
A Computational Approach to Uncertainty in DNA Sequences

Melissa N. Melaugh1, and Prof. Sonya Coleman1 and Dr. Dermot Kerr1

Abstract— DNA sequencing is the process of reading in-
dividual base pairs from a section of DNA. Genes are the
name given to parts of the DNA which encode proteins; for
example ion channels are proteins that maintain concentrations
of ions within cells. The sequencing of these genes can offer
insights into factors such as evolution and disease. During the
sequencing process, unknown values ’N’ can be substituted
in the sequence where the sequencing machine is unable to
identify a nucleotide as Adenine (A), Cytosine (C), Thymine
(T), or Guanine (G). These gene sequences vary in length;
this includes individual genes across the same species. This
has led to the use of a process known as k-mer encoding
so that a machine learning algorithm can assess these genes
without the need for pre-alignment. K-mer encoding works by
taking small sections of the sequence and tallying the number
of times that such a sequence appears, such as, how many
times the k-mer ’ACCT’ appears in the overall sequence. The
unknown ’N’ value presents a problem in k-mer encoding,
as this value increases the size of the k-mer feature vector
exponentially as the k-mer length increases. In this paper we
research the accuracy and computational impact of including,
removing, or ignoring this ’N’ value for the k-mer lengths 3,
6, and 9 across four Machine Learning algorithms: Random
Forest, Multinomial Naive Bayes, Neural Networks, and Linear
Support Vector Machine.

I. INTRODUCTION

Every gene is a section of a bigger strand of DNA; a gene,
like all DNA, is composed of the four nucleotides Adenine
(A), Cytosine (C), Thymine (T), and Guanine (G). These
genes can be read through DNA sequencing, a process in
which the particular gene is amplified and sequenced. Two
popular sequencing techniques are Nanopore sequencing
and Single Molecule Real Time (SMRT) sequencing. Each
method will produce an output of the amplified gene saved to
a file, often referred to as FASTA or FASTQ files. FASTA
files originated from the FASTA program, and in the case
of DNA sequencing, they return sequences under manually
input headers. FASTQ files have superseded these, adding
a quality aspect, which encodes the accuracy of the read
at that nucleotide. The nucleotide sequences are often used
to identify species, such as in 16S and 18S sequencing for
bacteria and fungal communities.

Typically, nucleotides are copied into mRNA before being
processed and read into non-overlapping sets of 3, in order
to create the associated protein. In this way a gene sequence
can be considered as a sentence describing a protein, and

*This work was supported by the Department of Agriculture, Environ-
ment and Rural Affairs

1Melissa N. Melaugh, Prof. Sonya Coleman, and Dr. Dermot Kerr are
with Faculty of Computing, Engineering and the Built Environment, Ul-
ster University, Northern Ireland, UK melaugh-m4@ulster.ac.uk
sa.coleman@ulster.ac.uk d.kerr@ulster.ac.uk

these sets of three nucleotides can be thought of as words,
hereby referred to as k-mers.

When a gene is sequenced, there can be noise in the data.
This can be due to a number of factors including single site
mutations and machine error. Where no clear reading can be
obtained from the nucleotide position (A, C, T, or G), the
reading is noted as an unknown ’N’ value.

Mohamed et. al used an ’N included’ approach for classifi-
cation of gene groups, in which all nucleotides that were not
A, C, T, or G were included as a ’Z’ character [1]. Juneja et.
al tested a dataset with K2, K3, K4, K5, and K6 using only a
MNB classifier [2]. They split their DNA sequences into the
desired k-mer length and used these values to construct their
final feature vector [2]. This aligns with an ’N included’
approach but also reduces the overall feature vector as k-
mers that are not present in the training sequences are not
included. Solis-Reyes takes an ’N removed’ approach in their
open source tool called KAMRIS, in which 15 classifiers
were tested for k-mers classification; they found that the
Linear SVM had the best balance for accuracy/timing tests
for the K6 values, using the ’N removed’ method [3]. Other
methods tested were: Cubic SVM, Quadratic SVM, Linear
SVM, NN, Logistic Regression, KNN using a k of 10,
Nearest Centroid Median, Nearest Centroid Mean, Decision
Tree, Random Forest, SGD, Guassian Naive Bayes, LDA,
QDA, and Adaboost [3]. Uddin et. al presented a matrix
style k-mer encoding for phylogenetic tree reconstruction,
in which k-mer dictionaries were explicitly created. In their
work, they did not mention these unknown ’N’ values nor
any pre-processing of the DNA data, prior to input into their
pipeline [4]. If they did not remove the ’N’ values, it would
align with an ’N ignored’ approach.

