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Abstract—Early detection of neurodegenerative diseases can
be challenging, where Deep Learning (DL) techniques have
shown promise. Most DL techniques provide a robust and
accurate classification performance. However, due to the complex
architectures of the DL models, the classification results are
difficult to interpret, causing challenges for their adoption in the
healthcare industry. To facilitate this, the current work proposes
an effective and interpretable analysis pipeline that compares
the performances of pre-trained models for the early detection
of Alzheimer’s Disease (AD) and Parkinson’s Disease (PD). The
proposed pipeline allows tuning of hyperparameters, such as
batch size, number of epochs, and learning rates, to achieve
more robust and accurate classification. Additionally, validation
of predictions using heatmaps drawn from GradCAM are also
provided.

Index Terms—Deep Learning, Neurodegeneration, Alzheimer’s
Disease, Parkinson’s Disease, Explainability, GradCAM.

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurological disorder that
affects the brain and causes a gradual decline in cognitive
abilities, memory, and daily activities [1]. It is progressive and
irreversible, worsening over time and significantly impacting a
person’s quality of life. AD is characterised by abnormal pro-
tein deposits and tangled fibres in the brain, known as amyloid
plaques and neurofibrillary tangles, respectively. Symptoms
include memory loss, disorientation, difficulty with problem-
solving and planning, language problems, and changes in
mood and behaviour [2]. Parkinson’s disease (PD) is a pro-
gressive neurological disorder that mainly impacts movement
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and motor control [3]. It arises due to the loss of dopamine-
producing brain cells in the Substantia Nigra, a brain region
responsible for transmitting movement signals. As these cells
degenerate, individuals experience various motor symptoms
that gradually worsen over time. These symptoms include
tremors, bradykinesia (slow movement), muscle rigidity, and
postural instability [4] (see Figure 1).

AD and PD are major neurological conditions that have a
significant impact on global health and mortality rates. AD
is the most common cause of dementia and affects many
people worldwide, particularly older individuals. According
to the World Alzheimer’s Report 2022, there are currently 55
million people living with AD worldwide, which is predicted
to reach 78 million by 2030 [5]. PD doesn’t usually directly
cause death. However, it can lead to severe complications
that can contribute to mortality. For example, falls caused by
motor symptoms, difficulty swallowing leading to aspiration
pneumonia, and other related issues can increase the risk of
death in individuals with PD. The latest global estimates show
that PD led to 5.8 million disability-adjusted life years and
resulted in approximately 329,000 deaths [3].

As AD advances, the patients may lose their ability to carry
out daily activities like bathing, dressing, or cooking, making
them feel inadequate and dependent on others leading to
frustration, confusion, and helplessness [6]. As the disease pro-
gresses, AD patients may lose their sense of self and identity
as their memories, skills, and abilities gradually deteriorate.
In the final stages of AD, patients may need specialized end-
of-life care, which can pose additional challenges for families
and caregivers [7]. PD is primarily characterised by motor
symptoms such as tremors, muscle rigidity, slow movement,
and difficulty with balance. These symptoms can make ev-
eryday tasks challenging, leading to frustration and loss of
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Fig. 1. Healthy and Non-healthy brain structure for Alzheimer’s (Top) and
Parkinson (Bottom) diseases.

independence. PD can also cause non-motor symptoms such as
cognitive changes, depression, anxiety, sleep disturbances, and
gastrointestinal problems. These symptoms can significantly
impact patients’ overall well-being and quality of life. As
PD progresses, patients may experience emotional challenges
with speech and communication, including mood swings,
depression, anxiety, significant fatigue, and sleep disruption,
leading to helplessness and loss of autonomy. AD and PD
inflict significant suffering on patients and their families.
These chronic and progressive conditions lack a cure, but
early detection and treatment can help manage symptoms,
slow disease progression, and improve patients’ quality of life.
Detecting and diagnosing neurodegenerative disorders like AD
and PD can be significantly aided by Al tools [8].

Al and medical research continuously evolve, and newer
models may have emerged. For instance, convolutional neural
networks (CNN) architectures, like ResNet50, ResNet101,
ResNet152, InceptionV3, IncveptionResNetV2, and Efficient-
NetBO have been employed in medical image analysis tasks,
including AD and PD detection [9], [10]. Interesting effec-
tiveness in image classification tasks using InceptionV3 has
been observed. It is a strong candidate for medical image
analysis due to its efficient feature extraction, deep architecture
allowing learning of hierarchical data representations, and
reduced use of parameters.

