
Crowd Counting on Heavily Compressed Images
with Curriculum Pre-Training

Arian Bakhtiarnia, Qi Zhang, and Alexandros Iosifidis

Abstract—JPEG image compression algorithm is a widely
used technique for image size reduction in edge and cloud
computing settings. However, applying such lossy compression
on images processed by deep neural networks can lead to
significant accuracy degradation. Inspired by the curriculum
learning paradigm, we propose a training approach called cur-
riculum pre-training (CPT) for crowd counting on compressed
images, which alleviates the drop in accuracy resulting from
lossy compression. We verify the effectiveness of our approach
by extensive experiments on three crowd counting datasets, two
crowd counting DNN models and various levels of compression.
The proposed training method is not overly sensitive to hyper-
parameters, and reduces the error, particularly for heavily
compressed images, by up to 19.70%.

Index Terms—Crowd Counting, Smart City, Computer Vision

I. INTRODUCTION

Many applications in smart cities, such as crowd mon-
itoring, traffic surveillance and anomaly detection, utilize
deep learning to process visual information [1], [2]. In such
settings, typically the video frames taken by many cameras
installed throughout the city are transmitted to a few edge or
cloud servers to be processed. Since the capture resolution
of modern cameras are typically high, in cases surpassing
Full HD (1920×1080 pixels), transmitting raw images and
video frames over the network results in massive bandwidth
consumption and traffic congestion. JPEG compression is
a common method used for reducing the size of images
for transmission and storage. One of the benefits of JPEG
is that it is readily available and configurable on many
cameras. Moreover, JPEG encoding does not require a lot
of computational power, which is crucial since capture de-
vices are typically very limited in terms of computational
resources. JPEG compression has been shown to provide a
better accuracy-bandwidth trade-off compared to other simple
compression techniques such as uniform downsampling and
grayscaling [3]. Other than reducing bandwidth, using heavily
compressed images can be a computationally cheap approach
to preserve privacy, since facial features will not be easily
detectable, as shown in Figure 2 (f).

JPEG is a lossy compression algorithm, meaning that the
reconstructed image will not be exactly the same as the
original image, since some visual information is lost during

Arian Bakhtiarnia, Qi Zhang and Alexandros Iosifidis are with DIGIT,
the Department of Electrical and Computer Engineering, Aarhus Uni-
versity, Aarhus, Midtjylland, Denmark (e-mail: arianbakh@ece.au.dk;
qz@ece.au.dk; ai@ece.au.dk).

This work was funded by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 957337, and by the
Danish Council for Independent Research under Grant No. 9131-00119B.

Fig. 1. Our method (CPT) can achieve better performance compared to the
normal pre-training (NPT) procedure. Even though the input image is heavily
compressed with the lowest JPEG quality setting (i.e., quality factor QF =
1), our method can obtain a count close to ground truth. The 1024×768-pixel
image is taken from the Shanghai Tech Part B dataset [4].

the encoding and decoding process. This negatively affects
the performance of deep learning models, therefore, many
methods exist that try to mitigate this loss of information.
However, these methods typically introduce high overhead,
are not optimized for particular downstream deep learning
tasks, and do not focus on heavily compressed images. In this
work, we propose a method called curriculum pre-training,
which alleviates the accuracy drop resulting from JPEG
compression in the crowd counting task, without introducing
any overhead. Through extensive experiments, we show that
our method works well for both light and heavy compression
in many situations, and is not overly sensitive to hyper-
parameters. To the best of our knowledge, this is the first
work that addresses the problem of crowd counting on
heavily compressed images. Figure 1 shows the result of
the method applied to an example heavily compressed high-
resolution image. Our code is publicly available1.

