
Initial Populations with a Few Heuristic Solutions Significantly
Improve Evolutionary Multi-objective Combinatorial Optimization

Cheng Gong∗†‡, Yang Nan∗, Lie Meng Pang∗, Hisao Ishibuchi∗, Qingfu Zhang†‡
∗ Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science

and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
†Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong

‡The City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
chenggong6-c@my.cityu.edu.hk, nany@mail.sustech.edu.cn, panglm@sustech.edu.cn,

hisao@sustech.edu.cn, qingfu.zhang@cityu.edu.hk

Abstract—Population initialization is a crucial and essential
step in evolutionary multi-objective optimization (EMO) algo-
rithms. The quality of the generated initial population can signif-
icantly affect the performance of an EMO algorithm. However,
few studies have focused on designing a generalized initializa-
tion method to improve the performance of EMO algorithms
in solving multi-objective combinatorial optimization (MOCO)
problems. Most of the existing advanced initialization methods
involve complex techniques tailored to the specific characteristics
of the problems to be solved. In this paper, we propose a general
and effective framework of population initialization for EMO
algorithms, aiming to improve their performances in solving
various MOCO problems. Our approach involves the inclusion
of a few specific heuristic solutions, including extreme solutions
and a center solution, into the initial population. This inclusion
serves to guide the evolution of the population throughout
the optimization process. Our experimental results show that
initial populations with a few heuristic solutions significantly
improve the performance of EMO algorithms. Algorithm be-
havior analysis and further study are also provided, allowing
for a comprehensive understanding of the effectiveness and
applicability of our proposed method.

Index Terms—Population initialization, Evolutionary multi-
objective optimization algorithms, Multi-objective combinatorial
optimization

I. INTRODUCTION

In real-world scenarios, many problems can be modeled
as multi-objective combinatorial optimization (MOCO) prob-
lems [1], such as the multi-objective traveling salesman
problem (MOTSP) [2], the multi-objective vehicle routing
problem (MOVRP) [3], the multi-objective assignment Prob-
lem (MOAP) [4] and the multi-objective knapsack problem
(MOKP) [5]. MOCO problems form a particular class of
multi-objective optimization problems (MOPs) [6], which
usually involves multiple and conflicting objectives to be
optimized simultaneously.

Corresponding Authors: Hisao Ishibuchi and Qingfu Zhang.
This work was supported by National Natural Science Foundation of

China (Grant No. 62250710163, 62250710682), Guangdong Provincial Key
Laboratory (Grant No. 2020B121201001), the Program for Guangdong Intro-
ducing Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X386), the
Stable Support Plan Program of Shenzhen Natural Science Fund (Grant No.
20200925174447003), Shenzhen Science and Technology Program (Grant No.
KQTD2016112514355531), the Research Grants Council of the Hong Kong
Special Administrative Region, China (GRF Project No. CityU11215622), and
Natural Science Foundation of China (Project No: 62276223).

Generally, a multi-objective combinatorial optimization
(MOCO) problem can be defined as follow:

minimize F (x) = (f1(x), f2(x), .. , fm(x))

subject to x ∈ X
(1)

where X is a finite decision space, and F (x) is an m-
dimensional objective vector. The decision space X has a
specific discrete/combinatorial structure such as permutations
of n cities in the MOTSP and feasible subsets of n items
in the MOKP. Usually, each individual objective conflicts
with each other and no single solution can optimize all of
them simultaneously. Instead, we solve an MOCO problem
by obtaining Pareto optimal solutions which characterize the
different trade-offs among these objectives. A solution is called
a Pareto optimal solution if there exists no solution that
can improve one objective without deteriorating any other
objective. The set of all the Pareto optimal solutions in the
objective space is called the Pareto front (PF).