There is a vast amount of literature on the detection and
management [11], [12] and modelling [13] of neurodegen-
erative diseases from neuroimages [2], [6], [7], [14]-[18],
brain signals [19]-[21], wearables [22]-[24], and clinical data
[25]-[27]. Many of the classification methods used for AD
and PD heavily relied on feature transfer learning (TL) and
CNN [28]. Ghazal et al. [29] introduced a new technique that
can be used to classify brain images obtained through MRI
scans into four categories for AD. Meanwhile, [30] conducted
a study that employed pre-trained weights from established
datasets and retrained the fully connected layer using only a

small number of MRI images. The results showed that this
approach could generate comparable or even better outcomes
than current deep-learning-based methods, despite using a
training dataset that is almost ten times smaller than popular
ones. Additionally, Aderghal et al. [31] investigated the use
of diffusion tensor imaging together with structural MRI to
study AD. By using this approach, overfitting is reduced and
learning performance is improved, resulting in more accurate
predictions.

Mehmood et al. [32] proposed a technique for detecting AD
at an early stage using MRI images and TL. They employed a
pre-trained CNN model and fine-tuned it to a smaller dataset
of MRI images, achieving an accuracy rate of more than 80%
on the test dataset. Similarly, in [33], the authors suggest
combining CNN and recurrent neural networks (RNN) to
analyze sequences of images for each subject. The authors
found that the features extracted from CNN when trained with
RNN, have significantly enhanced the system’s accuracy.

A study conducted by James et al. [34] suggests that
deep learning (DL) can be used to diagnose Parkinson’s
Disease (PD) using MRI and dopamine transporter scans.
Their approach involves analyzing and utilizing the knowledge
obtained by deep CNN and recurrent neural networks (RNN).
Another recent study [35] used various factors such as Rapid
Eye Movement, olfactory loss, and data on Cerebrospinal fluid
and dopaminergic imaging markers to create a deep learning
model. This model achieved an impressive average accuracy
rate of 96.45%, surpassing twelve other machine learning and
ensemble learning techniques.

Explainable AI (XAl is a set of features that interprets the
predictions from ML/DL models to get humans to trust and
use the system efficiently. We suggest referring to the cited
article for a comprehensive understanding of the concepts of
interpretability or XAI [17]. Despite the vast literature, the
interpretation and explainability of models’ workability lack
transparency, making their adoption difficult [36]. Addition-
ally, the affinity between the original input image and the
interpretation of predictions must be adequately discussed.

To address the aforementioned limitations, we propose a
thorough process for classifying AD/PD using pre-trained
DL models, namely, ResNet50, ResNet101, ResNetl152, In-
ceptionV3, InsceptionResNetV2, and EfficientNetB0. Addi-
tionally, the XAI tool, GradCAM, is used to validate the
results. GradCAM provides visual explanations or heatmaps
by highlighting the region of input images contributing most to
the model’s prediction [37]. We also used Pearson’s correlation
factor, which is a metric used to assess the measure of correla-
tion between the effectiveness of the heatmap in capturing the
features of an MRI image. It helps in highlighting the relevant
regions of interest for predicting the class accurately.

The paper is structured as follows: Section II describes the
proposed methodology, section III presents the results and their
analysis, while section IV concludes the paper.
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Fig. 2. A diagram depicting the proposed methodology.

II. PROPOSED METHODOLOGY

This study classifies AD and PD using pre-trained DL
models, such as ResNet50, ResNet101, ResNet152, Incep-
tionV3, InceptionResNetV2, and EfficientNetBO. The pro-
posed methodology comprises three key components as shown
in Fig. 2: 1) fine-tuning pre-trained models, 2) testing and
prediction with axial plane images, and 3) interpreting pre-
dictions. The aim of the experiment was to compare the
performance of these models and determine the most effective
one. Initially, we fine-tuned the pre-trained models for AD
by removing the top layer, keeping the rest of the network
frozen, and retaining the ImageNet weights. In the next step,
we obtained the last convolutional layer output and predictions
for the axial plane. Finally, we interpreted the final axial plane
results from the last convolutional layer using the GradCAM
technique [37]. Pearson’s correlation coefficient [38] was used
to measure the affinity between the heatmap and the original
MRI image.

A. Fine-Tuning Pre-trained Deep Neural Networks

The AD detection experiments using pre-trained models
employed transfer learning by removing the top layer while
keeping the rest of the network frozen with retained Im-
ageNet weights. The fine-tuning layer can be denoted as
DO(0.5) — Flatten — BN — 2048N — BN — DO(0.5) —
1024N — BN — DO(0.5) — 4N, where DO(z) represents a
dropout layer with a dropout probability of x, BN stands for
Batch Normalisation, and f N refers to a fully connected layer
with f neurons. The final output layer consists of four neurons
for the four AD classes and employs a softmax activation
function. For PD, we applied the same fine-tuning layer as
used for AD, except that the final output layer has two neurons
and utilizes a softmax activation function.

