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Abstract—Clustering and classification are the two important
tasks involved in pattern recognition. Both tasks are interrelated
with each other. The generalization ability of classification learn-
ing can be enhanced with clustering results. On the contrary, the
class information helps in improving the accuracy of clustering
learning. Thus, both learning strategy complements each other.
To amalgamate the benefits of both learning strategies, therefore
in this paper, we proposed a novel robust kernelized Fuzzy c-
Means based multi-objective simultaneous learning framework
(RKFCM-MSCC) for both clustering and classification. RKFCM-
MSCC employs multiple objective functions to compose the
clustering and classification problem, respectively. Both the for-
mulated objective functions are simultaneously optimized using
the particle swarm optimization approach. Moreover RKFCM-
MSCC uses Bayesian theory that make these multiple objective
functions dependent on the single parameter i.e., cluster centers
that connect both the clustering and classification learning. The
Pareto-optimal solution attained with the RKFCM-MSCC ap-
proach complements the clustering and the classification learning
process. The effectiveness of the proposed RKFCM-MSCC is
empirically investigated on four benchmark datasets and the
results are compared with the state-of-the-art approaches.

Index Terms—Clustering, Classification, Kernelized Fuzzy c-
Means, Multiobjective Optimization, Pareto Optimal Solution

I. INTRODUCTION

Pattern recognition consists of two parts, i.e., clustering
and classification learning. Clustering and classification are
the two fundamental problems in machine learning. Clustering
learning is a technique used to group a set of data points into

formed clusters based on their similarities. The formed groups
or clusters are analyzed to explore the underlying structure
of the data and to gain a better understanding of the nature
of the data. On the other hand, classification learning is a
technique used to construct a discriminant function that can
distinguish between samples with different class labels. The
goal is to learn a function that can map a set of input features
to an output class label, which can then be used to classify
newly encountered samples. Both clustering and classification
learning played an important role in various fields, such as data
mining, image processing, and pattern recognition. It has been
seen that clustering results analyze the structure of the data
that helps in improving the ability of classification learning,
thus extract prior knowledge as much as possible for a given
problem to enhance the generalization capability of a classifier.
Our proposed algorithm also gives a positive result on the
above assertion. Alternatively, incorporating class information
can enhance the performance of clustering learning. Some
supervised clustering and semi-supervised clustering methods
have been developed that uses class information to direct the
clustering process. The experimental outcomes of these ap-
proaches have shown that class information can considerably
enhance the effectiveness of clustering results. Therefore, we
can conclude that both clustering and classification learning
are complementary to each other.

Clustering and classification learning are typically estab-
lished using various models or criteria, making it challeng-
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ing to combine both into a single framework. In the past,
many algorithms were proposed by researchers [1], [3]–[8]
to handle clustering and classification learning sequentially or
independently to show the combined benefits of both learning
strategies. These algorithms first optimize the clustering pro-
cess using the clustering criterion, allowing the data structures
to be explicitly exposed. Then the algorithms optimize the
classification criterion connected with the obtained structural
information based on the clustering result to assign the class
label to new samples. Such algorithms sequentially optimize
the clustering and classification criterion but fail to simultane-
ously optimize such two criteria.

In the past, several approaches were proposed by researchers
inheriting the advantages of both clustering and classification
learning. Here, we presented a review of some of the work
carried out in this field. Maglogiannis et al. [5] proposed a
radial basis function neural network (RBFNN) which is a
feed-forward multi-layer network. This approach first executes
unsupervised clustering learning to find out the parameters
of the basis function [5] then, it optimizes the connection
weights between the hidden and output layers using the
mean squared error (MSE) classification criterion between
the target and actual outputs. However, RBFNN cannot truly
combine the benefits of clustering and classification learning
in a single method. Cai et al. [1] proposed a robust fuzzy
relational classifier (RFRC) to enhance the robustness of the
FRC classifier. In this classifier to enhance the robustness
firstly the kernelized fuzzy c-means (KFCM) [2] is used and
then the soft class labels are used to replace the hard class
labels. In this way, incorporating the soft class labels and
KFCM makes the RFRC classifier reflect a better relationship
between classes and clusters and hence significantly boosts
the robustness and accuracy of the FRC classifier. Kim and
Oommen [4] proposed the VQ + LVQ3 algorithm. It first
employs learning vector quantization (LVQ) to optimize the
locations and class labels of the cluster centers and then
employs the 1NN classifier to perform classification on top
of the obtained cluster centers. Kuo et al. [9], proposed a
sequential clustering and classification approach using a deep
learning technique and a multi-objective sine-cosine algorithm.
In this study, they introduced a novel data analytics-based
sequential clustering and classification (SCC) approach.

