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Abstract—In this paper, we examine the effect of normaliza-
tion in R2-based hypervolume and hypervolume contribution
approximation. The fact is that the region with different scales
on objective space brings approximation bias. The basic idea of
normalization is to perform a coordinate transformation to make
the shape of the approximated region more regular, and then
transform it to obtain the final value according to the property
of hypervolume and hypervolume contribution. The performance
of normalization is evaluated on different datasets by comparing
it with the original R2-based method. We use two different
metrics to evaluate hypervolume and hypervolume contribution
separately, and the results indicate that normalization does
exactly improve the approximation accuracy and outperforms
the original R2-based method.

Index Terms—Multi-objective Optimization, Hypervolume,
Normalization

I. INTRODUCTION

In the field of evolutionary multi-objective optimization
(EMO), many indicators such as GD [1], IGD [2], hyper-
volume [3] and R2 [4] have been proposed to evaluate dif-
ferent multi-objective optimization algorithms. Among these
indicators, hypervolume has been widely used due to its ability
to evaluate both the convergence and diversity of a solution
set. Since the hypervolume is Pareto compliant [5] (i.e., if
a solution set A is better than another solution set B, its
hypervolume is always larger than the hypervolume of B),
some algorithms (i.e., SMS-EMOA [6, 7], FV-MOEA [8],
HypE [9]) directly use the hypervolume in their algorithmic
step.

For SMS-EMOA, a new solution is generated and added
to the population in each generation. To keep the overall
population size constant, one solution has to be removed from
the entire population, making the hypervolume of the re-
maining solutions maximized. Therefore we need to calculate
the hypervolume contribution of each solution to the whole
solution set.
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Since computing hypervolume and hypervolume contribu-
tion is an NP-hard problem, its computation time grows
exponentially as the number of objectives increases. When the
number of objectives is small, the exact value of hypervolume
can be computed quickly. Some efficient hypervolume calcu-
lation methods have been proposed such as WFG [10], QHV
[11], and HBDA [12]. When the number of objectives is large,
approximation methods are usually used to estimate hypervol-
ume and hypervolume contribution since the calculation of the
exact value is very time-consuming.

The approximation methods can be briefly categorized into
the point-based method and the line-based method. The point-
based method is also known as the Monte Carlo sampling
method [13], [14], which uses the proportion of the points
in the hypervolume region for approximation. The line-based
method is also known as the R2-based method [15]. This
method uses the lengths of the line segments in the region
for approximation.

In the papers [15, 16], Shang et al. proposed a new R2-based
method to approximate the hypervolume and hypervolume
contribution. This method further improves the accuracy of
the line-based approximation. However, some solution sets are
not uniformly distributed, thus the line segments distribute
unevenly in the region, which brings a large deviation for
calculating the hypervolume. Even if the distribution of the
solutions is uniform, due to the mutual positions between
each solution, it also brings bias to the approximation of
hypervolume contribution in some cases.

Therefore, this paper examines the effect of normalization
in hypervolume and hypervolume contribution approximation
based on the R2 method. This normalization method has
the following two characteristics: 1) It does not change the
direction of the vectors and can directly use the R2-based
method after normalization. 2) It uses only simple translation
and scaling coordinate transformations, which are very easy
to operate, while the results can be significantly improved.

This paper is organized as follows. Section II presents the
preliminaries of the study. Section III introduces the normal-
ization method of hypervolume and hypervolume contribution
respectively. Section IV explains the experimental setting and
results. Section V concludes this paper.
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II. PRELIMINARIES

In this section, we first explain the concept of hypervolume
and hypervolume contribution. Then the R2-based approxi-
mation methods are introduced. It should be noted that all
problems in this paper are maximization problems.

A. Hypervolume and Hypervolume Contribution

The hypervolume is an indicator to evaluate the performance
of a solution set. Given a two-objective case in Figure 1(a),
the hypervolume is the area covered by the non-dominated
solution set A = {a1, a2, a3} and the reference point r. From
a mathematical perspective, hypervolume can be defined as
follows:

HV(A, r) = L

(⋃
a∈A

{b | a ≻ b ≻ r}

)
, (1)

where L is the Lebesgue measure of a set, and a ≻ b means
b is dominated by a.