The non-pre-trained CNN architecture for AD consisted of:
16C2 — 16C2 — M P2 — 32C2 — 32C2 — 32C2 — M P2 —
64C2 — 16C1 — Flatten — 4N layers. Here, nCk refers to
the convolutional layer of n filters and k x k feature map,
M P2 refers to the max-pooling layer, and kN refers to the
output layer for k-way classification. A binary classification
was performed for PD from the NTUA dataset using a CNN
model as above except the output layer kN had neurons
suitable for binary classification (k = 2).

B. Magnetic Resonance Imaging and Preprocessing

This study used T1-weighted MRI data from two datasets:
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) for
AD and the National Technical University of Athens (NTUA)
for PD. The ADNI dataset contained MRI scans from in-
dividuals aged 50-65 across four categories and the axial
plane was used to obtain 1056 images— AD: 223, early
mild cognitive impairment (EMCI): 475, late mild cognitive
impairment (LMCI): 262, and cognitively normal (CN): 96.
The dataset was split into a 90:10 for the test:train ratio
(950:106). The NTUA dataset included binary labels based
on the severity of the disorder which were measured by the
Clinical Dementia Rating (CDR) score. A CDR score of
0.0 indicated no dementia, while a score of 1.0 indicated
PD. There were 1284 and 1422 images in the CDR-0 and
CDRI1.0 categories, respectively. The images had a dimension
of 128x128 and were split into a 70:30 train-test ratio.

The FMRIB Software Library toolset [9] was used in
preparing the raw MRI scans from ADNI. The preprocessing
consisted of four main steps: reorientation, registration, skull-
stripping, and histogram equalisation. These preprocessed im-
ages were then inputted to the proposed pipeline by transform-
ing them to three-dimensional (3D) images.

C. Interpreting Results with GradCAM

The pre-trained models were fine-tuned to predict the MRI
images from the axial plane only. To achieve this, a low
learning rate of 0.0001, Adam activation, and a batch size of
128 were used. The number of epochs was determined using
EarlyStopping (see Table I). The evaluation of the DL models
was based on three performance metrics: Accuracy, Sensitivity,
and Specificity [7]. We used Specificity to calculate the false-
positive rate (FPR) as 1-Specificity, and we used Sensitivity
to calculate the false-negative rate (FNR) as 1-Sensitivity.

To analyse the axial plane results of the last convolutional
layer, we use the GradCAM technique [37]. By utilising

TABLE I
HYPERPARAMETERS USED IN THE STUDY
Hyperparamter Value
Learning rate 0.0001
Activation Function Adam

Epochs 200
Callbacks EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
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TABLE II
RESULTS OF DL ALGORITHMS ON ADNI DATASET

Method Test Train Val Specificity ~ Sensitivity FNR FPR AUC
Acc Acc Acc
ResNet50 0.9890  0.9950  0.9989 0.9926 0.9803 0.0197  0.0074  0.9864
ResNet101 0.9620  0.9910 0.9911 0.9863 0.9695 0.0305 0.0137  0.9922
ResNet152 0.9809  0.9920 0.9924 0.9926 0.9803 0.0197  0.0074  0.9899
InceptionV3 0.9050  0.9990 0.9850 0.9682 0.9215 0.0785 0.0318 0.9912
InceptionResNetV2  0.9620  0.9980  0.9960 0.9841 0.9398 0.0602 0.0159 0.9917
EfficientNetBO 0.4380  0.6830  0.6907 0.7500 0.2500 0.7500  0.2500  0.5468
TABLE III
RESULTS OF DL ALGORITHMS ON NTUA DATASET
Method Test Train Val Specificity ~ Sensitivity FNR FPR AUC
Acc Acc Acc
ResNet50 0.9982  0.9999  0.9999 0.9961 1.0000 0.0000  0.0039  0.9999
ResNet101 0.9963  0.9999  0.9999 0.9961 0.9965 0.0035  0.0039  0.9999
ResNet152 0.9993  0.9999  0.9999 0.9992 0.9993 0.0007  0.0008  0.9999
InceptionV3 0.9804 0.9991 0.9981 0.9860 0.9754 0.0246  0.0140  0.9982
InceptionResNetV2  0.7868  0.8484  0.8852 0.6737 0.8888 0.1111  0.3263  0.8872
EfficientNetBO 0.9981  0.9979  0.9999 1.0000 0.9965 0.0035  0.0000  0.9999

gradient information from the final CNN layer, we generate
a heatmap that highlights crucial image regions and provides
explanations for predictions. This heatmap is then layered over
the input image, which helps explain the influential regions.
In the equation,