Usually, it is very challenging to obtain the exact Pareto
optimal solutions for an MOCO problem, since solving an
MOCO problem is NP-hard even if it has one objective [7].
Moreover, the number of Pareto solutions is expected to be
exponentially large as the number of objectives increases
[8]. In fact, it is computationally hard to determine whether
a single solution is Pareto-optimal or not for most MOCO
problems [9]. All these challenges make it impractical to solve
MOCO problems within a reasonable computational time by
using classical mathematical methods (exact optimization).
Therefore, over the past years, many efforts have been devoted
to developing approximate methods such as metaheuristics
approaches [10]. Among different metaheuristics approaches,
evolutionary multi-objective optimization (EMO) algorithms
[11]–[13] are very popular since they have shown good
performances in solving MOCO problems.

EMO algorithms are population-based methods with the
goal of evolving a set of solutions to approximate the Pareto
set. Generally, the first step of all population-based algorithms
is to generate an initial population. The role of the initial
population is not trivial. Intuitively, as the starting point of
evolution, a promising initial population can improve the
whole optimization process and reduce some computational

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1398

costs. However, how to generate a good initial population has
long been a question in the EMO community.

Currently, there is limited research focusing on the ini-
tialization of EMO algorithms for solving MOCO problems.
The most commonly-used initialization method is to randomly
generate a set of solutions as the initial population [14]. The
random property can help to maintain a good diversity of
solutions over the decision space. In addition, the random
initialization method is easy to be implemented with no
computational cost. Although the random initialization method
can be applied to a wide range of problems, there exists a clear
issue especially for large-scale problems. That is, randomly
generated solutions are usually far away from the Pareto front.
It needs long computation time to find good solutions around
the Pareto front by multi-objective evolution from random
initial solutions.

Advanced initialization methods are needed to improve the
performance of EMO algorithms when we want to solve large-
scale MOCO problems efficiently. However, initialization for
MOCO problems is not easy due to the following reasons.
Firstly, when we use an EMO algorithm to solve an MOCO
problem, its search space is determined by the encoding
of decision variables. For instance, traveling salesman prob-
lems typically use permutation encoding, whereas knapsack
problems employ binary encoding. This implies that a well-
designed initialization method should exhibit a high level of
adaptability to different encoding schemes used in various
MOCO problems. Moreover, defining a suitable distance mea-
sure between solutions can be challenging, particularly for
certain encoding schemes such as permutation encoding. This
makes it difficult to appropriately evaluate (and maintain) the
diversity of initial solutions in the decision space. In some
studies [15]–[17], researchers tried to modify the initialization
step to improve the EMO algorithms for solving MOCO prob-
lems. However, most of their initialization methods involve
complicated heuristics that require a number of additional
computation resources. Moreover, their initialization methods
are often problem-dependent, which lack the generalization
ability to other problems with different encoding schemes.

In this paper, we propose a general and effective frame-
work of population initialization for EMO algorithms to solve
MOCO problems. Specifically, we first decompose a given
MOCO problem into several different single-objective com-
binatorial optimization problems by using the weighted sum
scalarization with specific weight vectors. Then, we approxi-
mately solve each single-objective combinatorial optimization
problem to obtain a good heuristic solution. Finally, we
construct an initial population which consists of the obtained
heuristic solutions and other randomly generated solutions.
Our main idea is to obtain only a few heuristic solutions
by using a very low computation cost. These good heuristic
initial solutions improve the other randomly generated initial
solutions through crossover. We evaluate the effects of our
proposed framework of population initialization on the per-
formance of a classic EMO algorithm for solving different
MOTSP test instances. Our experimental results show that

the proposed framework of population initialization greatly
improves the performance of the original EMO algorithm
with the random initial population. Most importantly, the
proposed framework of population initialization can be applied
to various EMO algorithms with no limitation on the types of
MOCO problems (if they have some heuristic algorithms).

This paper is organized as follows. First, Section II describes
the proposed framework of population initialization used in
this paper. Next, Section III presents the experimental results
as well as algorithm behavior analysis. Finally, Section IV
concludes the paper.

II. PROPOSED FRAMEWORK OF POPULATION
INITIALIZATION

In order to efficiently solve multi-objective combinatorial
optimization problems, we propose an idea of including a
small number of heuristic solutions in a randomly generated
initial population. In this paper, the proposed idea is explained
and examined for MOTSP instances.