Often in similar research, it is unclear how the ’N’ value
is managed in the k-mer approach. Blaisdell, one of the
original authors of k-mer encoding, did not acknowledge
their approach to the ’N’ value [5], nor did Burge, Campbell,
and Karlin with their approach to k-mer distance metrics [6].
Asgari et. al used k-mers on 16S data to identify the location
of bacteria on a patient’s body, but were also not explicit in
their approach to the ’N’ values [7]. Ng also did not discuss
handling the unknown ’N’ in their development of the k-mer
tool dna2vec [?].

We have identified three strategies employed when dealing
with the ’N’ values in sequences: ’N included’, ’N removed’,
or ’N ignored’, each with its own strengths and weaknesses.
The aim of this paper is to determine which methods of
k-mer counting provide the best classification accuracy and
testing time when using various machine learning methods.

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1043

Fig. 1. Top: The dictionary and corresponding feature vector for the ’N included’. The goldenrod colour has been used to highlight the additional
dictionary and features as compared to ’N ignored’ and ’N removed’. Bottom: The dictionary and corresponding feature vector for the ’N ignored’ and ’N
removed’. In all three cases, the total number of k-mers counted has been included.

II. DATASET BACKGROUND AND DESCRIPTION

We use Chauban’s DNA Sequence Dataset which consists
of seven gene families isolated from three species: Human,
Chimpanzee, Dog. These gene families are: G-Protein Cou-
pled Receptors, Tyrosine Kinase, Tyrosine Phosphatase, Syn-
thetase, Synthase, Ion Channels and Transcription Factors
[9]. Of the 6,882 sequences in Chauban’s DNA Sequence
Dataset, 379 contain unknowns. Of the 10,452,663 bases
these genes contain, 925 were an ’N’ value, giving an overall
frequency of less than 0.00009%. Although there is a low ’N’
frequency, it is important to determine if classification would
be more accurate and/or efficient if the ’N’ values were
included, removed, or ignored. The difference between these
options is best conveyed in an example, using an overlapping
k-mer length of 2 (K2), to avoid becoming too large for a
manual example.

When counting the k-mers, a dictionary of all possible
nucleotide combinations must be created. Its length can be
described as

L = BK (1)

where L is length, B is the number of bases (4 for ’N
ignored’/’N removed’, and 5 for ’N included’), and K is the
k-mer length. For K1, the dictionary length is 5 (A,C,T,G,N)
in the case of ’N included’, and 4 (A,C,T,G) in the cases
of ’N removed’ and ’N ignored’. The feature vector then
becomes a count of the occurrences of each of the values in
the dictionary. This feature counting can be referred to as a
Count Vectoriser, which takes in a dictionary and sequence
and determines the corresponding counts from the sequence.
The K2 feature length for ’N included’ is 25, while the K2
feature length for both ’N ignored’ and ’N removed’ is 16.
This is because there are 25 possible combinations of A, C,
T, G and N, while there are 16 possible combinations of A,
C, T, and G. The two dictionaries can be seen above the
resulting feature vectors in Figure 1.

We explain this further using the following 24
nucleotide DNA sequence: AACTANNATCANATG-
GANAGGGAN.The ’N included’ k-mer dictionary is
composed of all possible combinations of the 4 nucleotides
and ’N’ at the k-mer length 2, resulting in a feature length
of 25. The feature vector is a count of these k-mers within
the DNA sequence as shown in Figure 1. This example

sequence results in a total of 22 k-mers. Unlike the other
two methods, this feature vector includes counts for AN
(4), CN(0), TN(0), NA (3), NC(0), NT (0), NG(0), and NN
(1), which are not present in the other vectors; this results
in a larger feature length.

In the case of ’N removed’, the ’N’ values are deleted
and a new link created between the nucleotides on either
side of the removed nucleotide. The DNA sequence with
’N’ removed becomes: AACTAATCAATGGAAGGGA (19
nucleotides in length) resulting in 17 k-mers in the feature
vector. Notice in Figure 1 that the k-mer pair AA has
increased from 1 in ’N included’ to 4 with ’N removed’;
this is where TANNAT became TAAT, CANAT became
CAAT, and GANAG became GAAG after the deletion of
the ’N’ value. It has also shortened the length of the overall
feature vector from 25 to 16 as there are only 16 possible
combinations of A, C, T, and G.

