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Abstract—In many medical applications data is a scarce
resource and can often only be obtained with invasive surgery.
This is for instance the case for physiological cardiovascular
data that is necessary to improve the functionality of assistive
heart devices. In this work we explore the viability of a GAN
architecture to generate cardiovascular data towards enriching
a data set obtained in animal testing on which training of future
applications can be improved which potentially reduces the need
for further animal testing. We evaluate the usefulness of our
synthesized data using a downstream task.

Index Terms—GAN, Data Generation, Data Enrichment, Med-
ical Application

I. INTRODUCTION

Due to the ongoing organ donor shortage for cardiac trans-
plantation, ventricular assist devices (VADs) have evolved
as therapeutical and/or supportive devices for patients with
terminal heart failure [1]. While VADs are generally applied
with a constant rotary speed in clinical practice [2], research
for developing and evaluating effective control algorithms
often requires invasive animal or human studies [3] and their
application in clinical practice is still hindered by e.g. the
necessity for invasive signal measurement. Hence, our goal is
training a generative model that is capable of generating useful
synthetic data based on a database of recorded cardiovascular
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signals from 25 animals. Therefore, reducing the need for
further animal testing.

In the last years, large generative deep learning models have
become ubiquitous in many domains, such as image and audio
applications [4]–[6]. With their drastically increasing perfor-
mance they aim to generate realistic new data samples, do
reconstruction or segmentation, which is applied successfully
e.g. in the medical domain [7]. Here, Generative Adversarial
Networks (GANs) [8] are the particularly prominent model
class and in the medical domain it is predominantly applied
to images [7]. In the present work, in contrast, we focus on the
cardiovascular system which is usually represented by signal
data over time.

Time series prediction with deep generative models deals
with data over time and utilizes typically one of three common
architectures: recurrent networks, (variants of) convolutions
over time or attention based models. We will focus on the first
two classes of models in the following. Examples for the first
architecture type include Autoregressive Denoising Diffusion
models [9], where a recurrent network aggregates the output of
a diffusion model in each time step and Recurrent Conditional
GANs [10], where LSTM nodes are used for the generator and
the discriminator models. An examples for convolution based
architectures is the WaveNet model [6] that utilizes dilated
causal convolutions and was successfully applied for raw audio
generation. There also do exist combinations of both architec-
tures: The ConvLSTM [11] and the Recurrent Convolutional
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TABLE I
DATA SET OF HEART DATA

Animals 25
Total Interventions 320

Intervention 1 167
Intervention 2 5
Intervention 3 113
Intervention 4 3
Intervention 5 32

Average Length 3m9s
Total Length 16h47m51s

Frequency 1000Hz

GAN [12] are geared for spatiotemporal data, but are not
applicable here because we don’t consider spatiotemporal data.
Recurrent Convolutional networks [13], [14] use recurrent
connections per layer for static inputs, while we have time-
dependent inputs. [14] is designed for text processing.

In our contribution, we evaluate a novel combination of
training convolution based GAN networks in a recurrent
fashion, that is particularly suited for our setting. We compare
our approach with two architectures from the literature and
evaluate the quality of our generated samples by investigating
in how far the performance on a downstream task can be
improved by adding synthetic data generated with our model.

II. FOUNDATIONS

In this section, we introduce the data set and core learning
approaches that we build upon in the present work.

A. Heart Data

The data set used for this work was obtained by animal
tests carried out at the University Hospital RWTH Aachen in
Germany where healthy pigs received VAD implantations [15],
[16]. A variety of physiological indicators of the heart were
measured while inducing different levels and kinds of varia-
tions on the cardiovascular system including preload, afterload
and contractility changes. We refer to the latter as different
interventions. The different stages of an intervention (setup,
ramp up, execution, ramp down, closing) are marked as phases.
We use only data from the setup and the execution phase for
training. The setup phase for giving a baseline of a resting
heart state and the execution phase for giving clear examples
of possible problems with the heart. In the following, we
utilize the data subset consisting of the pressure and volume in
the left ventricle, since these constitute promising candidates
for VAD control algorithms [15], [16]. Both of these signals
are also only available through invasive sensors, therefore,
synthetic generation is particularly interesting to potentially
avoid a more invasive procedure. Relevant characteristics on
the data set can be found in Table (I).