(a) Hypervolume (b) Hypervolume contribution

Fig. 1. The explanation of the hypervolume and the hypervolume contribution
in a two-objective case.

The hypervolume contribution of a single solution s eval-
uates its contribution to a solution set. Using Figure 1(b)
for illustration, the hypervolume contribution of the solution
s = a2 is the decreasing area after removing s from the
solution set. This process can be written as:

HVC(s, A, r) = HV(A, r)−HV(A\{s}, r). (2)

B. R2-based Hypervolume Approximation

Figure 2 explains the R2-based hypervolume approximation
method. A set of vectors Λ =

{
λ1, . . . ,λn

}
starts from a

reference point and intersects with the boundary of the shaded
region. The hypervolume (i.e., the area of the shaded region)
can be approximated:

HV (S, r) ≈ πm/2

mn2m−1Γ(m/2)

n∑
i=1

lmi , (3)

where Γ(x) =
∫∞
0

zx−1e−zdz is the Gamma function, li is
the length of vector λi between the reference point r and the
boundary, and m is the number of objectives.

Each vector in Λ satisfies
∥∥λi
∥∥
2

= 1, λi
j ≥ 0, i =

1, . . . , n, j = 1, . . . ,m. From paper [16, 17], the length li
can be derived as:

Fig. 2. An example of the hypervolume approximation of a two-objective
solution set A = {a1, a2, a3}.

Fig. 3. The hypervolume contribution of a2 to a 2-objective solution set
A = {a1, a2, a3}.

li = max
s∈A

min
j∈{1,...,m}

{
|rj − sj |

λi
j

}
, i = 1, . . . , n. (4)

C. R2-based Hypervolume Contribution Approximation

Similar to hypervolume, we also use the average length
to approximate the hypervolume contribution in Figure 3.
However, these vectors start from the solution s = a2 and
intersect with the edge of other points and the reference point.
Thus the calculation of li is a little different:

li = min{l1i (s, A\{s},λi), l2i (s, r,λ
i)}, (5)

where l1i and l2i represent the length of the vector λi in two
situations respectively.

(a) Situation 1 (b) Situation 2

Fig. 4. Illustrations of (a) the vector which intersects with the attainment
surface of the set A\{s}, and (b) the vector intersects with the reference
point.
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To better explain the meaning of l1i and l2i , Figure 4 shows
the difference between the two situations. In situation 1 (Figure
4(a)), each vector starts from point s and first intersects with
the attainment surface of the set A\{s}.

l11(s, A\{s},λi) = min
a∈A\{s}

{g∗2tch(a|λi, s)}, (6)

where g∗2tch is the 2-Tch function defined as follows:

g∗2tch(a|λi, s) = max
j∈{1,...,m}

sj − aj
λi
j

, (7)

In situation 2 ( Figure 4(b) ), the intersection point is located
on the boundary of the whole attainment surface, which is the
edge of the reference point:

l2i (s, r,λ
i) = gmtch(r|λi, s) = min

j∈{1,...,m}

|sj − rj |
λi
j

. (8)

Note that Equation (7) is only applicable for maximizing
all objectives, which is assumed throughout this paper. In the
case of minimization, the positions of sj and aj should be
swapped.

III. NORMALIZATION IN R2-BASED APPROXIMATION

In this section, we first introduce the intuition about why
normalization is needed for the hypervolume and hypervolume
contribution approximation. Then the detailed processes of
normalization in hypervolume and hypervolume contribution
approximation will be presented.

(a) HV approximation (b) HVC approximation

Fig. 5. Example of (a) the hypervolume approximation and (b) the hypervol-
ume contribution approximation.

When using the R2-based method to calculate hypervolume
and hypervolume contribution, it aims to approximate the
area of the corresponding region. However, in the actual
calculation, it can be found that when the shape is irregular
(i.e., different scales in different objectives), it may cause
a large deviation in the results. Here is a two-dimensional
example of hypervolume approximation, as shown in Figure
5(a), the points are almost distributed in the bottom right
corner. However, since the vectors are generated uniformly,
in this case, the distribution of vectors close to the reference
point is very dense, while the distribution of vectors close to
{a1, a2, a3} is very sparse. The scale of the first objective
(f1) and the second objective (f2) are significantly different
(i.e., f1(a3) is much larger than f2(a3)), which can produce
a large bias.