All of the methods discussed above first optimize the clus-
tering criterion and then optimizes the classification criterion
associated with the clustering result, resulting in a two-step
learning paradigm that fails to achieve simultaneous optimiza-
tion for both criteria. To overcome this problem, Cai et al. [10]
proposed a multi-objective simultaneous learning framework
(MSCC) for both clustering and classification learning. In
this study, they utilize multiple objective functions and then
simultaneously optimized the clustering centers embedded in
these functions, this not only improved clustering performance
but also simultaneously attain promising classification perfor-
mance. The problem with the MSCC framework is that it is not
robust against outliers and not suitable for the non-spherical
data structure. To overcome this problem, we proposed a

novel robust kernelized Fuzzy c-Means based multi-objective
simultaneous learning framework (RKFCM-MSCC) for both
clustering and classification learning. The proposed RKFCM-
MSCC framework works toward enhancing the robust- ness
against outliers, accuracy, and it is suitable for the non-
spherical datasets.

II. THE PROPOSED METHOD

To achieve robust clustering and classification simulta-
neously, we proposed a novel robust kernelized Fuzzy c-
Means based multi-objective simultaneous learning framework
(RKFCM-MSCC) for both clustering and classification. To im-
plement this approach, we first perform the clustering using the
kernelized clustering algorithm that uses the radial basis kernel
function. Then, we employ the Bayesian theory to establish
the connection between both the clustering and classification
objective functions by making them only dependent on the
same set of cluster centers which is considered a parameter
to optimize. We then employ a multi-objective framework to
formulate the clustering and classification problems. Finally,
we use MOPSO [11] to simultaneously optimize the clustering
centers incorporated in both of these objective functions. In the
subsequent section, we explained the step-by-step process of
the proposed RKFCM-MSCC framework that includes training
and testing of the classifier and then the optimization of both
the objective functions embedded with cluster centers using
the MOPSO approach.

A. Training of the Classifier

The training of the classifier comprised of two steps: Firstly,
the kernelized Fuzzy c-Means algorithm is applied to the
training data for the exploration of the underlying structure
of the data. Then in the second step, a fuzzy relational matrix
P is constructed from the obtained membership matrix and
the given class labels to uncover the statistical relationship
between the formed clusters and the given classes.

1) Kernel Based Fuzzy c-Means: The kernel based Fuzzy
c-Means make use of the kernel trick for projecting the non-
linear problem (from original low dimensional input space)
into linear problem in high dimensional feature space [12].
The kernel function K for all xi, vk in the original input
space X satisfies the inner product operation as follows:

K(xi, vk) = ϕ(xi)
Tϕ(vk) (1)

Where ϕ represents an implicit non-linear map from the
input space X to a high dimensional feature space R.

ϕ : x → ϕ(x) ∈ Rd (2)

Where xi, vk ∈ Rd such that i = 1, .., S and k = 1, ...,K.
Thus, through this mapping ϕ, the kernelized version of FCM
[1] is determined as follows:

Ju({vk}) =
S∑

i=1

K∑
k=1

mu
ik ∥ϕ (xi)− ϕ (vk)∥2 , u > 1 (3)
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Here, each data point xi satisfy the constraint
∑K

k=1 mik =
1. Through kernel substitution, we get the following equations:

∥ϕ (xi)− ϕ (vk)∥2 =K (xi, xi) +K (vk, vk)− 2K (xi, vk)
(4)