B. Generative Adversarial Networks

Introduced by Goodfellow et al in [8] GANs consist of two
competing neural networks, the generator G and discriminator
D. The goal of the generator is to create data that resembles

a given set. The role of the discriminator is to distinguish
between created and original data.

C. Pix2Pix

Isola and colleagues describe in [17] a conditional GAN
used for image to image translation where the generator creates
an image given an input image as the condition. The training
process was adapted so that the discriminator has to decide
whether an image was created based on a given input image.
During one training step, this is done for the created image
and the image from the original data set.

III. METHODS

In this section, we describe how we adapt and apply the
previously described material and approaches.

A. Data Format

We sub-sample the data from 1000Hz down to 50Hz since
this is the format one possible future application, the training
of a VAD controller, uses. We focus on generating two
cardiovascular signals which we also use as input for the
model: the volume and pressure in the left heart chamber, for
their physiological significance. But our method can be easily
expanded to generate more signals.

Since we utilize convolutional networks, we need to specify
the length of input time windows for intermediate predictions.
To specify a reasonable length, we make use of domain
knowledge: different breathing states affect the signals at hand,
hence the model should get a few heart beats as input in order
to be able to (implicitly) detect the current one. Accordingly,
we decide to employ input windows of length n = 100 (two
seconds) such that they include at least a couple of heartbeats.
Our goal is to predict longer sequences, where we consider
exemplarily a prediction length of o = 1000.

B. Training Goal and Augmentation

We define ŝi,...,j as a training sequence from our data set
from time step i to time step j. The goal of our model is to use
a starting window ŝ1,...,n of length n to generate a sequence
s1,...,o of length o that closely resembles the training sequence.
This means the first n steps of each sequence are the same:

ŝ1,...,n = s1,...,n (1)

For evaluation of a model we use the L1 error (|sn,...,o −
ŝn,...,o|) between the sequences from time step n to o.

Data augmentation is a common and often necessary ap-
proach for deep networks in order to make the training more
stable and to increase the performance. Typical data augmenta-
tion strategies from the image domain, such as e.g. flipping and
mirroring cannot be applied sensibly in our domain. However,
we make use of the following augmentation strategy: Due to
absolute time invariance of the data we can shift the input
signals. More precisely, for each input sequence of length
n = 100 (where the target is long enough) we generate n
input sequences by shifting the input sequence for one of
{1, ..., n} time steps. The according target has to be shifted
correspondingly.
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Fig. 1. Example of difficulty to differentiate between original (blue) and
generated (yellow) sequences on short prediction windows. Volume signal on
top, pressure below.

C. GAN Architecture

We employ the pix2pix learning setup as the model architec-
ture (see (II-C)) where instead of image-to-image translations
we aim to translate the start of a sequence to a prediction of
the next m steps. Therefore, the generator G of our model
calculates

G(ŝ1,...,n) = sn+1,...,m (2)

The discriminator D is evaluated for the following two inputs:
the input sequence of the generator ŝ1,...,n is concatenated with
the prediction to judge whether its a realistic sample:

D(ŝ1,...,n, sn+1,...,m) = Eg. (3)

Here, D is supposed to learn to output fake input. Also, the
actual continuance of the sequence from the training data is
used as input, as is usually done for GAN training

D(ŝ1,...,n, ŝn+1,...,m) = Er (4)

where Er is supposed to be mapped to real input. Eg is used
in conjunction with

EL1 = |sn+1,...,m − ŝn+1,...,m|, (5)

the L1 error between the generated and real sequence, as the
error signal for the generator G. Both Eg and Er are used as
the error signal for the discriminator D. The advantage of this
method is that the output sequence can be used as input (or as
a part of it) to create, in theory, infinitely long new sequences
by repeatedly applying the generator using

Gi(sim+1,...,n+im) = sn+im+1,...,n+(i+1)m (6)

The generator uses a U-Net architecture as proposed by [17]
utilizing skip connections between four encoding and decoding
layers. Of the four encoding layers, the first is a convolutional
layer over time and space and the next three only over time.
The latent space created by the encoding is of size 64 and
the intervention and phase (see (II-A)) of the sample is given
as additional input and attached to the middle layer before
decoding. This is done to potentially create samples that go
through different phases of one intervention or even through
multiple different interventions. The discriminator uses a patch
GAN architecture with four convolutional layers. Rectified

Fig. 2. Example of a sequence deteriorating after repeated applications.
Volume signal on top, pressure below.