Another example is shown in Figure 5(b). When approxi-
mating the hypervolume contribution of a3, the shaded region
has a similar problem (i.e., large difference between the scale
of f1 and f2). In this case, even though the distribution of the
solution set is relatively uniform, the position of each solution
can also lead to an irregular region.

Hence, when confronted with the aforementioned example,
it is imperative to apply normalization to eliminate the effect
of irregular shapes. The normalization will be applied directly
to the solution set, while the vector set remains unchanged. In
the following, we will introduce the corresponding transforma-
tion properties for hypervolume and hypervolume contribution
[18]:

• Property 1. For any positive real vector α ∈ Rm
>0,

HV (S, r) = 1∏m
i=1 αi

HV (α⊙S,α⊙r), HV C(s, S, r) =
1∏m

i=1 αi
HV C(α⊙s,α⊙S,α⊙r), where ⊙ denotes the

element-wise multiplication.
• Property 2. For any real vector β ∈ Rm, HV (S, r) =

HV (S + β, r + β), HV C(s, S, r) = HV C(s+ β, S +
β, r + β).

• Property 3. HV (S, r) = HV (−S,−r), HV C(s, S, r)
= HV C(−s,−S,−r)). In this property, HV (−S,−r)
and HV C(−s,−S,−r)) is calculated for maximization
problems whereas HV (S, r) and HV C(s, S, r) is cal-
culated for minimization problems.

The above three properties can be easily deduced from the
properties of the Lebesgue measure. With the help of the
above properties, we can easily transform the coordinates of
the solutions and the reference point, so that the shape of
the region is more regular while ensuring the hypervolume
and hypervolume contribution approximation can be more
accurate.

A. Normalization in R2-based Hypervolume Approximation

To make the normalization in hypervolume approximation
easier to understand, we will explain the processes with a
specific example in the following.

(a) Step 1 (b) Step 2

(c) Step 3

Fig. 6. Example of normalization on hypervolume. (a) is the original solution
set, (b) is the solution set after the translation transformation, and (c) is the
solution set after the scaling transformation.
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As shown in Figure 6(a), now we need to approximate the
hypervolume of the solution set A = {a1, a2, a3}, where the
coordinates corresponding to each point are r = (1, 4),a1 =
(20, 10),a2 = (22, 8),a3 = (25, 6). The shaded region has
very irregular scales on f1 and f2.

• Step 1. All points, including the reference point r,
undergo a global translation to ensure the position of r
is transformed to O:

a′j = aj − rj , j = 1, . . . ,m. (9)

According to Property 2, all the coordinates are added
to an identical vector at the same time, thus the hyper-
volume remains unchanged. As shown in Figure 6(b),
the coordinates of each point after the transformation are
r′ = (0, 0),a′

1 = (19, 6),a′
2 = (21, 4),a′

3 = (24, 2).
• Step 2. The coordinates of all points undergo a scaling

transformation according to the maximum value above
each objective:

a′′j =
a′j

max{fj}
, j = 1, . . . ,m, (10)

where max{fj} is the maximum value of the jth ob-
jective for all solutions. According to Property 1, when
the coordinates of all points are subject to a scaling
transformation, the value of the corresponding hypervol-
ume should be divided by the scaling value. Note that
in Figure 6 we normalize the maximum value on each
objective to 1 for convenience. As shown in Figure 6(c),
the coordinates of each point after the transformation are
r′ = (0, 0),a′′

1 = ( 1924 , 1),a
′′
2 = ( 2124 ,

4
6 ),a

′′
3 = (1, 2

6 ).
• Step 3. According to the R2-based method, the hypervol-

ume is approximated and transformed to the final value:

H̃V =

m∏
i=1

max{fj} × H̃V
′
, (11)

where H̃V
′

is the approximated hypervolume obtained by
the R2-based method after the coordinate transformation.