II. RELATED WORK

A. JPEG Compression in Deep Learning

JPEG is a lossy compression algorithm which can signifi-
cantly reduce the size of images with minimal loss of visual
information, and has built-in parameters for controlling the

1https://gitlab.au.dk/maleci/curriculum-pre-training

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 559

(a) QF = 75 (b) QF = 60 (c) QF = 15

(d) QF = 10 (e) QF = 5 (f) QF = 1

Fig. 2. Sample 200×200 pixel image patch taken from the Shanghai Tech
Part B dataset [4], after being compressed with a varying QF.

amount of compression. The JPEG encoding process consists
of three main steps [5], [6]. The first step is to convert the 24-
bit 3-channel RGB image to the YCbCr color space based on
a linear transformation. Since the human eye is less sensitive
to color details represented by the chroma components Cb
and Cr, they are downsampled by a factor of 2 or 3. The
second step is to split each component to 8×8 blocks and
convert the information to frequency domain by performing
a two-dimensional discrete cosine transform (DCT) on each
block. The amplitude of the frequency domain information
is then quantized based on

Q = D ⊘ Ts, (1)

where D contains the obtained DCT amplitudes, ⊘ is
element-wise matrix division (Hadamard division), and Ts

is derived based on

Tsij =
⌊sTbij + 50

100

⌋
, (2)

where

s =

{
5000
QF , 1 ≤ QF < 50,

200− 2q, 50 ≤ QF ≤ 100,
(3)

and Tb is a fixed matrix called base quantization. The quality
setting 1 ≤ QF ≤ 100 in equation 3 is an integer number that
controls the amount of quantization, with 1 corresponding to
the lowest quality and 100 the highest. Figure 2 shows a
sample image at different quality settings. In line with the
findings of [7], the quality of the image stays relatively high
with QF ≥ 10. The last step in the JPEG encoding process
is to further reduce the size of the quantized matrices using
Huffman encoding.

JPEG compression has been shown to reduce the per-
formance of deep neural networks, particularly with high
compression settings [7]. Therefore, there have been efforts
to improve the quality of images compressed using JPEG
[8]. However, JPEG artifact correction methods have several
shortcomings. Some methods focus on improving the visual
quality of the reconstructed images without paying attention

to the downstream tasks [9]. Even though such methods
try to reconstruct the images as closely as possible to the
original non-compressed ones, it is not clear whether such
reconstructions lead to optimal performance in a particular
deep learning task. Furthermore, JPEG artifact correction
methods typically ignore heavily compressed images, defined
as having a QF < 10, since they claim there is little
information preserved below this threshold. However, as we
show in this work, heavy compression can still offer valuable
options in the trade-off between size and performance for the
crowd counting task. Finally, modern JPEG artifact correction
methods use deep neural networks to improve the quality
of the reconstructed images, which adds high overhead to
an already demanding task. For instance, imagine a scenario
where SASNet [10] is used for crowd counting on images of
size 1024×768, which uses 698.72 GMACs. Faster RCNN
[11] is used as the artifact correction network in [8], which
adds an overhead of 177.82 GMACs, increasing the total
computation by over 25%. Similarly, the overhead of FBCNN
[9] is 2189.24 GMACs, which is several times more than the
computation of the crowd counting task itself. In contrast, our
method is designed for and evaluated on the downstream task.
Our method can perform well even under heavy compression
without adding any overhead, as it only modifies the training
procedure of the task DNN (deep neural network).

B. Crowd Counting

Crowd counting is the task of counting the total number
of people present in a given scene [12]. The input images
typically have high resolutions, and the output is a density
map detailing the density of the crowd at each location of
the image. Crowd counting datasets provide head annotations
as ground truth labels, which are the locations of the center
of the head for each person in the image. Crowd counting
methods are usually evaluated based on mean absolute error
(MAE) and mean squared error (MSE) which are measures
for accuracy and robustness, respectively [13]. In this work,
we evaluate the performance of DNNs based on MAE since
accuracy is our primary goal.