In the first step, we decompose the original m-objective
MOCO problem (e.g., MOTSP) into some single-objective
combinatorial optimization problems by using weighted sum
scalarization: g(x) = w1f1(x) + w2f2(x) + ... + wmfm(x),
where w1, w2, ..., wm are the elements of a given weight
vector w. The number of single-objective problems (i.e.,
the number of weight vectors) is much smaller than the
population size. For the m objective MOCO problem, we
consider the following m+ 1 weight vectors:

m Extreme Weight Vectors:
weight vector 1: w1 = (1, 0, ..., 0),
weight vector 2: w2 = (0, 1, ..., 0),

...
weight vector m: wm = (0, 0, ..., 1),

One Center Weight Vector:
weight vector m+ 1: wm+1 = (1/m, 1/m, ..., 1/m).

The first m weight vectors are called the extreme weight
vectors where each weight vector assigns a non-zero weight
only to a single objective. For example, extreme weight vector
m has a weight of one only for the m-th objective while it
has zero weights for all the other objectives. The last weight
vector is called the center weight vector, which has the same
weight for all objectives. We use these m+ 1 weight vectors
to include m+ 1 heuristic solutions in a randomly generated
initial population.

The next step is to obtain a heuristic solution by solving
each single-objective problem. For MOTSP instances, the
distance between two cities of a created single-objective TSP is
the weighted sum of the distance between them corresponding
to each objective. For example, the distance between two cities
p and q in the single-objective problem with weight vector
w = (w1, w2, ..., wm) can be formulated as:

dw(p, q) = w1d1(p, q) +w2d2(p, q) + . . .+wmdm(p, q) (2)

1399

Fig. 1. Illustration of three heuristic solutions (including two extreme
solutions and one center solution) obtained by solving a 2-objective TSP.

where di(p, q), i = 1, 2, ...,m is the distance between two
cities p and q corresponding to the i-th objective.

In this paper, we use a greedy algorithm to solve each
single-objective TSP problem. Specifically, for a given single
objective TSP problem, the greedy algorithm randomly picks
one of the cities as the starting point. Then, it successively
moves to the nearest unvisited city until produces a complete
tour. Since the obtained tour depends on the choice of a
starting city, we examine all cities as a starting city. Then,
the tour with the shortest tour length is chosen as a heuristic
solution corresponding to the given single objective TSP prob-
lem. We choose the greedy algorithm as the solver due to its
small computational cost requirement for obtaining a heuristic
solution. Moreover, our experimental results show that the
heuristic solutions obtained by the greedy algorithm are good
enough to improve the performance of EMO algorithms.
Another advantage is that obtaining a single greedy solution
consumes only one function evaluation, which can generally
be overlooked considering the large number of generations
processed by an EMO algorithm.

It is worth noting that there are several other heuristic
methods available for single-objective TSP problems. Some
of them can generate higher quality solutions using more
computation time than the greedy algorithm. To examine the
impact of the quality of heuristic solutions on our proposed
framework of population initialization, we also use a state-
of-the-art specialized TSP solver, the Lin-Kernighan Heuristic
(LKH) solver [18], to generate heuristic solutions. We compare
two heuristic algorithms in this paper: the above-mentioned
greedy algorithm and the LKH solver. Using each algorithm,
m + 1 heuristic solutions are obtained. Then, the obtained
heuristic solutions are included in a randomly generated initial
population. Since better heuristic solutions are obtained by
the LKH solver than the greedy algorithm, we can examine
the effect of the quality of heuristic initial solutions on the
performance of EMO algorithms.

We call each of the first m heuristic solutions (correspond-
ing to the first m extreme weight vectors) as extreme solutions
i (i = 1, 2, ...,m). The other heuristic solution (corresponding
to the center weight vector wm+1) is called center solution

m+1. Fig. 1 illustrates an example of three heuristic solutions
obtained by solving a 2-objective TSP.