L&yaacan = ReLU <Zk ay 'Ak>, L%, .ac.ans Tepresents

the GradCAM heatmap, «j denotes the weights calculated
for each feature map A”, and the summation aggregates the
weighted feature maps for a target class c. To ensure the
heatmap only has positive values, the ReLU function is used.
The GradCAM technique can be summarized by this equation,
which helps identify the important regions in the input image
that contribute to the predicted class.
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Finally, we used the Pearson’s coefficient [38] to correlate
the heatmap with the original MRI image. The images were
resized and converted into 1D vectors represented by X and

Y and normalized using equations 1 and 2 where px and py
is the mean and ox and oy is the standard deviation. The
covariance of the normalized images is calculated using the
equation 3 where n is the number of elements in the vector
and X and Y are the means of X and Y, respectively. The
standard deviations ox and oy of the normalized vectors
X and Y are computed as shown in equations 4 and 5. To
determine the Pearson coefficient, we use Equation-6, and this
value can range between -1 and +1. If the value is negative,
it suggests a negative correlation. If the value is zero, it
shows no correlation. If the value is positive, it indicates a
positive correlation. The results and analysis section discusses
the results obtained from Pearson’s correlation analysis.

III. RESULTS AND DISCUSSION

In this section, we tabulated the performances of pre-
trained neural network models from the ImageNet challenge
(ResNet50, ResNetl101, ResNetl52, InceptionV3, Inception-
ResNetV2, and EfficientNetB0) for AD from the ADNI dataset
(Table II). Performance results from the selected neural net-
work models are also tabulated for PD patients from the NTUA
dataset (Table III). Table II shows that some models have
outperformed others. Specifically, for the ADNI dataset, the
ResNet50, ResNet101, InceptionV3, and InceptionResNetV?2
models achieved AUC scores exceeding 0.98. In the case of
the NTUA dataset, which dealt with binary classification for
PD patients, Table III indicates that many models obtained
AUC scores of over 0.99.

Figure 3 shows the confusion matrices for the four most ef-
fective algorithms in detecting AD from the ADNI dataset. The
InveptionV3 model was able to distinguish between MCI and
AD patients in the ADNI dataset with an accuracy of 95.6%
and 81.5%, respectively. In the NTUA dataset, the confusion
matrix for PD patients can be seen in Fig. 4. The ResNet50
model differentiated between non-PD and PD patients with
99.6% and 100% accuracy, respectively. Interpreting predic-
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Fig. 4. Confusion matrices for 4 pretrained models for the NTUA dataset.

tions will help to bridge the gap between trustworthiness
and accuracy. Towards this goal, further interpretation of this
model using GradCAM was performed using a non-pretrained
architecture mentioned in Section II-A. Interpretation helps
to distinguish between healthy and disease-inflicted patients
and is crucial for early detection and intervention to delay or
prevent the onset of the disease.

The results were explained by generating a heatmap using
the predictions from the last convolutional layer of the non-
pre-trained CNN model. Figure 5 shows the original MRI

Pearson’s
[ Original | Comsiaion

0.98929

0.98407

Fig. 5. Comparison between CN vs AD for original MRI image, heatmap,
overlays, and Pearson’s correlation coefficient for the axial plane.

image, GradCAM heatmap, and class overlays (CN vs. AD)
for the axial plane. The ’red’ regions in the overlays indi-
cate a strong connection to the predicted class. The axial
plane displays areas related to neurodegeneration, atrophy,
or abnormal metabolic activity in AD. By examining all the
heatmaps, clinicians can gain insights into the impact of AD-
related changes in the brain. For accurate results, the heatmaps
produced should undergo validation either with the assistance
of clinicians or through a ground truth heatmap.

In this experiment, we utilized Pearson’s correlation coef-
ficient to evaluate the correlation between the original MRI
image and its heatmap. Our findings show that the axial plane
demonstrated a strong positive correlation (refer to Figure 5).
This positive correlation indicates that regions with higher
intensity in the MRI image align closely with corresponding
regions in the heatmap. As a result, higher positive correlations
were observed for the predicted class. The Pearson correlation
coefficient helps us determine how well the heatmap captures
the MRI image’s features, effectively highlighting relevant
regions of interest for the predicted class.

IV. CONCLUSION

Our research involved analyzing six transfer learning algo-
rithms using datasets from two neurological disorders, ADNI
and NTUA. Our findings indicate that these algorithms can
greatly enhance classification performance. However, we ac-
knowledge that deep neural networks can be perceived as a
“black box” due to their complex decision-making processes
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[17]. We intend to investigate further and enhance the inter-
pretability of these models to develop more precise and reliable
automated diagnosis systems for neurodegenerative diseases.
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