’N ignored’ essentially breaks up the sequence into slices:
AACTA, ATCA, ATGGA, AGGGA, because any k-mer with
an ’N’ is not counted in the feature vector. The K2 k-mer
count results in a total of 14, the smallest count. Where ’N
removed’ joined the TANNAT to become TAAT resulted in
the length 2 k-mers TA, AA, AT, ’N ignored’ split it into
TA, and AT, resulted in the A nucleotides being counted
only once, rather than twice in this set. As the length of
the k-mers increases, the problem compounds. If the k-mer
length was 6, the feature vector would have no k-mers due
to the way this sequence is split, and if it were 5 there would
only be 3 features included, due to the nature of ’N ignored’.
While it is unlikely that the ’N’ value would be this frequent
in a study, it can still create anomalies since nucleotides on
either side of this ’N’ value are disconnected.

This demonstrates how these three strategies (’N in-
cluded’, ’N removed’, or ’N ignored’) result in different fea-
ture lengths and information encodings. This paper explores
how each of these strategies performs with various machine
learning methods to determine the best overall strategy for
handling ’N’.

III. METHODOLOGY

Figure 2 illustrates how the data moves through the
pipeline. Dictionaries are created for all possible k-mer
combinations at lengths 3 (K3), 6 (K6), and 9 (K9) for
’N included’ (A,C,T,G,N), ’N removed’ (A,C,T,G), and ’N
ignored’ (A,C,T,G) to be used with their associated pipeline.

1044

Fig. 2. A. The ’N included’ pipeline. B. The ’N removed’ pipeline. C. The ’N ignored’ pipeline.

Note that the ’N removed’ and ’N ignored’ associated
dictionaries are the same. The Random Forest Classifier,
MNB Classifier, NN Classifier, and SVM classifier are used
in the ’Classification’ step of their associated pipeline.

Figure 2A depicts the ’N included’ method; it uses the
dictionaries composed of A, C, T, G, and N. The DNA
data moves directly into the vectoriser without being altered
and is classified in one of the ML methods to produce an
output. Figure 2B depicts the ’N removed’ method; it uses
the dictionaries composed of A, C, T, and G. The DNA
data has all ’N’ values removed before it moves into the
vectoriser. This feature vector is classified in one of the ML
methods to produce the output. Figure 2C depicts the ’N
ignored’ method; it uses the dictionaries composed of A, C,
T, and G. The DNA data moves directly into the vectoriser
without being altered and is classified in one of the ML
methods to produce an output.

A. Feature Selection

The lengths of the k-mer sequences chosen were 3, 6,
and 9, hereby referred to as K3, K6, and K9. These values
were chosen on the basis that the nucleotides are read in
non-overlapping sets of three, to create proteins. It should
be noted that unlike protein creation, the Count Vectoriser
uses overlapping k-mer sets, in order to give more contextual
information to the machine learning algorithm. These matri-
ces are all the same length and k-mer order, which allows
the samples to be used in a classifier [10][?].

The dictionary for k-mers was created with all possible k-
mer combinations using either A, C, T, and G or A, C, T, G,
and N at the desired k-mer length and provided to the Count
Vectoriser. The vectoriser uses this dictionary to create the
counts for the feature vector.

Using Equation 1, the calculated K1 feature length is 5 for
’N included’ and 4 for ’N removed’/’N ignored’, representing

the 4 nucleotides, and the unknown ’N’ in the case of
’N included’. At K9, ’N included’ has a feature length of
1,953,125, which is over seven times larger than the ’N
removed’/’N ignored’ feature vector which has only 262,144
features.

B. Classifiers

The Random Forest Classifier builds upon the Decision
Tree Classifier. It uses an ensemble method in which a
variable number of Decision Trees are trained; a weighted
average is used to determine the classifier’s final output.
Decision Trees are a method of mapping data into a tree
like structure, in which branches represent aspects of the
data, called decision rules, making them relatively easy to
interpret. Decision Trees start at a root node, each node is
then split according to some function; this split is exhausted
for every new node until the tree can terminate with a
resulting classification. The chosen function for the splitting
was the Gini impurity, since the data are categorical as
opposed to continuous. The Gini impurity is defined as

G(p) = 1−
n

∑
i=1

p2
i (2)

where p is the probability the data are from class i [11]. For
each node, the split is found by calculating the weighted Gini
impurity of both child nodes, as it can only perform binary
splits. The goal is to create branches until the Gini impurity
is 0, which means all remaining features belong to one class
(the output). The Decision Tree will iterate until all branches
have reached a Gini impurity 0, or until artificially stopped
[12]. The Random Forest Classifier used was initialised with
100 Decision Trees without depth limits and used the Gini
impurity for learning [10].