The generated m + 1 heuristic solutions are included in a
randomly generated initial population. In our computational
experiments, we use the following procedure to generate an
initial population of size N to compare various settings. First,
an initial population of size N is randomly generated. This
random initial population is used as the baseline setting. Next,
k solution (1 ≤ k ≤ m) are randomly removed from the
random initial population. Then, k out of the m heuristic
solutions are included in the random initial population of size
N−k to create an initial population if size N . In this manner,
we examine various initial populations (e.g., with only a single
extreme solution, with all the m+ 1 heuristic solutions).

One may think that the availability of heuristic algo-
rithms are limited for many MOCO problems (i.e., only
MOTSP problems have the above-mentioned special prop-
erty: A single-objective TSP problem can be created for an
arbitrarily specified weight vector w). In order to address
this issue, we examine various settings of initial populations.
For example, we examine an initial population with only a
single heuristic solution. This setting corresponding the case
where a heuristic algorithm is available only for one out of m
objectives.

III. EXPERIMENTAL STUDIES

In this section, we validate the effectiveness of our proposed
framework of population initialization in improving evolution-
ary multi-objective combinatorial optimization. Specifically,
we assess its impact on the performance of an EMO algorithm
compared to the original random initialization method (i.e.,
using randomly generated solutions as the initial population).
Furthermore, we will investigate the influence of including
various heuristic solutions on the evolutionary behavior of the
population.

A. Experimental Setup

In this paper, we use the well-known EMO algorithm
NSGA-II [11] as an example to investigate whether our
proposed framework of population initialization improves its
performance in solving MOCO problems. Actually, other
EMO algorithms (e.g., MOEA/D [12] and NSGA-III [19]) also
show similar significant performance improvement when using
this proposed framework.

As explained in the previous section, m + 1 heuristic
solutions will be obtained for an m-objective TSP problem. In
our experiments, we generate multiple variants of NSGA-II.
Each variant of NSGA-II is named using the included heuristic
solutions. For example, NSGA-II E12 means the inclusion of
extreme solutions 1 and 2 in an initial population. Similarly,
NSGA-II E1C3 means the inclusion of extreme solution 1
and center solution 3. This naming system helps us to easily
understand the characteristic of each NSGA-II variant.

We evaluate the performance of these different variants
as well as the original NSGA-II with a pure random initial
population on the multi-objective traveling salesman problem

1400

NSGA-II NSGA-II_E1 NSGA-II_E2 NSGA-II_C3 NSGA-II_E12 NSGA-II_E1C3 NSGA-II_E12C3

(a) 2-objective kroAB100 TSP (b) 2-objective kroAD100 TSP

NSGA-II NSGA-II_E1 NSGA-II_E2 NSGA-II_E3 NSGA-II_C4 NSGA-II_E12 NSGA-II_E1C4 NSGA-II_E123 NSGA-II_E123C4NSGA-II_E12C4

(c) 3-objective kroABC100 TSP (d) 3-objective kroBCE100 TSP

NSGA-II NSGA-II_E1 NSGA-II_E2 NSGA-II_C5 NSGA-II_E12 NSGA-II_E1C5 NSGA-II_E123 NSGA-II_E12C5 NSGA-II_E123C5 NSGA-II_E1234C5NSGA-II_E1234

(e) 4-objective kroABCD100 TSP (f) 4-objective kroBCDE100 TSP

Fig. 2. Average anytime performance curves of the hypervolume over 31 runs for each compared algorithm on six MOTSP test instances.

TABLE I
INFORMATION ABOUT THE TEST INSTANCES

Test instances m D Combined TSPLIB instances

kroAB100 2 100 kroA100 and kroB100
kroAD100 2 100 kroA100 and kroD100

kroABC100 3 100 kroA100, kroB100, kroC100
kroBCE100 3 100 kroB100, kroC100 and kroE100

kroABCD100 4 100 kroA100, kroB100, kroC100 and kroD100
kroBCDE100 4 100 kroB100, kroC100, kroD100 and kroE100

(MOTSP). In our experiment, six MOTSP test instances (with
2, 3 and 4 objectives) are generated by combining different
single objective TSP instances available in TSPLIB [20]. De-
tailed information about the generated MOTSP test instances
is shown in Table I. Specially, m denotes the number of
objectives and D denotes the number of cities (i.e., the number
of decision variables) in Table I.