Linear Units (ReLU) [18] are used as the activation function
and Adam [19] as optimizer. For the decoding layers of the
generator a dropout of 0.3 is applied.

D. Proposed Discriminator Adaptation

Since this architecture with a standard discriminator is not
capable of generating long realistic sequences by iterative
application of the generator, we suggest to adapt the discrimi-
nator as follows. The simple but effective core idea is to extend
the input of the discriminator from the single prediction of the
generator to its iterative application as denoted in equation
(6). More specifically, we apply the generator i times such
that later parts of the prediction can be evaluated by the
discriminator, therefore changing the error signals to

D(ŝ1,...,n, sn+1,...,n+im) = Eg (7)

D(ŝ1,...,n, ŝn+1,...,n+im) = Er (8)

IV. EXPERIMENTS

In our experiments, we first analyze the performance of a
classic GAN approach with iterative application of the genera-
tor and demonstrate that the performance of the discriminator
is a problem. Consequently, we evaluate our proposed training
scheme with various hyperparameter settings and show a
strong improvement. Subsequently, we investigate in how far
the generated samples can help improve a downstream task
by augmenting underrepresented classes and compare this
approach to a baseline for data augmentation. Finally, we
conduct a qualitative sanity check of our generative model
with the use of dimensionality reduction. Training of the GAN
model was done using Tensorflow 2.0 [20].

A. Initial Experiments

In our initial experiments we observe that the model be-
comes capable predicting the sequence very accurately for a
single application of the discriminator: In Fig. (1) it can be
seen that for short prediction windows it is barely possible
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Fig. 3. Example of fully generated sequence (yellow) compared to the original (blue).

to distinguish between the real (in blue) and the generated
(in yellow) sample. This is also evident by a very low clas-
sification accuracy of 59.31% for the discriminator even after
further stand alone training of the discriminator. Additionally,
with repeated application of the generator, the signal often
deteriorates which is shown exemplarily in Fig. (2).

Therefore, we adapt the training of the GAN, more precisely
the discriminator, as previously described (see III-D).

In our experiments, we first analyze the performance of a
classic GAN approach with iterative application of the genera-
tor and demonstrate that the performance of the discriminator
is a problem. Consequently, we evaluate our proposed training
scheme with various hyperparameter settings and show a
strong improvement. Subsequently, we investigate in how far
the generated samples can help improve a downstream task
by augmenting underrepresented classes and compare this
approach to a baseline for data augmentation. Finally, we
conduct a qualitative sanity check of our generative model
with the use of dimensionality reduction.

B. Initial Experiments

In our initial experiments we observe that the model be-
comes capable predicting the sequence very accurately for a
single application of the discriminator: In Fig. (1) it can be
seen that for short prediction windows it is barely possible

TABLE II
BASELINE TEST RESULTS (o = 200)

Model L1 Error
GAN adapted 51.95

LSTM 138.3

to distinguish between the real (in blue) and the generated
(in yellow) sample. This is also evident by a very low clas-
sification accuracy of 59.31% for the discriminator even after
further stand alone training of the discriminator. Additionally,
with repeated application of the generator, the signal often
deteriorates which is shown exemplarily in Fig. (2).

Therefore, we adapt the training of the GAN, more precisely
the discriminator, as previously described (see (III-D)).

C. Discriminator Adaptation Results

Firstly, we evaluate the L1 error on a smaller prediction
window (of length 200) of our model against a LSTM model
as a baseline comparison to estimate viability of our method.
Table (II) shows that our model achieves a significantly lower
reconstruction error on the signal compared to the baseline.
Therefore, we decided to optimize and evaluate our model for
longer prediction lengths.