In the case of RBF kernel (also called Gaussian Kernel), K(xi,
xi) = 1 and K(vk, vk) = 1 [12]. Thus, after substituting these
values in Eq. (4), it is simplified and represented as follows:

∥ϕ (xi)− ϕ (vk)∥2 = 2 (1−K (xi, vk)) (5)

In this work, K(xi, vk) represents the Radial Basis Function
(RBF) kernel, which is defined as follows:

K (xi, vk) = exp
(
−∥xi − vk∥2 /σ2

)
(6)

Where σ represents the kernel parameter. The selection of
kernel parameter play an important role in achieving clustering
results. The kernel parameter is defined as follows:

σ2 =
max1≤i≤S ∥xi − x∥2

λ
(7)

Where x̄ is the average of all xi. The scale factor λ is selected
from {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 15} according to the trial-
and-error approach [13]. To minimize the objective function
defined in Eq. (3), the membership matrix mik and the updated
cluster center vk need to be computed.

mik =
(1−K (xi, vk))

−1/(u−1)∑K
k=1 (1−K (xi, vk))

−1/(u−1)
(8)

vk =

∑S
i=1 m

u
ikK (xi, vk)xi∑S

i=1 m
u
ikK (xi, vk)

(9)

Where, V = [v1, v2......vK]. After substituting the value
from Eq. (5) in Eq. (3), the objective function defined in
Eq. (3) is simplified and denoted as:

Ju({vk}) = 2

S∑
i=1

K∑
k=1

mu
ik (1−K (xi, vk )) (10)

After substituting the membership matrix from Eq. (8) in
Eq. (10), we now compute the final objective function of the
clustering mechanism [10] which is defined as follows:

Ju({vk}) = 2

S∑
i=1

K∑
k=1

(
(1−K(xi,vk))

−1/(u−1)∑K
k=1(1−K(xi,vk))

−1/(u−1)

)u
× (1−K (xi,vk)) .

(11)
After training our data, we get the final membership matrix

and a minimized value of the clustering objective function. The
Kernel based Fuzzy c-Means clustering algorithm is explained
in Algorithm 1.

Once the set of final cluster centers is determined then
we compute the P relation matrix to reveal the statistical
relationship between the formed clusters and the given classes.

Algorithm 1 Kernel-Based Fuzzy Clustering Algorithm
1: Randomly initialize cluster center V = [v1, v2......vK] for

data samples.
2: Evaluate the membership matrix by using Eq. (8).
3: Evaluate the set of final cluster centers V = [v1, v2......vK]

by using Eq. (9).
4: If (V t+1 - V t) <ϵ then stop, else continue with step 2
5: Return M (set of membership matrix), V (set of final

cluster centers).

2) P Relation Matrix: The relation matrix P is computed
using the Bayesian theory. First, the cluster posterior probabil-
ities of class membership p (ωl | ck) is computed as follows:

p (ωl | ck) =
p (ωl, ck)

p (ck)
(12)

In Eq. (12), p (ck) represents the prior probability, which
means the proportion of samples belonging to the kth cluster,
i.e., Num(x ∈ ck) /S, S denotes the total number of training
samples. Likewise, p (ωl, ck) represents the joint distribution
which is calculated based on the proportion of samples that
lies in the kth cluster and the lth class, i.e., Num(x ∈ ωl and
x ∈ ck)/S. As a result, p (ωl | ck) can be expressed as:

p (ωl | ck) =
Num (x ∈ ωl and x ∈ ck)

Num (x ∈ ck)
(13)

The constraint
∑L

l=1 p (ωl | ck) = 1 must be satisfied for
each cluster ck, where L denotes the number of classes. By
combining all the p (ωl | ck) values, we can create a K × L
matrix, denoted by P

P =


p (ω1 | c1) p (ω2 | c1) . . . p (ωL | c1)
p (ω1 | c2) p (ω2 | c2) . . . p (ωL | c2)

· · · · · · . . . · · ·
p (ω1 | cK) p (ω2 | cK) . . . p (ωL | cK)


The relation matrix P relies on the partition obtained through
clustering and its value is decided by allocating each data
point to the closest clustering centers. Next, by using the
Bayesian theory, we design a classification mechanism which
also relies on the set of final cluster centers obtained through
the clustering mechanism.