The hypervolume metric [21] is used to compare the per-

formances of different algorithms. For the MOTSP, which is
a minimization problem, the reference point is calculated as
follows [22]:

ref = Fmax + 0.1× (Fmax − Fmin) (3)

where Fmax = (fmax
1 , fmax

2 , ..., fmax
m) and Fmin =

(fmin
1 , fmin

2 , ..., fmin
m) are respectively the maximum and

minimum objective values ever found by all compared algo-
rithms in our computational experiments.

The hypervolume of each solution set (i.e., final population)
is normalized by dividing it by the hypervolume of Fmin

(which can be viewed as an estimated ideal point).

B. Experimental Results

To evaluate the anytime performance of each NSGA-II
variant, we calculate and record the hypervolume of the current
population at every five generations. In all algorithms on all
test instances (with 2-4 objectives), the population size is set as

1401

Fig. 3. Distribution of population in the objective space at specific generations for two view directions.

91. Each algorithm is terminated after 91×200, 000 solutions
are examined (i.e., 200,000 generations). All algorithms are
executed 31 times on each test instance.

In Fig. 2, we plot the average anytime performance curves
of the average hypervolume (HV) over 31 runs for each
compared algorithm on each test instance. It is evident that
across all 2, 3, and 4-objective TSP problems, the performance
of all NSGA-II variants consistently outperforms the original
NSGA-II (black points in each figure) at every generation
on all the six MOTSP test instances. The results suggest
that our proposed framework of population initialization, i.e.,
initial populations with a few heuristic solutions, significantly
improves the performance of the original EMO algorithm.

We also observe that various NSGA-II variants show clearly
different performances in Fig. 2. The general observations is
summarized as follows:
• Inclusion of any subset of the m + 1 heuristic solutions

leads to a significant performance improvement compared
to the original NSGA-II with a purely random initial
population.

• In general, inclusion of more heuristic solutions leads
to better performance. For example, Fig. 2 (a) shows
that NSGA-II E12C3 is better than NSGA-II E12, and
NSGA-II E12 is better than NSGA-II E1.

• The center solution has larger effects than any extreme
solution on the performance improvement especially in
early generations This observation will be further exam-
ined later in the algorithm behavior analysis section.

• Among different combinations of m heuristic solutions,
the best final results are obtained from the combination of
all m extreme solutions. In Fig. 2 (b)-(f), the combination
of all m extreme solutions shows the best performance
together with the combination of all m + 1 heuristic
solutions after the 2× 105 generations (whereas

• Among all variants, the best results in early generations
are always obtained in all figures in Fig. 2 by NSGA-II
with all the m + 1 heuristic solutions. As we have just
explained, NSGA-II with the m extreme solutions also
show similar performance after enough generations.

In Fig. 2 (c)-(f), we observe that, for the 3- and 4-objective
TSP test instances, initialization with the center solution (e.g.,
NSGA-II C4, NSGA-II E1C4, and NSGA-II E123C4 in Fig.
2 (c)) leads to the decrease of the average hypervolume values
after about 100 generations. To explain this phenomenon,
we select NSGA-II C4 in Fig. 2 (c) on kroABC100 as an
example. Fig. 3 shows the distribution of its population in
the objective space at some specific generations. We can
observe that the population initially converges towards the
PF and concentrate around the center of the PF (as shown
by the solutions at the 100th generation: red points in Fig.
3). This behavior explains the initial increase of the average
hypervolume value in Fig. 2 (c), which reaches its maximum
value around the 100th generation. Then, NSGA-II starts to
increase the diversity of solutions. As a consequence, some
solutions are pushed away from the PF, which results in the
decrease in the average hypervolume value.

C. Algorithm Behavior Analysis

To demonstrate the impact of our proposed framework of
population initialization on the evolutionary behavior of the
population, we conduct an algorithm behavior analysis in this
section.

