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Abstract—This preliminary study uses a fine-tree machine 

learning algorithm to replicate bruxism biofeedback systems by 

detecting bruxism episodes using a wearable sensor system. The 

detection of bruxism grinding was performed among five different 

resting/sleeping positions--laying on the front, back, left, and right, 

and sitting up from four participants.  A sequence of ten activities 

(each activity is a combination of sleeping position and grinding or 

not grinding) was recorded while wearing the wireless sensing 

system on the front of the chin directly under the mouth. Both time 

and frequency domain features were extracted from each axis of 

the wearable sensor system’s accelerometer data sets. They were 

used to determine the presence of teeth grinding with 98% 

accuracy, and these features were used and experimented with to 

optimize the classification accuracy of the system.  

Keywords—bruxism, teeth grinding, detection, classification, 
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I. INTRODUCTION 

Bruxism is a condition in which a person grinds or clenches 
their teeth. It is estimated that between 5 and 20 percent of 
people suffer from this condition. There are two types of 
bruxism: awake bruxism, in which the person is awake while 
grinding their teeth, and sleep bruxism, when the person grinds 
or clenches their teeth while unconscious. This often leads to 
irreparable damage to the teeth, persistent headaches, and jaw 
pain if left untreated [1, 2]. 

There are many possible causes of bruxism. However, the 
primary cause of bruxism is most commonly believed to be 
higher levels of stress or anxiety in one’s life [3, 4]. Therefore, 
one of the logical first steps in treating bruxism is to perform 
stress-reduction techniques, including but not limited to 
exercise, meditation, muscle-relaxing medications, therapy, and 
drug/alcohol/caffeine reduction [5, 6].  This treatment often 
shows strong results among those with awake bruxism but is not 
always as effective for those with sleep bruxism. Additional 
ways to treat bruxism also include wearing a specialized mouth 
guard to provide a barrier between the upper and lower teeth 
(most commonly used to treat sleep bruxism) and biofeedback, 
a method in which a sensor system is worn to detect the levels 
of grinding and clenching in the mouth and alarm the user when 
grinding or clenching is detected so the user can respond 
accordingly, eventually training the user to stop grinding or 
clenching their teeth [7, 8].  

The biofeedback method has its limitations, though – the 
cost of the system is commonly above $700, and a lack of 
research has limited the effectiveness of the system [7]. The goal 
of this research is to recreate and improve upon the biofeedback 
method with a commercially available wearable sensor system 
that has been used in other activity recognition tasks [9]-[12], 
producing one with high accuracy at a fraction of the cost. 

II. METHODS 

The first step was to select a wearable sensor and method of 
data acquisition. A Mbientlab MetaMotionR unit was selected 
for use due to its wireless data recording capabilities, compact 
size, and availability of a 3-axis accelerometer. This device also 
includes the ability to log data over Bluetooth to an Android or 
Apple smart device.  The axes of the MetaMotionR 
accelerometers were first determined and kept to the following 
axis orientation convention, as shown in Fig. 1. Sensor is worn 
using a mask-like structure that wraps around the chin. The 
accelerometer data of a subject simulating a series of sleeping 
positions combined with the grinding and not grinding of teeth 
was recorded. There were ten stages to the sequence, each 
performed for 30 seconds. The sequence consisted of the 
sleeping position and grinding combinations in Table 1. The 
protocol shown in Table 1 was performed for each data 
collection trial. The position and the sensor location for the study 
are shown in Fig. 1. The front center of the jaw was chosen as 
the sensor location because it is the location of the jaw that is 
furthest from its instantaneous center of rotation and, therefore, 
should have the highest acceleration to detect [13]. A sampling 

 
Fig. 1. MetaMotionR orientation reference for the proposed system and 

Positioning of the sensor for Bruxism detection. 
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rate of 50 Hz was used to take data from the MetaMotionR 3-
axis accelerometer. An example of data for 10 stages are shown 
in Fig. 2. The data was split up into consecutive windows of 100 
samples (2 seconds of data), each window overlapping the 
previous window by 50%. A total of 27 statistical features were 
extracted per window. Twelve of these features extracted were 
in the time domain, and the remaining fifteen were in the 
frequency domain.  

A. Time Domain Features 

Twelve time-domain features were extracted from the data 
sets for classification. The features used for analysis included 
the means, variances, the 8th root of the variance, and the 
number of zero-crossings for each window of the x-, y-, and z-
axes. Examples of feature clusters are shown in figures 3 and 4. 