The Multinomial Naive Bayes (MNB) classifier is tradi-
tionally used for Natural Language Processing. As DNA can

1045

TABLE I
DATA DISTRIBUTION FOR TRAINING AND TESTING GROUPS IN THE HUMAN, CHIMP, AND DOG, AS WELL AS THE TOTALS FOR EACH GROUP.

Human Chimp Dog TOTALS
Total Train Test Total Train Test Total Train Test Total Train Test

G Protein Coupled Receptors 531 477 54 234 210 24 131 117 14 896 804 92
Tyrosine Kinase 534 480 54 185 166 19 75 67 8 794 713 81
Tyrosine Phosphatase 349 314 35 144 129 15 64 57 7 557 500 57
Synthetase 672 604 68 228 205 23 95 85 10 995 894 101
Synthase 711 639 72 261 234 27 135 121 14 1107 994 113
Ion Channel 240 216 24 109 98 11 60 54 6 409 368 41
Transcription Factor 1343 1208 135 521 468 53 260 234 26 2124 1910 214
TOTALS 4380 3938 442 1682 1510 172 820 735 85 6882 6183 699

be thought of as a series of words, it was included for testing.
MNB is primarily based on Bayes’ Theorem which describes
the probability of an event based on prior information as
shown in Equation 3.

P(A|B) = P(B|A)∗P(A)
P(B)

(3)

The Naive Bayes classifier is considered ‘naive’ as it makes
assumptions that each feature is independent and of equal
importance. Multinomial refers to there being a discrete
number of inputs and outputs [13]. In this case, the inputs
will all be of the same length due to the Count Vectoriser,
and the outputs will be one of the seven genes. The MNB
Classifier was initialised with an alpha value of 1 [10].

SVM are binary classifiers, having a single hyperplane
to separate data. Despite this, the SVM can be used with
multiple classes. The most common method is the One Vs
Rest (OvR), and is default in the Linear SVM from Scikit
Learn [10]. The OvR approach iterates through each class
which becomes the positive label, while all other classes
become the negative label. Each iteration sets a hyperplane
between the positive and negative. The end result is the same
number of hyperplanes as classes, allowing for multi-label
classification [14]. A linear SVM using a square hinge-loss
can be mathematically represented by Equation 4 [10] [14].
Here the training input xi ∈Rp, a vector y ∈ 1,−1n, and the
equation is solved for w ∈ Rp and bR so that the prediction
is correct for most samples. The regularisation value, C,
controls the degree to which an SVM is hard (large C) or
soft (small C) [10] [14].

min
1
2

wT w+C
n

∑
i=0

(
max(0,1− yi·(wwwTxxxi −bi)

2)
)

(4)

After testing the RBF, polynomial, sigmoid and linear
kernels, it was determined that the linear kernel was the
best performing. We also implemented a squared hinge loss
function defined in Equation 4, with a C of 0.5; all other
values were analogous with the default from the Linear SVM
class in Scikit Learn [10].

A Neural Network (NN) is able to use a series of hidden
layers in order to take an input sequence and get a corre-
sponding output. Due to memory limits, the K9 feature vector
was too large for processing across all of the NN tests. The

NN architecture used in this section was crafted using the
PyTorch package [15]. Most layers consist of a linear portion,
z, represented in Equation 5, followed by an activation
function a. A Rectified Linear Unit (ReLU) is one such
activation function, and is represented in Equation 6. ReLU is
often used for the hidden layers, while a Softmax activation
function, Equation 7, is often used for an output layer. Both
of these activation functions creates non-linearity within the
network, allowing it to learn through backpropagation.

z = ∑
i

wT
i ∗ xi +b (5)

where w represents the weights, x the input vector, and b the
associated bias for this node [15].

f (z j) = max(0,z j) (6)

where z j is the output of Equation 5 at a given neuron [15].

f (zi) =
exp(zi)

∑ j exp(z j)
(7)

where z j is the output of Equation 5 at a given neuron
[15]. The NN utilised consists of 3 Linear/ReLU layer
combinations of 512, 128, and 32 neurons, followed by a
final Linear/Softmax combination composed of the 7 output
neurons.