We select a single run to visualize the evolution of the
population for each compared algorithm when they solve the
2-objective kroAB100 TSP test instance. As shown in Fig. 4,
we plot the distribution of population in the objective space
at some specific generations (i.e., 1, 3, 5, ..., 999, 1000, 2000,
3000, ..., 200000th generation). In each subfigure, the black
points constitute the approximate Pareto front (PF) and the red
points represent the included heuristic solutions. In order to
obtain the approximate PF of an m-objective TSP, we first gen-
erate a large number of weight vectors w = (w1, w2, ..., wm)
in the same manner as in MOEA/D [12], where w1 + w2 +
... + wm = 1 and 0 ≤ wk ≤ 1(k = 1, 2, ...,m). Then, for
each weight vector, we formulate a single-objective problem
by using the weighted sum scalarization. We use the Gurobi
Optimizer [23] to solve each formulated single-objective opti-
mization problem. Finally, the PF of each multi-objective TSP
is approximated by the obtained optimal solutions [24].

1402

(a) NSGA-II (b) NSGA-II E1 (c) NSGA-II E2 (d) NSGA-II C3

(e) NSGA-II E12 (f) NSGA-II E1C3 (g) NSGA-II E2C3 (h) NSGA-II E12C3

Fig. 4. Algorithm behavior analysis of each compared algorithm for a 2-objective TSP test instance. The red points denote the included heuristic solutions
and the black points denote the approximate Pareto front.

(a) NSGA-II (b) NSGA-II E1 (c) NSGA-II E2 (d) NSGA-II C3

(e) NSGA-II E12 (f) NSGA-II E1C3 (g) NSGA-II E2C3 (h) NSGA-II E12C3

Fig. 5. Illustration of search behavior of each algorithm for a 2-objective kroAB100 TSP test instance. The red and pink arrows are used to explain the main
evolutionary behavior of the population.

From Fig. 4, it can be observed that different NSGA-II
variants with different initial heuristic solutions show different
search behaviors. In Fig. 5, detailed illustrations of the search
behavior of the population for each compared algorithm are
given, aiming to provide a comprehensive understanding. We
summarize the different search behaviors of the populations
as follows:

(1) Fig. 5 (a) shows the search behavior of the population
when a pure randomly generated initial population is used.
In this case, the population will gradually converge towards
the PF and simultaneously increase its diversity. We also
observe that, after the middle stage of generations (e.g., as
shown by the green points), the population begins to exhibit

a distribution that resembles the shape of the PF.
(2) Fig. 5 (b) and Fig. 5 (c) show the search behaviors of the

populations when an extreme solution is included in the initial
population. In this case, first, the population will converge
towards the region around the included extreme solution, as
indicated by the red arrows. We can observe that the solutions
farther away from the included extreme solution have a weaker
convergence towards the PF. Second, the population increases
its diversity by spreading the solutions across the entire PF, as
indicated by the pink arrows. Also, the population continues
to converge towards the PF simultaneously.

(3) Fig. 5 (d) shows the search behavior of the population
when a center solution is included in the initial population. In

1403

(a) 2-objective kroAB100 TSP (b) 3-objective kroABC100 TSP (c) 4-objective kroABCD100 TSP

Fig. 6. Comparison of the utilization of the heuristic solutions obtained by the greedy algorithm and LKH solver.

Fig. 7. Average anytime performance curves of the hypervolume over 31 runs
for each compared algorithm on 2-objective kroAB100 TSP. The termination
condition is set to 1,000,000 generations.

this case, first, the population will quickly converge towards
the PF and concentrate around the included center solution, as
indicated by the red arrow. Second, the population increases
its diversity by spreading the solutions from the concentrated
region towards the two sides of the PF, as indicated by the pink
arrows. Also, the population slightly converges towards the
PF simultaneously. As described in section 4.2, the inclusion
of the center solution leads to a significant hypervolume
improvement during the early generations. This phenomenon
can be explained by the fact that, in the early stage of
generations, a majority of the solutions concentrate around
the center part of the PF, as shown by Fig. 5 (d). This will
result in a large value in hypervolume calculation.