In this work, we use the Shanghai Tech part A (SHTA),
Shanghai Tech part B (SHTB) [4], and DISCO [14] crowd
counting datasets. Both SHTA and SHTB are widely used
in crowd counting literature. SHTA contains 482 images of
very dense crowds taken from the web with variable sizes
ranging from 420×182 pixels to 1,024×1,024 pixels, and
SHTB contains 716 images of moderate density taken from
a busy street with size 1,024×768 pixels. Both datasets split
the images into training and test sets. SASNet [10] is the
state-of-the-art DNN for crowd counting on SHTA and SHTB
at the time of this writing. SASNet uses the first 10 layers of
VGG16 [15] as a feature extractor, and adds several layers
on top of this architecture in order to extract and combine
features across multiple scales.

DISCO is a challenging dataset taken from a large variety
of scenes, which include diverse illumination settings such
as day and night. DISCO contains 1,935 images split into
training, validation and test sets. CSRNet [16] is a high-

560

performing DNN for crowd counting on the DISCO dataset.
Similar to SASNet, CSRNet also uses the first 10 layers of
VGG16 as a feature extractor and adds 6 dilated convolution
layers after.

C. Curriculum Learning

Curriculum learning is a training paradigm for deep neural
networks, which is inspired by how humans learn in their
formal education, where a knowledgeable teacher starts the
course with simple concepts and gradually increases the
difficulty of the material. Similarly, the training examples
for neural networks can be sorted based on some measure
of difficulty. Training can start with the simplest examples
and harder examples can be gradually introduced during
the training process, which can ultimately lead to higher
accuracy [17]. For instance, in image classification, images
with complex backgrounds may be more difficult for a DNN
to classify. In this case, the confidence of another “teacher”
DNN on each images can be used as a measure of difficulty.

Curriculum learning is composed of two main functions:
the sorting function that assigns a difficulty to each training
example, and the pacing function that determines the pace
for introducing harder examples in the training process.
Various sorting and pacing functions have been explored in
the literature [18]. Curriculum learning is very sensitive to
the choice of scoring and pacing functions and their hyper-
parameters [19]. It should be noted that as opposed to human
learning, sometimes the opposite approach of starting the
training from the hardest examples, called anti-curriculum,
works best for DNNs [19], [20].

Curriculum learning has been explored for improving
crowd counting accuracy, where a weight is assigned to
each pixel in the density map [21]. However, that method
operates on high-quality images and the effect of image
compression is not considered. In this work, we focus on how
to mitigate the accuracy degradation resulting from heavy
image compression, and not on improving crowd counting in
high-quality images.

III. CURRICULUM PRE-TRAINING

It is possible to use a DNN trained on high-quality images
to produce an output for compressed input images. However,
this leads to significant drops in accuracy. A more sensible
approach would be to train the DNN on compressed images.
To further increase the accuracy, training can be initialized
using pre-trained weights taken from the DNN trained on the
original high-quality images, and then fine-tuned using com-
pressed images. We call this approach normal pre-training
(NPT) and compare our method to this baseline.

The quality setting (QF) in JPEG encoding can be viewed
as a natural scoring function for curriculum learning, where
high quality images with high QF can be viewed as “easy”,
and more heavily compressed images with low QF can be
viewed as “difficult”. However, in curriculum learning, the
final accuracy of the network is evaluated on all examples,
including easy and difficult ones. In contrast, our goal is
to obtain optimal accuracy for a particular quality setting.

Fig. 3. Curriculum pre-training (CPT) procedure.

Therefore, we only care about the accuracy of the most
difficult examples. As a result, we need a special pacing
function that removes the easier examples as the training
progresses.

Our method, called curriculum pre-training (CPT), trains
the neural network for successive lower QFs in a step-by-step
manner. CPT uses the trained weights of the previous step to
initialize the weights for the next step in a cascaded fashion.
Assuming the quality setting of the original images in the
training set is q0, and our goal is to obtain the best accuracy
for images of quality qk < q0, we define a curriculum
C = (q0, q1, . . . , qk) where qi > qj if i < j. We start by
training the DNN on images of quality q0. After the training
is finished, we use the trained weights θq0 to initialize the
DNN, and then train the DNN on images of quality q1. We
continue this process until we obtain θqk . This procedure is
illustrated in Figure 3.