B. Normalization in R2-based Hypervolume Contribution ap-
proximation

Normalization in the process of approximating hypervolume
contribution also requires coordinate transformation. However,
the region of the hypervolume is determined by both the
solution set and the reference point (as shown in Figure
5(a)). Therefore, we can directly transform the reference point
to O and perform the normalization process. In contrast,
the reference point may not be related to the hypervolume
contribution region (as depicted in Figure 5(b)). Thus, it
becomes essential to identify an appropriate base point (p)
when approximating the hypervolume contribution.

Similarly, the normalization process in approximating hy-
pervolume contribution is explained below with a specific
example in Figure 7(a). Suppose we have a solution set A =
{a1, a2, a3} and a reference point r, where the coordinates

(a) Step 1 (b) Step 2

(c) Step 3

Fig. 7. Example of normalization on hypervolume contribution. (a) is the
original solution set, (b) is the solution set after the translation transformation,
and (c) is the solution set after the scaling transformation.

corresponding to each point are r = (1, 1),a1 = (2, 10),a2 =
(8, 4),a3 = (10, 2). We need to approximate the hypervolume
contribution of a2 to A.

• Step 1. Identify the normalization region of hypervolume
contribution to the solution. The rectangle region chosen
for normalization should be as tight as possible to the
real hypervolume contribution range (i.e., in Figure 7(a),
the normalized region needs to be as close as possible to
the shaded region). Based on this consideration, for the
maximization problem, the upper bound of this region is
the solution itself (a2), and the lower bound (e.g., the
base point) can be determined according to the following
equation [19]:

pj = min
{
s′j | s′ ∈ S\{s} and s′ ≺j s

}
, (12)

where j = 1, . . . ,m, s′ ≺j s denotes that s′ dominates s
in all but the jth objective. According to Equation (12), in
Figure 7(b), the base point can be identified as p = (2, 2),
and the normalization region is exactly the shaded part.
However, if there is no point satisfying Equation Equation
(12), we will directly use the reference point r as the base
point p.

• Step 2. Transform the base point p to O while all other
points are translated accordingly:

a′j = aj − pj , j = 1, . . . ,m. (13)

After this step, the coordinates in Figure 7(c) are p =
(0, 0),a′

1 = (0, 8),a′
2 = (6, 2),a′

3 = (8, 0).
• Step 3. Every point undergoes a scaling transformation

according to Equation (10). Different from the normaliza-
tion in hypervolume approximation, the scale is decided
by a′

2:
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a′′j =
a′j

max{fj(s′)}
, j = 1, . . . ,m, (14)

where s′ = a′
2, and max{fj(s′)} mean the maximal

value of the jth objective for a′
2. After this step, the

coordinates in Figure 7(c) are p = (0, 0),a′′
2 = (1, 1).

• Step 4. Approximate the hypervolume contribution of a′′
2

using the R2-based method, and transform the value to
the final hypervolume contribution:

H̃VC =

m∏
i=1

max{fj(s′)} × H̃VC
′
, (15)

where H̃VC
′

is the approximated hypervolume contribu-
tion obtained after the coordinate transformation.

IV. EXPERIMENTS

In this section, we evaluate the effects of the normaliza-
tion in R2-based hypervolume and hypervolume contribution
approximation. The experiment is conducted on the CPU of
Intel(R) Core(TM) i7-8700k CPU @ 3.70GHZ. All codes are
implemented in MATLAB R2022b.

A. Performance Metric

When evaluating the accuracy of hypervolume, we use the
approximation error ε as a measured metric [19]:

ε =

∣∣∣∣∣ H̃V(S, r)−HV(S, r)

HV(S, r)

∣∣∣∣∣ (16)

where H̃V is the hypervolume approximation value, while
the HV is the exact hypervolume value. A smaller value of
the approximation error means a better approximation quality.

When approximating hypervolume contribution, we use the
correct identification rate (CIR) to evaluate the performance
of different methods. The CIR is a metric that measures the
ability to correctly identify the worst solution in a solution
set. The method of approximation used here evaluates l sets
of solutions, where each set has n solutions (e.g., S1 =
a1
1,a

2
1, ...,a

n
1 ). From each set Si, we identify the k worst

solutions (i.e., with small hypervolume contribution approxi-
mation) and call this new collection SR2

i . Also, aWorst
i is the

worst solution based on the exact hypervolume contribution.
We say we have correct identification if aWorst

i is in SR2
i . The

CIR is the ratio of the total number of correct identifications
to the total number of solution sets. In this paper, we solely
consider the situation when k = 1.