B. Frequency Domain Features 

Fifteen frequency domain features were compiled for 
classification as well. For each of the x-, y-, and z-axes, Fourier 
Transforms were used to extract the power of 5 frequency bands.  
These frequency amplitudes for each frequency band were 
summed together for each window. The frequency bands 
initially selected for this experiment were evenly distributed 
from 1 to 25Hz: 1-5Hz, 6-10Hz, 11-15 Hz, 16-20 Hz, and 21-25 
Hz. After initial data collection and analysis, these frequency 
bands were adjusted to optimize the system. 

These features were calculated in Matlab for each window 
and entered into a variable array. Each row of this array was also 
given a class label. Initially, the class labels were provided by 
activity combination (10 different labels), but then analysis was 
also performed with only two labels: “grinding” and “not 
grinding”. This data array was entered into the classification 
learner tool in Matlab 2021. The Fine Classification Tree was 
selected as the classification algorithm for this experiment, as it 
is ideal for classifying data into discrete groups (in this case, the 
groups being activity labels). The classification learner tool was 
configured to perform five-fold cross-validation. 

III. RESULTS 

A. Raw Data and Features 

The raw data was collected and entered into Matlab for 
further processing. An example of the raw data is shown in Fig. 
2. The even stages are those with the grinding present, and the 
odd stages are those without grinding. At first glance, it becomes 
clear that variance and Frequency Bands will be critical in 
detecting grinding. The mean values also have robust clustering. 

TABLE I.  SEQUENCE OF ACTIVITIES PER TRIAL 

Stage Position Grinding 

1 Sitting No 

2 Sitting Yes 

3 Laying on Back No 

4 Laying on Back Yes 

5 Laying on Left No 

6 Laying on Left Yes 

7 Laying on Right No 

8 Laying on Right Yes 

9 Laying on Front No 

10 Laying on Front Yes 

 

 
 

Fig. 2. An example accelerometer data observed from the sensor. Even 

numbered scenes show instances of bruxism. 

 

 
 

Fig. 3. A scatter plot of mean features extracted from a 3-axis 

accelerometer data. 

 
 

Fig. 4. A scatter plot of the 8th root of variance features extracted from a 3-

axis accelerometer data.  
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However, there was no significant overlap between griding and 
not griding with the clusters across participants. The variances 
are visibly much less readable to the presence of outliers from 
the transitions. Most of the variance data is tightly clustered 
around the origin. Zero-crossing features were also extracted 
and plotted on a 3-D scatter plot. The zero-crossing clusters 
show significant overlap but are still roughly clustered. The final 
features examined were the FFT power bands.  

B. 10-class Classification Results 

The first classification attempt included the following 
features: Mean, Variance, Zero-crossings, and FFT Bands of 1-
5, 6-10, 11-15, 16-20, and 21-25 Hz. This classification attempt 

used ten classes. The classification matrix for this attempt is 
shown in Fig. 5. 

This initial test returned a 93.6% classification accuracy. Of 
the 19 misclassifications, 13 were incorrectly classified as 
grinding or not, and six were classified into classes where an 
event had a matching “grinding” or “not grinding” attribute. 

As the FFT bands show most of the data concentrated at the 
lower frequencies, the bands were adjusted to extract that data 
more carefully. The classification algorithm was re-taught with 
the following FFT power bands: 1-2.5 Hz, 3-5 Hz, 5.5 to 7.5 
Hz, 8-10Hz, and 10.5-25 Hz. 

This classification attempt returned an accuracy of 94.6%, 
and 12 of the 16 misclassifications were classified into a class 
with the wrong grinding presence, as shown in Fig. 6. Other 
attempts to increase the classification accuracy were not 
successful. 

C. Two-Class Classification Results 

Ultimately, only two classes are needed to make this system 
perform its intended function: “grinding” and “not grinding”. 
For the following experiments, only these two classes were 
used. However, examining the system with two and ten classes 
is important to determine the maximum classification accuracy. 

 
 

Fig. 6. Classification results showing the adjusted band power features 

and its corresponding confusion matrix. 

 
 

Fig. 5. Classification results showing the initial frequency band power 

features and its corresponding confusion matrix. 

 
 

 
 
Fig. 7. Two-class classification results using variance as features (top) 

vs. the 8th root of the variance (bottom).  