The intuition behind this approach is that the optimum for
images of quality q0 might be drastically different from the
optimum for images of quality qk. Therefore, initializing the
training for images of quality qk from an optimum for images
of quality q0 might result in the convergence of network
parameters to an undesired location of the loss landscape.
On the other hand, as with many deep learning tasks, starting
with no pre-trained weights can lead to sub-optimal results.
Since the optima for similar quality settings are more likely
to be close to each other, by gradually shifting the initial
location for successive image qualities, we can reap the
benefits of pre-training with lower risk of the final parameters
falling in an undesired location of the loss landscape.

There are some crucial differences between our method
and the typical curriculum learning. First, in our method,

561

each iteration contains only images of a particular difficulty,
whereas in typical curriculum learning there is a mixture of
difficulties in each iteration. Second, the pacing of curricu-
lum learning is usually much faster, and the most difficult
examples are introduced after only a handful of epochs [19],
[20], whereas in our method the DNN is trained on each
difficulty for many epochs. Finally, we reset the training
hyper-parameters (including learning rate and weight decay)
before moving on to the next quality setting.

IV. EXPERIMENTS

A. Hyper-Parameters and Setup

Since SHTA and SHTB do not provide validation data,
we randomly take 20% from the training set of SHTA and
10% from SHTB as validation data2. The images in all
three datasets are saved in the JPEG format and are already
compressed with a quality setting of 75.

In our experiments, we choose the curriculum C =
(75, 60, 40, 30, 25, 15, 10, 5, 1) for training on images with
QF = 1, and to train on images with a higher QF we
use the subset of this curriculum down to (and including)
that particular QF. For instance, for training on images with
QF = 25 we use the curriculum C ′ = (75, 60, 40, 30, 25).
These quality settings are chosen such that the difference
between the size of successive image groups are roughly
the same, and relatively small. Table I shows the hyper-
parameter values and setup for each set of experiments. The
best learning rate is chosen for each set of experiments from
LR = {10−3, 10−4, . . . , 10−7}. The training procedure for
CSRNet trained on DISCO is similar to [14]. As previously
mentioned, the Shanghai Tech Part A dataset has images of
variable size, therefore, the batch size needs to be 1, since
PyTorch [22] only allows training on batches of images with
the same size. All experiments were repeated twice and the
average error and standard deviation were recorded.

TABLE I
HYPER-PARAMETER VALUES AND SETUP OF THE EXPERIMENTS.

Dataset DNN Optimizer LR∗ LRD∥ WD† Epochs BS∗∗ Hardware

DISCO CSRNet AdamW‡ 10−5 0.99 10−4 100 16 3×Nvidia A6000
SHTB SASNet AdamW 10−5 0.99 10−4 100 5 3×Nvidia A6000
SHTA SASNet AdamW 10−7 0.99 10−6 50 1 1×Nvidia A6000
∗Learning rate
∥Learning rate decay per epoch
∗∗Batch size per GPU
†Weight decay
‡ [23]

B. Results

The experimental results for CSRNet architecture trained
on DISCO dataset, SASNet architecture trained on SHTB
dataset and SASNet architecture trained on SHTA dataset
are shown in Tables II, III and IV, respectively. The lowest
error is highlighted for each QF value. It can be observed
that curriculum pre-training achieves a higher accuracy in
19 out of 24 cases. Generally, the heavier the compression

2The random seed and selection procedure can be found in our source
code.

gets, the higher the improvement obtained by curriculum
pre-training is, compared to normal pre-training. The only
exceptions are some of the experiments on Shanghai Tech
Part A, perhaps because the loss of information has much
greater impact in very densely crowded scenes where only
parts of head are visible, as shown in Figure 4. However, even
on Shanghai Tech Part A, curriculum pre-training obtains the
best performance for the heaviest compression.