B. Testing of the Classifier

In the classification phase, we compute the posterior prob-
ability p (ωl | xi). To introduce the cluster information in the
computation of p (ωl | xi), we make use of the formed clusters
{ck} to reformulate p (ωl | xi) through the total probability
theorem as

p (ωl | xi) =

K∑
k=1

p (ωl, ck | xi) =

K∑
k=1

p (ck | xi) p (ωl | ck)

(14)
Where p (ck | xi) represents the posterior probabilities of

the presence of corresponding samples and through its intuitive
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meaning it can computed using Eq. (8), and p (ωl | ck) denotes
the cluster posterior probabilities of class membership where
ωl denotes the lth class, ck represents the kth cluster.

In the classification learning, once the posterior probabilities
p (ωl | xi) is modeled, then the output class label f(xi) is
computed as follows:

f(xi) = arg max
1≤l≤L

p (ωl | xi) (15)

Once the output class label f(xi) is determined, then the
classification objective is determined as follows:

Ju ({vk}) =
S∑

i=1

δ (f (xi) , yi) /S (16)

where yi is the class label (ground truth) of xi and yi ∈
{1, 2, ...., L}. This objective function is based on the mini-
mization of the misclassification rate.

Algorithm 2 Misclassification Rate
Input: trainy = {y1, y2, ..., yS} is the ground truth or class
labels corresponding to the data samples present in trainX =
{x1, x2, ..., xs}; M is the membership matrix; P is the relation
matrix.
Output: Ju ({vk})

1: Compute the posterior probability p (ωl | xi) of data
samples present in trainX using Eq. (14).

2: Compute the output class labels of each data samples
using Eq. (15).

3: Compare the output class label f(xi) with the ground
truth yi and compute the misclassification rate using
Eq. (16).

4: Return Ju ({vk})

In this work, we have formulated the clustering and clas-
sification problem by integrating the two objective functions
given in Eq. (11) and Eq. (16).

min J ({vk}) = [J1 ({vk}) , J2 ({vk})] (17)

The value of min J ({vk}) only depends on a set of cluster
centers. Therefore, by just optimizing the cluster centers
embedded in J ({vk}), the clustering J1 ({vk}) and classifi-
cation J2 ({vk}) criteria can be simultaneously optimized at
the same time.

C. Optimization of Multiobjective Functions

In this work, we are using Multi-Objective Particle Swarm
Optimization (MOPSO) to simultaneously optimize the clus-
tering and classification objective function. MOPSO is an
evolutionary technique that combines individual improvement
with population cooperation and competition. It has demon-
strated excellent performance and fast convergence [11]. Lin
et al. [14] proposed an evolutionary algorithm for Many-
Objective optimization problems in which they have used more
than three objective functions. In our proposed approach, we
have used a simplified version of MOPSO to solve the multi-
objective optimization problem. MOPSO used in the proposed

RKFCM-MSCC algorithm utilizes an external repository to
store non-dominated solutions found during the search process.
Furthermore, adopting MOPSO in proposed RKFCM-MSCC
allow us to obtain the multiple sets of Pareto-optimal clustering
centers in the two objective spaces. Since the clustering and
classification learning methods complement each other thus,
the corresponding the clustering and classification objective
function given in Eq. (11) and Eq. (16) can be complementary
to certain extent. Consequently, the Pareto-optimal clustering
centers that achieve relatively low values on the training
data jointly for both clustering compactness and classification
error rate can consistently yield the best result for clustering
compactness or classification error rate on the test data.