(4) Fig. 5 (e)-(h) show the search behaviors of the popu-
lations when multiple heuristic solutions are included in the
initial population. In this case, first, the population will quickly
converge towards an approximate hyperplane (it is essentially
a line in the 2-dimensional space as shown by the red dashed
line), which is formed by the region between two included
heuristic solutions. Second, the population gradually converge
towards the PF from the hyperplane. Additionally, when not
all the extreme solutions are included (e.g., Fig. 5 (f) and
(g)), the population also increases its diversity by spreading
the solutions across the entire PF, as indicated by the pink

arrows.

D. Further Study

In the previous section, we demonstrated that initial pop-
ulations with a few heuristic solutions significantly improve
evolutionary multi-objective combinatorial optimization. In
this section, we take a further step to address two specific
questions: (1) Does the utilization of higher-quality heuristic
solutions result in greater performance improvement? (2) Does
the proposed framework of population initialization consis-
tently outperform the original random initialization approach
in all generations?

To address these questions, we first use the LKH solver
to generate better heuristic solutions than those generated by
the greedy algorithm. Then, we compare the performances of
NSGA-II variants between the two types of heuristic initial
solutions: One is generated by the LKH solver and the other
is generated by the greedy algorithm. In Fig. 6, we present
the results for the scenario where all m+1 heuristic solutions
are included in the initial population (i.e., the NSGA-II variant
showing the best performance). From Fig. 6, we observe that
using the heuristic solutions generated by LKH consistently
leads to slightly better results than the case of the greedy
algorithm. We also obtained similar comparison results to
Fig. 6 from all the other NSGA-II variants. These results
suggest that the utilization of higher-quality heuristic solutions
can result in greater performance improvement. However, the
magnitude of improvement is not significant (i.e., the red
lines are only slightly better than the blue lines), while the
computational resource consumption of LKH is higher than
that of the greedy algorithm. Hence, there exists a trade-off
between generating high-quality heuristic solutions and the
consumption of computational resources that need to be taken
into account.

Next, we extend our investigation by modifying the termi-
nation condition from 200,000 to 1,000,000. Our goal is to
determine whether our proposed framework of population ini-
tialization would continue to consistently lead to performance
improvement. Fig. 7 shows the average HV performance of all

1404

compared algorithms up to 1,000,000 generations. We observe
that all the NSGA-II variants using our proposed framework
of population initialization continue to consistently lead to
performance improvement compared to the original NSGA-
II with a random initial population, even when extending the
evaluation to 1,000,000 generations.

IV. CONCLUSION

In the paper, we proposed a general and effective framework
of population initialization to improve the evolutionary multi-
objective combinatorial optimization. Our main idea involves
two steps for constructing the initial population: (1) Obtain
a few heuristic solutions by solving the decomposed single-
objective problems. Specifically, we propose obtaining m
extreme solutions and one center solution for an m-objective
problem; (2) Use the m + 1 heuristic solutions along with
other randomly generated solutions to construct the initial
population. We applied the proposed framework of population
initialization to a well-known EMO algorithm (NSGA-II) by
including some of the m+ 1 heuristic solutions in the a ran-
domly generated initial population. We examined the effect of
heuristic initial solutions on the performance of NSGA-II. Six
MOTSP test instances were used to evaluate the performance
of compared algorithms. The experimental results showed that
our proposed framework of population initialization can result
in significant performance improvement.

Algorithm behavior analysis was provided to illustrate
how heuristic initial solutions change the search behavior of
NSGA-II. Our further investigation revealed two findings. One
is that the utilization of higher-quality heuristic solutions can
result in greater performance improvement. The other finding
is that NSGA-II variants with some heuristic initial solutions
is always better (independent of the choice of heuristic initial
solutions from the m+1 heuristic solutions) than the original
NSGA-II with a pure random initial population.

In our future research, we will examine our proposed
framework of population initialization on other representative
EMO algorithms. Additionally, we will examine the use of
the proposed framework of population initialization for other
MOCO problems. This will allow us to assess the generality of
our proposed framework of population initialization in tackling
various MOCO problems.

REFERENCES

[1] E. L. Ulungu and J. Teghem, “Multi-objective combinatorial optimiza-
tion problems: A survey,” Journal of Multi-Criteria Decision Analysis,
vol. 3, no. 2, pp. 83–104, 1994.