In addition, it is known that JPEG compression can some-
times benefit the accuracy due to increased contrast between
the foreground and background, which happens as a result of
unequal quantization performed by JPEG on different DCT
coefficients. Because quantization is non-linear, it reduces
more energy in the background than the foreground [24]. This
effect is also visible in some of our experiments. For instance,
in Table II, using images compressed with a QF = 25 leads
to a lower error compared to using QF = 40.

TABLE II
PERFORMANCE OF CURRICULUM PRE-TRAINING OF CSRNET [16] ON

DISCO DATASET [14]. LOWEST ERROR FOR EACH QF IS HIGHLIGHTED.

JPEG QF Avg. Size NPT∗ MAE CPT† MAE (Ours) Improvement
75 113 KB 13.23 ± 0.08 - -
60 86 KB 13.11 ± 0.13 - -
40 65 KB 13.44 ± 0.21 13.41 ± 0.38 0.22%
30 56 KB 13.25 ± 0.01 13.38 ± 0.07 -0.98%
25 50 KB 13.49 ± 0.08 13.19 ± 0.29 2.22%
20 44 KB 13.65 ± 0.19 13.24 ± 0.27 3.00%
15 38 KB 13.70 ± 0.08 13.20 ± 0.13 3.65%
10 31 KB 13.63 ± 0.10 13.22 ± 0.17 3.01%
5 23 KB 17.58 ± 0.07 14.83 ± 0.36 15.64%
1 19 KB 22.49 ± 0.11 18.06 ± 0.06 19.70%

∗Normal Pre-Training
†Curriculum Pre-Training

TABLE III
PERFORMANCE OF CURRICULUM PRE-TRAINING OF SASNET [10] ON

SHANGHAI TECH PART B DATASET [4]. LOWEST ERROR FOR EACH QF IS
HIGHLIGHTED.

JPEG QF Avg. Size NPT∗ MAE CPT† MAE (Ours) Improvement

75 168 KB 6.31‡ - -
60 147 KB 6.64 ± 0.06 - -
40 94 KB 6.73 ± 0.04 6.59 ± 0.06 2.10%
30 86 KB 6.83 ± 0.01 6.91 ± 0.04 -1.17%
25 78 KB 7.07 ± 0.00 6.83 ± 0.06 3.39%
20 65 KB 7.41 ± 0.00 7.18 ± 0.07 3.10%
15 55 KB 8.51 ± 0.13 8.16 ± 0.06 4.11%
10 45 KB 9.50 ± 0.14 9.07 ± 0.09 4.53%
5 33 KB 14.69 ± 0.10 13.02 ± 0.06 11.37%
1 27 KB 20.19 ± 0.18 19.16 ± 0.09 5.10%

∗Normal Pre-Training
†Curriculum Pre-Training
‡Pre-trained Weights from SASNet [10], thus not repeated

C. Ablation Studies

Table V shows the results of ablation studies for CSRNet
[16] on the DISCO dataset [14] with QF = 1. From the first
row, it can be observed that using weights from QF = 75
directly for inference on images with QF = 1, without any
fine-tuning, leads to a very high error rate. Furthermore, the
second and third rows show that pre-trained weights from
QF = 75 do not help compared to training from scratch. In

562

TABLE IV
PERFORMANCE OF CURRICULUM PRE-TRAINING OF SASNET [10] ON

SHANGHAI TECH PART A DATASET [4]. LOWEST ERROR FOR EACH QF IS
HIGHLIGHTED.