In the proposed RKFCM-MSCC, a particle is represented as
Vi = [vi1, vi2, ..., vid, .., viD] where D = d×K. Each particle
flies with a velocity veli = [veli1, veli2, .., velid, ..., veliD].
This updated velocity of the particle is calculated based on the
experience of particle itself and repository which is defined as
follows:

(18)velt+1
id = I × veltid +r1 ×

(
pbsettid − vtid

)
+ r2 ×

(
Repositoryd(h)− vtid

)
Where I is inertia weight and set to a value 0.4,
r1 and r2 are two random numbers which takes
the value uniformly distributed in the range [0, 1].
pbsettid represents the best position of the ith particle
in dth dimension in tth iteration. Repository(h) =
[Repositoryh1,Repositoryh2, ...,RepositoryhD] is the
repository consist of nondominated solution. At each
iteration, the position of each particle is updated with the
given equation as follow:

vt+1
id = vtid + velt+1

id (19)

The complete process of proposed RKFCM-MSCC Algorithm
is presented in Algorithm 3.

Algorithm 3 RKFCM-MSCC Algorithm
Input: The number of particles P is set to 500, the total
number of iterations t is set to 100, and the current iteration
is set to 1.

1: Initialize all the particles with random positions and
velocities.

2: Compute the clustering and classification objective func-
tion using Eq. (11) and Eq (16) and pbest i of each particle
is set equal to its current position.

3: In the repository, the position of the particle are stored
that represent nondominated solutions.

4: While t > 1 :
(a) Evaluate the velocity of each particle by using

Eq. (18) .
(b) Evaluate the new position Vi of each particle

using Eq. (19).
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(c) Compute the value of two objective function using
Eq. (11) and Eq (16).

(d) At each iteration determine all the currently
nondominated solutions :

For i = 1: P
Non_dominated_flag = 1
For j = 1: P

If vi is dominated by vj
Non_dominated_flag = 0

End
End
If Non_dominated_flag = 1

vi is the currently
nondominated location.

End
End

(e) Store the nondominated locations into the
Repository and remove any dominated locations
from the Repository

(f) If the particle current position V t
i dominates

pbesti
pbesti = V t

i

else if the pbesti dominates V t
i

pbesti is kept

else if no one dominated by other

pbesti is updated or kept randomly

End
(g) Update t = t+ 1

III. EXPERIMENTAL RESULTS

A. Experimental Setup

In this study, all the experimentation is performed on an
NVIDIA DGX-1 supercomputer. The supercomputer has the
following configuration: Dual 20 Core Intel Xeon E5-2698 V4
clocked at 2.2 GHz, 5120 NVIDIA cores, 512 GB 2.133 GHz
DDR4 RDIMM (RAM). All the codes are written in Python
version 3.9.13.

B. Dataset Description

In this study, we performed our experimental study on four
datasets which were taken from the UCI machine learning
repository [15]. The detailed description of the datasets used
in this study is presented in Table I.

C. Parameter Specification

In this section, we have presented the specification of the
parameters used in the experimental study. Table II shows the
values of parameters K, λ, and ϵ used for various datasets.
The value of the parameters listed in this table is chosen after
exhaustive experimental evaluation.