This evaluation of our model is done for different step
lengths m and different reccurence levels i. The results of
our experiment with this adaptation can be seen in Table (III).

TABLE III
DISCRIMINATOR ADAPTATION RESULTS: o = 200 TOP, AND o = 1000

BOTTOM.

Step Length m Recurrence Level i L1 Error
GAN

L1 Error
No Eg

10 9 672.18 841.91
25 9 287.57 464.39
50 9 300.29 470.31

100 9 304.11 479.66
10 20 270.22 443.71
25 20 280.58 467.11
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Fig. 4. Visualization of the latent space of one of the initial models (m = 25)
colored by Intervention.

we can see that results generally improve for shorter predic-
tion windows unless the recurrence level is not deep enough.
The best result was achieved with short prediction length and
deep recurrence. The last column shows the error when the
model was trained without the generator error where we see a
significant drop in performance. Therefore, we conclude that
the GAN part helps to train the model. One example of a fully
generated sequence can be seen in Fig. (3).

D. Validation via Class Balancing

As mentioned before our goal is not just to create a one-to-
one reconstruction of our original data set but to meaningfully
enrich it with generated data to improve possible further
learning tasks. As an example of such a task we train a
random forest classifier (RFC) on the original data set to
classify which intervention the sequence belongs to. We use
the implementation provided in scikit-learn [21]. The class
wise accuracies of the RFC trained on only original data can
be seen in Tab. (IV).

We can see that accuracies for classes two and four are
very poor. This is due to them being underrepresented in
the data compared to the bigger classes one, three, and five
(see Table (I) for the details). We apply SMOTE [22] as
a common method for balancing data by up sampling the
two minority classes and down sampling the bigger classes.
We compare those results to a classifier trained on data that
was augmented to the same ratios as SMOTE by our GAN

TABLE IV
RFC RESULTS TRAINED ON THE ORIGINAL DATA SET, DATA AUGMENTED

WITH OUR GAN METHOD, AND DATA AUGMENTED BY SMOTE.

Class Original Data GAN SMOTE
1 89.84 ± 1.14 89.53 ± 1.14 85.84 ± 1.38
2 0.67 ± 2.11 86.95 ± 7.96 79.76 ± 1.35
3 93.34 ± 0.98 91.92 ± 1.01 89.65 ± 1.78
4 32.84 ± 8.85 100.0 ± 0 95.66 ± 1.83
5 90.14 ± 0.76 90.19 ± 1.21 84.17 ± 1.32

Overall 89.72 ± 0.84 90.67 ± 0.47 85.69 ± 0.73
Average 61.37 ± 1.98 91.72 ± 1.5 87.02 ± 2.41

Fig. 5. Visualization of the latent space of one of a model with discriminator
adaptation (m = 25, i = 20) colored by Intervention.

approach by predicting windows of the smaller classes into
the future and using those as part of the class for training.
Tab. (IV) shows the accuracy of the classifiers trained on the
different data sets and evaluated on a test set of only original
data. We see a significant improvement with data enhanced
by our method for the imbalanced classes two and four while
maintaining similar accuracies for the other classes and overall
classification accuracy. Our method also outperforms data
balanced by SMOTE across the board, with the Wilcoxon
rank-sum test showing a significance p < 0.01.

E. Latent Space Visualization

If we consider the activations in the bottleneck layer of
our generator as a latent representation and visualize it using
dimensionality reduction via tSNE [23] we can further see
the improvements of the proposed discriminator adaption in
regards to the intervention classification. Visualizing the latent
space of the model with the discriminator adaptation we
see a clearer structure and separation between the different
interventions.

V. CONCLUSION

In this work we introduce a method to utilize a neural net-
work using a GAN architecture to predict sequence data. We
show that the generated data can be used to enrich the original
data to improve the accuracy of classification problems. We
think this shows viability of this method to improve further
learning tasks specifically in the medical applications of train-
ing controller for VAD devices. Investigation of the model’s
functionality, i.e. by plotting classification boundaries [24], can
be done to further optimize and improve performance.
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