JPEG QF Avg. Size NPT∗ MAE CPT† MAE (Ours) Improvement

75 150 KB 54.12‡ - -
60 129 KB 67.31/70.11 - -
40 87 KB 75.02 ± 6.20 68.68 ± 4.64 8.45%
30 79 KB 70.77 ± 3.06 68.73 ± 0.23 2.88%
25 72 KB 73.66 ± 1.97 74.43 ± 3.59 -1.05%
20 61 KB 79.04 ± 7.25 75.27 ± 0.42 4.77%
15 51 KB 78.17 ± 1.67 78.24 ± 5.71 -0.01%
10 41 KB 84.92 ± 1.22 85.17 ± 3.85 -0.03%
5 28 KB 103.18 ± 4.43 102.82 ± 5.16 0.03%
1 21 KB 129.37 ± 1.38 127.62 ± 4.64 1.35%

∗Normal Pre-Training
†Curriculum Pre-Training
‡Pre-trained Weights from SASNet [10], thus not repeated

(a) Shanghai Tech Part A (b) Shanghai Tech Part B

Fig. 4. Sample 400×400 pixel image patch taken from the Shanghai Tech
Part A and Part B datasets [4] with QF = 1. While features such as outline
and clothing are still visible under heavy compression in sparsely crowded
scenes such as (b), heavy compression may lead to excessive loss of visual
information in densely crowded scenes such as (a).

fact, they might even lead to slightly higher error, although
this is usually not the case. For instance, with QF = 5, pre-
trained weights from QF = 75 lead to an MAE of 17.58
± 0.07, compared to an MAE of 18.13 ± 0.32 obtained
by training from scratch. In addition, the fourth row shows
that just using the pre-trained weights from a close quality
setting does not result in the best accuracy, and the cascaded
nature of training is valuable. Moreover, it can be seen in the
last three rows that our method is resilient to both variable
number of steps in the curriculum as well as to variations in
the quality settings in the curriculum.

TABLE V
ABLATION STUDIES FOR CSRNET [16] ON DISCO DATASET [14] WITH

QF = 1.

Row # Training Method MAE
1 No fine-tuning with weights from QF = 75 84.00 ± 4.29
2 No pre-training‡ 22.05 ± 0.16
3 Pre-trained weights from QF = 75∗ 22.49 ± 0.11
4 Pre-trained weights from QF = 5 20.24 ± 1.39
5 Curriculum pre-training with C = (75, 60, 40, 30, 25, 20, 15, 10, 5)† 18.06 ± 0.06
6 Curriculum pre-training with C = (75, 40, 25, 15, 5) 18.01 ± 0.13
7 Curriculum pre-training with C = (75, 45, 28, 17, 6) 18.23 ± 0.31

‡In PyTorch, weights are initialized from a uniform distribution by default [22])
∗Equivalent of normal pre-training presented in Table II
†Equivalent of curriculum pre-training presented in Table II

V. CONCLUSION

We showed that the proposed curriculum pre-training
method can improve the accuracy of crowd counting DNNs
that process compressed images. Since our method only
modifies the weights of the DNN, it does not add any
overhead to the overall task. This is crucial as crowd counting
is already a very demanding task, especially when given
high-resolution inputs. Moreover, we showed that our method
works particularly well for heavily compressed images. In the
provided ablation studies, we showed that the method is not
overly sensitive to hyper-parameters, and that slight variations
of hyper-parameters lead to similar results.

Even though we focused on crowd counting in this work,
no part of our method depends on the particular crowd
counting setting. Therefore, it is reasonable to assume that
this method can be used to improve the accuracy of DNNs
processing compressed images in other deep learning tasks,
particularly for other dense regression problems such as depth
estimation, and other deep learning applications used in smart
cities, for instance, crowd anomaly detection.

REFERENCES

[1] Dragana Bajovic, Arian Bakhtiarnia, George Bravos, Alessio Brutti,
Felix Burkhardt, Daniel Cauchi, Antony Chazapis, Claire Cianco,
Nicola Dall’Asen, Vlado Delic, et al., “Marvel: Multimodal extreme
scale data analytics for smart cities environments,” BalkanCom, 2021.