IV. RESULTS

The four classifiers are presented with the three strategies
to ’N’ across the K3, K6, and K9 tests, where possible. All
tests were performed on a Dell Precision 3551 on Linux
Ubuntu 22.04.1 LTS using Python 3.9.13 with the Anaconda
3, Scikit Learn v1.2.2 [10], and PyTorch packages [15].

Table I shows the breakdown of the training and testing
data. Training and testing groups were created per species
per gene. 10% of each gene from each species was held
for testing, while the other 90% was used for training the
classifiers.

The results for each of the strategies used with the
Random Forest Classifier are displayed in Table II. The K3
test is most accurate with ’N ignored’ at 97.6%; however
the ’N included’ and ’N removed’ tests are both faster at
0.24 seconds. At K6, the ’N removed’ test ties for highest
accuracy with ’N included’, but is faster at 0.42 seconds.

1046

TABLE II
ACCURACY AND TESTING TIME (IN SECONDS) FOR THE RANDOM

FOREST CLASSIFIER.

Random Forest K3 K6 K9
’N included’ Accuracy 0.8641 0.9356 0.9528

Test Time 0.24 0.45 1.23
’N removed’ Accuracy 0.8698 0.9356 0.9557

Test Time 0.24 0.42 1.01
’N ignored’ Accuracy 0.8755 0.9327 0.9456

Test Time 0.28 0.51 1.28

The K9 ’N removed’ outperforms the ’N included’ and ’N
ignored’ tests with a 95.6% accuracy, and a 1.01 test time.

The results for each of the strategies used with the MNB
classifier are displayed in Table III. Accuracies for K3 and
K6 were less than 65% at best. In both cases the ’N removed’
tests were at least 0.1 seconds faster than the other two tests,
however the ’N included’ tests were more accurate. In the K9
test, the highest accuracy was from the ’N removed’ and ’N
ignored’ tests, at 99.1%. The K9 ’N removed’ test was 0.1
seconds faster than the K9 ’N included’ and K9 ’N ignored’
tests.

TABLE III
ACCURACY AND TESTING TIME (IN SECONDS) FOR THE MNB

CLASSIFIER.

MNB K3 K6 K9
’N included’ Accuracy 0.2833 0.6209 0.9585

Test Time 0.23 0.35 0.72
’N removed’ Accuracy 0.2804 0.6052 0.9914

Test Time 0.22 0.33 0.61
’N ignored’ Accuracy 0.2804 0.6051 0.9914

Test Time 0.26 0.40 0.72

The results for the NN classifier are displayed in Table
IV. Due to memory limitations, only the K3 and K6 tests
were able to be run. The K3 test performed best with ’N
included’ in both accuracy and testing speed. It performed at
80.5% accuracy, classifying 699 genes in 0.24 seconds. This
is over 5% more accurate than both the ’N removed’ and ’N
ignored’ tests, as well as 0.01 seconds faster. In the K6 tests
’N included’ was the slowest and least accurate at 89.4% in
0.49 seconds. The ’N removed’ test was 0.1 seconds faster,
and resulted in an accuracy of 94.6%.

TABLE IV
ACCURACY AND TESTING TIME (IN SECONDS) FOR THE NN

CLASSIFIER.

NN K3 K6
’N included’ Accuracy 0.8054 0.8941

Test Time 0.25 0.49
’N removed’ Accuracy 0.7339 0.9456

Test Time 0.26 0.39
’N ignored’ Accuracy 0.7510 0.9427

Test Time 0.26 0.47

The results for the Linear SVM classifier are displayed
in Table V. At K3, the ’N removed’ performs the fastest
at 0.22 seconds, while ’N ignored’ produces the highest
accuracy at 57.9%. The K6 and K9 tests also have ’N

removed’ performing the fastest at 0.35 seconds and 0.62
seconds respectively. In the K6 and K9 tests, accuracies were
approximately the same across the ’N’ tests at approximately
93.8% and 97.3% respectively.

TABLE V
ACCURACY AND TESTING TIME (IN SECONDS) FOR THE LINEAR SVM

CLASSIFIER.

SVM K3 K6 K9
’N included’ Accuracy 0.5522 0.9385 0.9728

Test Time 0.24 0.36 0.73
’N removed’ Accuracy 0.5651 0.9385 0.9728

Test Time 0.22 0.35 0.62
’N ignored’ Accuracy 0.5793 0.9384 0.9728

Test Time 0.26 0.39 0.72

V. CONCLUSION
This research suggests that there is a balance between

the ’N’ approach taken and the k-mer length. A small k-
mer length (like K3) benefits from the extra information
that the ’N included’ feature vector provides, while a larger
k-mer length (like K9) benefits from the compact feature
vector offered from ’N removed’. Recall that the length of
the feature vector becomes exponentially larger as the k-mer
length increases, which can be calculated using Equation 1.

