [32], a disentangled interpretable represen-
tation could allow incorporating latent state constraints in
a planning algorithm. Lastly, as discussed in [10], [31], an
interesting venue could be to further investigate the trade-off
between interpretability and downstream performance. This is
due to the fact that black-box representations such as Figure 4b
still seem to have excellent downstream performance with
DDQN, where for the task of maze navigation, a human
would perform substantially better using the representation
portrayed in Figure 4a as compared to using the representation
in Figure 4b.
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