[2] Sweta Bhattacharya, Siva Rama Krishnan Somayaji, Thippa Reddy
Gadekallu, Mamoun Alazab, and Praveen Kumar Reddy Maddikunta,
“A review on deep learning for future smart cities,” Internet Technology
Letters, 2022.

[3] Arian Bakhtiarnia, Błażej Leporowski, Lukas Esterle, and Alexandros
Iosifidis, “Analysis of the effect of low-overhead lossy image com-
pression on the performance of visual crowd counting for smart city
applications,” ISC2, 2022.

[4] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma,
“Single-image crowd counting via multi-column convolutional neural
network,” CVPR, 2016.

[5] Graham Hudson, Alain Léger, Birger Niss, and István Sebestyén, “Jpeg
at 25: Still going strong,” IEEE MultiMedia, 2017.

[6] Lionel Gueguen, Alex Sergeev, Ben Kadlec, Rosanne Liu, and Jason
Yosinski, “Faster neural networks straight from jpeg,” NeurIPS, 2018.

[7] Samuel Dodge and Lina Karam, “Understanding how image quality
affects deep neural networks,” QoMEX, 2016.

[8] Max Ehrlich, Larry Davis, Ser-Nam Lim, and Abhinav Shrivastava,
“Analyzing and mitigating jpeg compression defects in deep learning,”
ICCV, 2021.

[9] Jiaxi Jiang, Kai Zhang, and Radu Timofte, “Towards flexible blind
jpeg artifacts removal,” CVPR, 2021.

[10] Qingyu Song, Changan Wang, Yabiao Wang, Ying Tai, Chengjie Wang,
Jilin Li, Jian Wu, and Jiayi Ma, “To choose or to fuse? scale selection
for crowd counting,” AAAI, 2021.

[11] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, “Faster
r-cnn: Towards real-time object detection with region proposal
networks,” Advances in Neural Information Processing Systems
(NeurIPS), 2015.

[12] Guangshuai Gao, Junyu Gao, Qingjie Liu, Qi Wang, and Yunhong
Wang, “Cnn-based density estimation and crowd counting: A survey,”
arXiv, 2020.

[13] Feng Dai, Hao Liu, Yike Ma, Xi Zhang, and Qiang Zhao, “Dense
scale network for crowd counting,” ICMR, 2021.

[14] Di Hu, Lichao Mou, Qingzhong Wang, Junyu Gao, Yuansheng Hua,
Dejing Dou, and Xiao Xiang Zhu, “Ambient sound helps: Audiovisual
crowd counting in extreme conditions,” arXiv, 2020.

[15] Karen Simonyan and Andrew Zisserman, “Very deep convolutional
networks for large-scale image recognition,” ICLR, 2015.

[16] Yuhong Li, Xiaofan Zhang, and Deming Chen, “Csrnet: Dilated
convolutional neural networks for understanding the highly congested
scenes,” CVPR, 2018.

563

[17] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason We-
ston, “Curriculum learning,” ICML, 2009.

[18] Xin Wang, Yudong Chen, and Wenwu Zhu, “A comprehensive survey
on curriculum learning,” CoRR, 2020.

[19] Guy Hacohen and Daphna Weinshall, “On the power of curriculum
learning in training deep networks,” ICML, 2019.

[20] Arian Bakhtiarnia, Qi Zhang, and Alexandros Iosifidis, “Improving
the accuracy of early exits in multi-exit architectures via curriculum
learning,” IJCNN, 2021.

[21] Qi Wang, Wei Lin, Junyu Gao, and Xuelong Li, “Density-aware
curriculum learning for crowd counting,” IEEE Transactions on
Cybernetics, 2022.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al., “Pytorch: An imperative style, high-
performance deep learning library,” NeurIPS, 2019.

[23] Ilya Loshchilov and Frank Hutter, “Decoupled weight decay regular-
ization,” ICLR, 2019.

[24] En-Hui Yang, Hossam Amer, and Yanbing Jiang, “Compression helps
deep learning in image classification,” Entropy, 2021.

564