At K3, most of the tests had similar accuracies and speeds
within the respective classifiers; the NN classifier was the
exception with the ’N included’ test outperforming the other
two tests in both accuracy (80.54% versus ’N removed’
73.39% and ’N ignored’ 75.10%) and speed (0.25 seconds
versus 0.26 seconds in both ’N removed’ and ’N ignored’).
However, the K3 test’s best accuracy was from the Random
Forest’s ’N ignored’ test at 87.6% taking 0.28 seconds to
run.

At K6, most classifiers have an accuracy near or above
90% with the exception of the MNB classifier (accuracies
around 60%). Overall, the NN’s K6 ’N removed’ test per-
formed best at 94.5% in 0.39 seconds. In all K6 tests the
’N removed’ iteration performed at least 0.01 seconds faster
than the ’N included’ and ’N ignored’ tests, on the same
classifier.

The K9 tests all had accuracies above 94% where tests
could be conducted, recall that memory constraints limited
the NN to the K3 and K6 tests only. Using the Linear SVM,
accuracies were the same across all three tests, but like the
other tests at K9, the ’N removed’ iteration was at least
0.1 seconds faster than the ’N included’ and ’N ignored’
iterations.

Overall, the highest accuracy and speed combination was
from the K9 MNB ’N removed’ test, taking 0.61 seconds to
run 699 test genes and achieving a 99.1% accuracy.

REFERENCES

[1] K. B. Mohammed, S. V. Boyapati, M. D. Kandimalla, M. B. Kavati,
and S. Saleti, “A comparative analysis of the evolution of dna
sequencing techniques along with the accuracy prediction of a sample
dna sequence dataset using machine learning,” in 2023 2nd Interna-
tional Conference on Paradigm Shifts in Communications Embedded
Systems, Machine Learning and Signal Processing (PCEMS), pp. 1–5,
2023.

1047

[2] S. Juneja, A. Dhankhar, A. Juneja, and S. Bali, “An approach to dna
sequence classification through machine learning,” Aug 2022.

[3] S. Solis-Reyes, “Dna sequence classification: It’s easier than you
think: An open-source k-mer based machine learning tool for fast and
accurate classification of a variety of genomic datasets,” 2018.

[4] M. Uddin, M. K. Islam, M. R. Hassan, F. Jahan, and J. H. Baek, “A
fast and efficient algorithm for dna sequence similarity identification,”
Aug 2022.

[5] B. E. Blaisdell, “Effectiveness of measures requiring and not requiring
prior sequence alignment for estimating the dissimilarity of natural
sequences,” Dec 1989.

[6] C. Burge, A. M. Campbell, and S. Karlin, “Over- and under- repre-
sentation of short oligonucleotides in dna sequences.,” Feb 1992.

[7] E. Asgari, K. Garakani, A. C. McHardy, and M. R. K. Mofrad,
“MicroPheno: predicting environments and host phenotypes from 16S
rRNA gene sequencing using a k-mer based representation of shallow
sub-samples,” Bioinformatics, vol. 34, pp. i32–i42, 06 2018.

[8] P. Ng, “dna2vec: Consistent vector representations of variable-length
k-mers,” 2017.

[9] N. S. Chauhan, “DNA sequence dataset, v1,” 2020.
https://www.kaggle.com/datasets/nageshsingh/dna-sequence-dataset.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[11] Y. Yuan, L. Wu, and X. Zhang, “Gini-impurity index analysis,” IEEE
Transactions on Information Forensics and Security, vol. 16, pp.
3154–3169, 2021.

[12] T. Rumpf, A.-K. Mahlein, U. Steiner, E.-C. Oerke, H.-W. Dehne,
and L. Pluemer, “Early detection and classification of plant diseases
with support vector machines based on hyperspectral reflectance,”
Computers and Electronics in Agriculture, vol. 74, no. 1, pp. 91–99,
2010.

[13] A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes, “Multinomial
naive bayes for text categorization revisited,” in AI 2004: Advances

in Artificial Intelligence (G. I. Webb and X. Yu, eds.), (Berlin,
Heidelberg), pp. 488–499, Springer Berlin Heidelberg, 2005.

[14] A. C. Gay Thome, “Svm classifiers – concepts and applications to
character recognition,” Nov 2012.

[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019.

1048