 
Fig. 5. Initial frequency band power features and its corresponding 

confusion matrix. 
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The first classification attempt used the average, variance, 
zero-crossings, and newly modified FFT power bands. With 
only two classes, the classification learner achieved 98% 
accuracy. The confusion matrix for this attempt is shown in Fig. 
7. This 98.0% classification accuracy is a 3.4% increase in 
accuracy over using ten classes. The 8th root of variance was 
used as the classification feature, as shown in Fig. 4, instead of 
the variance extracted from the data to maximize the 
classification accuracy further. Such an attempt returned a 
promising 98.7% classification accuracy, with two additional 
trials correctly classified.  

Minimizing the number of operations is desirable for the 
system to process data in real-time. Therefore, a combination of 
subsets of features was explored. While most of these 
combinations showed a drop in classification accuracy, it was 
found that using variance alone provided a 97.0% classification 
accuracy, and the 8th root of variance provided a 98% 
classification accuracy. Such accuracy is possible as the 
grinding process requires the teeth’ movement, which generates 
periodic oscillatory accelerometer data output. As a result, 
similar information is observed through calculating variance, 
while the information can also be obtained in the frequency 
domain. Since the number of operations for calculating variance 
is smaller than calculating frequency information, simple use of 
variance would be preferred over frequency features. 

IV. RESULTS ANALYSIS 

These results returned very high classification accuracies 
and a strong case for using such systems. The motion of 
grinding is detectable with an accelerometer attached to the jaw. 

It was found that using only two classes increased the 
classification accuracy of the system over using ten classes. 
With the use of only two classes, the algorithm was able to 
achieve 98.7% accuracy, whereas the 10-class model was only 
able to achieve 94.6%. However, when the 10-class model 
disregards the misclassifications classified into a group with the 
same “grinding” or “not grinding” attribute, this accuracy 
becomes 96%. Furthermore, this classification algorithm was 
found to have 98.0% classification accuracy with the 8th root of 
variance alone. This is critical, as computing resources are often 
limited for wearable systems, and processing many features can 
consume a large amount of computing power.  

Many of the misclassifications are classified into either the 
previous or next class. This is likely due to two main reasons: 
the transitions between each activity are not perfectly timed or 
instantaneous.  For example, when the subject is instructed to 
transition to the next sleeping position or start grinding, they will 
not make the transition precisely on time. These transitions also 
take time to execute. Because the experiment uses a 50% 
window overlap, each transition is recorded over at least two 
windows (i.e., one-second duration) or usually more. It is, 
however, critical to include these transitions between sleeping 
positions—humans naturally roll over while sleeping. To ensure 
the classification algorithm does not flag these transitions as 
grinding, they must be entered into the classifier. 

V. CONCLUSION 

 The results of this experiment clearly show that grinding is 
detectable by the classification tree algorithm with a high degree 

of accuracy. The combination of traits that provided the highest 
detection accuracy was mean, 8th root of the variance, zero-
crossings, and the modified FFT power bands with a 98.7% 
accuracy when differentiating between only two classes. 

 With the current data, it is clear that the algorithm has 
difficulties detecting the differences between rolling over and 
grinding, as both include periods of high variance. This could 
create problems for the user as they may be notified that grinding 
was detected because they rolled over. It may then encourage 
the user to ignore the alarms, reducing the system’s 
effectiveness on the person’s subconscious. Additional data 
would be helpful to eliminate this, including stationary and 
dynamic positions while grinding. The transitions between 
activities included rolling over, but because each transition is 
captured by 2-3 windows, there is not enough data to create a 
significant cluster.  

 Additional features that may be useful in furthering this 
research may include entropy and cross-correlations, especially 
as additional data (including rolling over vs. grinding) is taken 
and analyzed. With the addition of clusters of high variance, 
other algorithms or types of sensors may also help analyze the 
data.  

In addition, note that the true value of using binary 
classification is clinically more valuable because physicians 
and patients are interested in knowing how often and how long 
the patient grinds teeth. This information is sufficiently 
provided through binary classification. For further verification, 
system generalization will be studied with additional data 
collected from more participants. 

 Grinding, however, is only half the picture when it comes to 
Bruxism. This research only applies to those who actively grind 
their teeth; it is not intended to detect teeth clenching. Additional 
sensors would likely be necessary to identify clenching—it is a 
stationary activity and therefore has little to no acceleration to 
detect. Experimentation in the detection of clenching would help 
mitigate jaw pain and tooth damage. 
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