B. Data Generation

In the experiment, we generate two different types of data.
In the first type of solution set, we randomly generate different
numbers of non-dominated solutions in each set. The second
type is to generate the same number of solutions in each set
on a fixed shape of the Pareto front. Both two types cover the
5-objective, 8-objective, and 10-objective solutions.

When generating the first type of solution set, we use the
following procedure to obtain 10 different sets. Each solution
set contains a different number of solutions, represented by
the symbol num.

• Step 1. Randomly sample 2000 solutions within [0, 1] as
candidate solutions.

• Step 2. Apply non-dominated sorting to the candidate
solutions. For the sorted solutions, check whether the
number of non-dominated solutions is larger than num.
if not then go back to Step 1.

• Step 3. Construct a solution set by randomly selecting
num solutions from the non-dominated solutions ob-
tained in Step 2.

In the second solution set, we generate solutions from m-
objective maximization problems with various Pareto front
shapes, including linear, convex, concave, inverted linear,
inverted convex, and inverted concave. For each Pareto front,
we generate 100 solution sets. Each set contains 100 solutions.

The formulations of the linear, concave, and convex Pareto
fronts are as follows: f1+f2+...+fm = 1, f2

1+f2
2+...+f2

m =
1,

√
f1 +

√
f2 + ... +

√
fm = 1, where fi ∈ [0, 1] represents

the objective value. For inverted cases, we invert the solution
and remapped it to [0, 1] using the formula fi = 1−fi, where
i = 1, 2, ...,m. We use the Unit Norm Vector (UNV) method
to generate vectors in the R2-based method, as recommended
in [20]. The reference point is fixed at (0, ..., 0).

C. Experiments of Hypervolume Normalization

In the experiments of hypervolume approximation, we use
both the two solution sets. We specify the number of vectors
as |Λ| = 1000 for each experiment and repeat 21 times to
obtain the average value.

For the first type of solution set, ten different solution
sets are generated in 5-objective, 8-objective, and 10-objective
separately. The number of solutions (num) in each solution set
varies from 11 to 20. The results are shown in Figure 8, where
the x-axis represents the different solution sets with different
solution numbers. The y-axis represents the approximation
error (ε), where a smaller value indicates a more accurate ap-
proximation. The blue bar represents the result of the original
R2-based (R2HV) and the orange bar represents the result
after the normalization (Norm-R2HV). It can be observed
that all the orange bar is lower than the blue bar. In other
words, the normalization method does improve the accuracy
of the hypervolume approximation. Another phenomenon in
Figure 8 is that the accuracy of both R2HV and Norm-R2HVC
decreases as num increases. And the impact of normalization
yields more significant improvements when num is smaller.
Comparing Figures 8(a), 8(b), 8(c), It can be observed that a
smaller number of objectives corresponds to higher accuracy.

For the second type of solution set, we compare the differ-
ence between normalization (Norm-R2HV) and the original
R2-based method (R2HV) in detail. Since we can easily
compare the exact hypervolume, R2HV, and Norm-R2HV
within one solution set, for each type of solution set (i.e., the
solution set with the same Pareto Front and objective number),
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we randomly select one single set for the experiment. Results
of 18 different solution sets are demonstrated in Table I (e.g.,
I-Concave indicates the solution set with an inverted concave
shape).

(a) 5-objective problem

(b) 8-objective problem

(c) 10-objective problem

Fig. 8. Results of the first solution set in hypervolume approximation.
Comparisons with the original R2-based method (R2HV) and normalization
method (Norm-R2HV) in (a) 5-objective, (b) 8-objective, (c) 10-objective
problem.

In Table I, we compare the performance between the nor-
malization method and the original R2-based method on these
different solution sets. The best results in each solution set

are shown in bold. A direct observation is that the normalized
results outperform the original R2-based method on most
solution sets, which means the normalization indeed has a
positive effect. Meanwhile, there are no significant differences
between these two methods in some solution sets (i.e., the 10-
objective inverted linear solution set). One possible reason is
that these solutions have very similar scales on each objective,
thus the normalization has almost no effect. However, the
normalization may obtain worse results on some solution sets
(i.e., 10-objective convex solution set) in Table I.