[2] C. C. Ribeiro, P. Hansen, P. C. Borges, and M. P. Hansen, “A study of
global convexity for a multiple objective travelling salesman problem,”
Essays and Surveys in Metaheuristics, pp. 129–150, 2002.

[3] N. Jozefowiez, F. Semet, and E.-G. Talbi, “Multi-objective vehicle
routing problems,” European Journal of Operational Research, vol. 189,
no. 2, pp. 293–309, 2008.

[4] L. Belhoul, L. Galand, and D. Vanderpooten, “An efficient procedure
for finding best compromise solutions to the multi-objective assignment
problem,” Computers & Operations Research, vol. 49, pp. 97–106, 2014.

[5] H. Ishibuchi, N. Akedo, and Y. Nojima, “Behavior of multiobjective
evolutionary algorithms on many-objective knapsack problems,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 2, pp. 264–283,
2014.

[6] K. Miettinen, Nonlinear multiobjective optimization. Springer Science
& Business Media, 2012, vol. 12.

[7] M. Ehrgott and X. Gandibleux, “A survey and annotated bibliography
of multiobjective combinatorial optimization,” OR-spektrum, vol. 22, pp.
425–460, 2000.

[8] A. Herzel, S. Ruzika, and C. Thielen, “Approximation methods for
multiobjective optimization problems: A survey,” INFORMS Journal on
Computing, vol. 33, no. 4, pp. 1284–1299, 2021.

[9] M. Ehrgott, Multicriteria optimization. Springer Science & Business
Media, 2005, vol. 491.

[10] M. Ehrgott, “Approximation algorithms for combinatorial multicriteria
optimization problems,” International Transactions in Operational Re-
search, vol. 7, no. 1, pp. 5–31, 2000.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[12] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on Evolutionary Compu-
tation, vol. 11, no. 6, pp. 712–731, 2007.

[13] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjec-
tive selection based on dominated hypervolume,” European Journal of
Operational Research, vol. 181, no. 3, pp. 1653–1669, 2007.

[14] B. Kazimipour, X. Li, and A. K. Qin, “Effects of population initialization
on differential evolution for large scale optimization,” in 2014 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2014, pp. 2404–
2411.

[15] S. Wang, X. Wang, J. Yu, S. Ma, and M. Liu, “Bi-objective identical
parallel machine scheduling to minimize total energy consumption and
makespan,” Journal of Cleaner Production, vol. 193, pp. 424–440, 2018.

[16] M. Rashidnejad, S. Ebrahimnejad, and J. Safari, “A bi-objective model
of preventive maintenance planning in distributed systems considering
vehicle routing problem,” Computers & Industrial Engineering, vol. 120,
pp. 360–381, 2018.

[17] G. Vilcot and J.-C. Billaut, “A tabu search and a genetic algorithm for
solving a bicriteria general job shop scheduling problem,” European
Journal of Operational Research, vol. 190, no. 2, pp. 398–411, 2008.

[18] K. Helsgaun, “An effective implementation of the Lin–Kernighan trav-
eling salesman heuristic,” European Journal of Operational Research,
vol. 126, no. 1, pp. 106–130, 2000.

[19] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part i: solving problems with box constraints,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2013.

[20] G. Reinelt, “TSPLIB—a traveling salesman problem library,” ORSA
Journal on Computing, vol. 3, no. 4, pp. 376–384, 1991.

[21] J. D. Knowles, L. Thiele, and E. Zitzler, “A tutorial on the performance
assessment of stochastic multiobjective optimizers,” TIK-report, vol.
214, 2006.

[22] J. Shi, Q. Zhang, and J. Sun, “PPLS/D: Parallel Pareto local search
based on decomposition,” IEEE Transactions on Cybernetics, vol. 50,
no. 3, pp. 1060–1071, 2018.

[23] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[24] H. Ishibuchi, L. He, and K. Shang, “Regular Pareto front shape is not
realistic,” in 2019 IEEE Congress on Evolutionary Computation (CEC).
IEEE, 2019, pp. 2034–2041.

1405