TABLE I
DATASET DESCRIPTIONS

Datasets Characteristics
Instances No of Classes No of attributes

Iris 150 3 4
Soyabean 47 4 35

Wine 178 3 13
Thyroid 215 5 3

TABLE II
PARAMETER SPECIFICATIONS FOR DATASETS

Dataset Parameters
K λ ϵ

Iris 12 .001 .001
Soybean 4 1 .001

Wine 6 .1 .001
Thyroid 10 .001 .001

D. Results and Discussion

In this section, all the datasets used are randomly partitioned
into two halves: for training the first half of each dataset
is used and the other half is used for testing. This process
is repeated and independently run ten times. Then averaged
accuracies and standard deviations is computed and reported
in Table III. Furthermore, the experimental results justifying
the effectiveness of the proposed RKFCM-MSCC approach in
terms of accuracy when compared with other existing models
like RFRC [1], VQ+LVQ3 [4], RBFNN [5], SCC [16], and
MSCC [10], respectively. As we can see from the reported
experimental results that the proposed RKFCM-MSCC model
shows significant improvement in terms of accuracy on all four
datasets in comparison to other models like RFRC, VQ+LVQ3,
RBFNN, SCC, and MSCC, respectively. The exceptional clas-
sification accuracy achieved by the proposed RKFCM-MSCC
can be attributed because of its efficient learning mechanism.
For Iris Dataset, there is a 1.24 percentage increment in their
average accuracy achieved by the proposed RKFCM-MSCC
model in comparison to MSCC and achieved much higher
accuracy compared to other models. For Wine Dataset, the
proposed RKFCM-MSCC model shows an increment of 0.9
percent in terms of average accuracy compared to MSCC and
significantly higher compared to other models. In the case
of the thyroid dataset, the proposed RKFCM-MSCC model
attain an increment of 0.6 percent in terms of average accu-
racy compared to MSCC and SCC models and significantly
higher compared to other models. For the soybean dataset,
the proposed RKFCM-MSCC model attains the 100 average
accuracy which is equivalent to the MSCC approach but much
higher than other compared models. In addition to the average
accuracy, we have reported the Pareto optimal solution for both
training and test partition of Iris dataset in Table IV. From the
reported results, an interesting observation is found that on the
test data the best performance of clustering or classification is
corresponding to those solutions which attain relatively low
values of objective functions for both clustering compactness
and classification error rate on the training dataset.
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TABLE III
CLASSIFICATION ACCURACY ON REAL-LIFE DATASETS

Datasets Models
(#samples ×#dim×#class)

RFRC [1] VQ+LVQ3 [4] RBFNN [5] SCC [16] MSCC [10] RKFCM-MSCC
Iris (150×4× 3) 95.3 ± 1.1 94.7 ±1.9 96.4 ± 1.6 95.2 ± 1.4 97.1 ± 1.7 98.26 ± 0.64

Wine (178×13× 3) 96.0 ± 1.7 96.5 ± 1.5 97.3 ± 1.1 97.1 ± 1.8 98.3 ± 1.3 99.2 ± 0.64
Thyroid (215×5× 3) 91.8 ± 2.0 92.7 ± 2.2 95.3 ± 1.0 96.4 ± 1.5 96.4 ± 1.6 97.00 ± 0.78

Soybean-small (47×35× 4) 99.1 ± 1.7 96.1 ± 10.4 98.1 ± 1.7 99.6 ± 1.3 100 ± 0.0 100 ± 0.0

TABLE IV
MISCLASSIFICATION RATE AND CLUSTERING COMPACTNESS ON THE TRAINING AND TEST DATA SET OF IRIS

Pareto optimal
solution

Training Misclassification
rate J1

Training clustering
compactness J2

Test Misclassification
rate J1

Test clustering
compactness J2

S1 0.0061 0.0133 0.0065 0.04
S2 0.0059 0.0133 0.0060 0.04
S3 0.0063 0.0133 0.0056 0.04
S4 0.0063 0.0133 0.0054 0.0266
S5 0.0057 0.0266 0.0063 0.0266
S6 0.0080 0.0133 0.0054 0.0266
S7 0.0061 0.0266 0.0063 0.0266
S8 0.0058 0.0133 0.0064 0.0266
S9 0.0052 0.0133 0.0073 0.0266
S10 0.0060 0.0266 0.0066 0.0266

IV. CONCLUSION

This paper proposed the RKFCM-MSCC approach to si-
multaneously attain better clustering and classification results
for the linear and non-linear separable data points. The use
of radial basis kernelized fuzzy clustering integrated with the
classification is the main highlight of the paper. It yielded
better results as compared to existing models. To combine
the benefits of classification and clustering learning, several
existing algorithms, including RBFNN, RFRC, and VQ+LVQ3
follow a sequential and separate optimization approach for
both the clustering and classification criterion. However,
this two-step optimization process significantly restricts the
effectiveness of both clustering and classification learning.
RKFCM-MSCC has a simultaneous optimization process for
both clustering and classification. From the experimental re-
sults, it can be observed that 1) RKFCM-MSCC attain the
promising clustering and classification results at same time;
and 2) the Introduction of RBF kernel in Fuzzy c means
yielded better results. Undoubtedly, one of the future directions
of research is to explore alternative approaches for developing
a semi-supervised version of RKFCM-MSCC. Undoubtedly,
one of the future directions of research is to explore alterna-
tive approaches for developing a semi-supervised version of
RKFCM-MSCC.
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