TABLE I
HYPERVOLUME APPROXIMATION OF THE NORMALIZATION METHOD

(NORM-R2HV) AND THE ORIGINAL R2-BASED METHOD (R2HV) ON THE
DIFFERENT SOLUTION SETS. THE WILCOXON RANK SUM TEST IS USED TO

COMPARE THE PERFORMANCE, WHERE THE SYMBOL ”+”, ”-” AND ”≈”
MEANS THE NORM-R2HV IS ”SIGNIFICANTLY BETTER THAN”, ”IS

SIGNIFICANTLY WORSE THAN” AND ”HAS NO SIGNIFICANT DIFFERENCE
WITH” THE R2HV.

Solution Set R2HV Norm-R2HV

Linear
5 1.627E-02 9.124E-03 (+)
8 4.332E-02 2.923E-02 (+)

10 2.742E-02 4.181E-03 (+)

I-Linear
5 2.557E-02 5.938E-03 (+)
8 2.531E-02 2.461E-02 (+)

10 3.981E-02 3.980E-02 (≈)

Convex
5 4.944E-02 4.946E-02 (≈)
8 3.137E-02 3.007E-02 (+)

10 2.134E-02 5.704E-02 (-)

I-Convex
5 1.521E-03 1.521E-02 (≈)
8 4.510E-02 4.506E-02 (+)

10 7.371E-03 2.710E-02 (-)

Concave
5 2.524E-02 2.361E-02 (+)
8 5.812E-02 4.424E-02 (+)

10 4.189E-02 2.442E-02 (+)

I-Concave
5 1.093E-01 5.355E-02 (+)
8 5.848E-02 5.814E-02 (+)

10 4.371E-02 4.213E-02 (+)
+/-/≈ 13/3/2

To explain the reason why the normalization method of
some solution sets in Table I is worse, we carefully examine
the distribution of the solutions in these sets. Here we take a
two-objective problem as an example for illustration.

(a) The original solutions (b) The normalized solutions

Fig. 9. Example of (a) the original solutions A = {a1, a2, a3, a4} and
(b) these solutions after the normalization process.

In Figure 9(a), we have the four solutions A =
{a1, a2, a3, a4}. Among those solutions, a4 has an ex-
treme position coordinate (i.e., f1(a4) ≫ f2(a4)). Yet the
normalization process requires transforming all the solutions
according to max{f1} and max{f2}. The distribution of
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{a1, a2, a3} is very uniform originally (i.e., the values of
max{f1} and max{f2} are very close after removing a4),
while the normalization process leads to an irregular scale
(shown in Figure 9(b)). However, such instances are exceed-
ingly rare. For example, there are only two solution sets with
worse normalization results, which does pose some challenges
for approximating hypervolume.

TABLE II
RESULTS OF THE SECOND SOLUTION SET FOR THE HYPERVOLUME

CONTRIBUTION APPROXIMATION. A COMPARISON WITH THE ORIGINAL
R2-BASED METHOD (R2HVC) AND THE NORMALIZATION METHOD

(NORM-R2HVC) IN DIFFERENT SOLUTION SETS. THE WILCOXON RANK
SUM TEST IS USED TO COMPARE THE PERFORMANCE, WHERE THE

SYMBOL ”+”, ”-” AND ”≈” MEANS THE NORM-R2HV IS ”SIGNIFICANTLY
BETTER THAN”, ”IS SIGNIFICANTLY WORSE THAN” AND ”HAS NO

SIGNIFICANT DIFFERENCE WITH” THE R2HV.

Solution Set R2HVC Norm-R2HVC

Linear
5 0.8124 0.7729 (-)
8 0.6819 0.6980 (+)
10 0.5881 0.6048 (+)

I-Linear
5 0.6100 0.6681 (+)
8 0.4938 0.4795 (-)
10 0.4543 0.4542 (≈)

Convex
5 0.8562 0.8124 (-)
8 0.7824 0.8895 (+)
10 0.9210 0.7481 (-)

I-Convex
5 0.8200 0.8210 (+)
8 0.8181 0.8224 (+)
10 0.7724 0.8048 (-)

Concave
5 0.6148 0.6695 (+)
8 0.5081 0.5114 (+)
10 0.4857 0.4967 (+)

I-Concave
5 0.3238 0.3333 (+)
8 0.3214 0.3090 (-)
10 0.3038 0.3223 (+)

+/-/≈ 12/1/5

D. Experiments of Hypervolume Contribution Normalization

In the first type of solution set, each solution set has a small
number of solutions (num ∈ [11, 20]), which may bring large
randomness when approximating hypervolume contribution.
Therefore, in this subsection, we only use the second type of
solution set for the experiment. Similarly, we set the number
of vectors |Λ| = 1000. Each experiment is repeated 21 times
to obtain the average value.

The CIR values obtained are shown in Table II, and the
normalization results (Norm-R2HVC) are compared with the
original R2-based method (R2HVC), where the better result
in each pair is bold. It can be noticed that a solution set with a

smaller objective number can obtain better performance. The
results of different shapes are quite different (i.e., the worst
result for linear is above 0.6, while the inverted concave is all
around 0.3).

As shown in Table II, better results are achieved with
normalization on most solution sets. However, same as the
hypervolume approximation in Figure 8, some results in the
original R2-based method (R2HVC) outperform the normal-
ization result (Norm-HVC) in Table II. The direct reason is
shown in Figure 9 as we explained in the hypervolume approx-
imation. Another reason is that the CIR is different from the
hypervolume, which is more easily affected by a tiny change.
For example, in a 5-objective linear solution set, we conduct
the experiments using the original R2-based method (R2HVC),
and the normalization-based method (Norm-R2HVC). The
approximated values of the hypervolume contribution of these
two methods and the exact values of hypervolume contribution
(HVC) are shown in Table III separately.

The 10 solutions are in ascending order according to their
corresponding values, where the first line is the index of
these 10 solutions and the second line is the hypervolume
contribution (approximated or exact value). It can be found that
the hypervolume contribution obtained by the normalization
method is closer to the exact value compared with the original
R2-based method (i.e., the only difference is that in Norm-
R2HVC, solution No. 2 is in the 5th position, while in HVC,
it is in the 9th position). However, this will not affect the final
result of CIR (since CIR needs to select the worst solution in
the solution set, while all three methods obtained the same
worst solution No. 42). In contrast, a small change in a
certain value (i.e., we obtain a larger result of the solution
No. 42 with the Norm-HVC) may cause the normalization
method failing to select the worst solution. Thus the result of
the normalization method seems worse on the hypervolume
contribution approximation compared with the hypervolume
approximation.

V. CONCLUSIONS

In this paper, we evaluate the effects of normalization
in approximating hypervolume and hypervolume contribution
with the R2-based method. We compared the normalization
method with the original R2-based method. The experimental
results showed that the normalization method outperformed the
original version in terms of the two metrics, which indicates

TABLE III
THE WORST 10 SOLUTIONS IN ONE EXPERIMENT AMONG THE ORIGINAL R2-BASED METHOD (R2HVC), NORMALIZATION METHOD (NORM-R2HVC),

AND THE EXACT HYPERVOLUME CONTRIBUTION (HVC).

Solution Index 42 81 16 43 66 98 29 68 94 9
R2HVC 3.66E-05 5.15E-05 5.43E-05 6.04E-05 6.80E-05 6.97E-05 8.01E-05 8.06E-05 8.10E-05 8.34E-05

Solution Index 42 81 16 43 98 66 29 68 2 33
Norm-R2HVC 3.28E-05 5.27E-05 5.84E-05 6.35E-05 8.06E-05 8.10E-05 8.13E-05 8.34E-05 8.50E-05 8.77E-05
Solution Index 42 81 16 43 2 98 66 29 68 33

HVC 5.86E-06 8.53E-06 9.57E-06 1.04E-05 1.33E-05 1.34E-05 1.38E-05 1.43E-05 1.44E-05 1.48E-05

455



the potential of using the normalization technique to decrease
the approximation bias.

Our future work is to add the normalization method into the
multi-objective optimization algorithms (e.g., R2HCA-EMOA
[21]) and intends to further improve its performance to solve
some bias-distributed problems.
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