
Multi-Agent Pathfinding with Obstacle Movement
for Realistic Virtual Tactical Simulations on

Topographic Terrains
Luigi Perotti Souza∗, Edison Pignaton de Freitas†, Raul Ceretta Nunes∗, Luis A. L. Silva∗

∗Federal University of Santa Maria, Brazil
{lpsouza, ceretta, luisalvaro}@inf.ufsm.br

‡Federal University of Rio Grande do Sul, Brazil
edison.pignaton@inf.ufrgs.br

Abstract—Multi-Agent Pathfinding (MAPF) algorithms repre-
sent a powerful tool for modeling realistic tactical movements of
troops in military simulation systems. Solving MAPF problems
while dealing with topographic terrains involves computing the
most cost-effective and safe relief routes for agents with move-
ment constraints. To minimize the overall topographic cost of
agents’ movement and the need to deviate from other stationary
agents, this work considers a MAPF approach that respects
real-world agents’ movement characteristics, such as the agents’
orientation, the limits of the agents’ turning angles, and the
relief inclinations they can safely navigate. To solve conflicts
between agents while navigating uneven terrains, the proposed
approach explores the attribution of agents’ movement priorities
related to the need to execute given missions. Most importantly,
other agents without planned movement at the current mission
situation, as they are stationary on safe and low-cost routes
according to the terrain relief, are minimally displaced to nearby
locations to give passage to the mission-critical agents. The MAPF
algorithm is evaluated on a comprehensive set of test scenar-
ios, with results analyzed using Generalized Linear Regression
models. This analysis provides valuable insights into the MAPF
algorithm’s effectiveness in virtually modeling organized agent
movement behaviors for developing simulation-based training
and instruction activities.

Index Terms—Tactical Agent Movement; Topographic
Pathfinding; Multi-Agent Pathfinding; Agent-Based Simulation.

I. INTRODUCTION

Multi-Agent Pathfinding (MAPF) algorithms are crucial to
address agent navigation problems in Agent-Based Simulation
Systems [1]. MAPF is dedicated to finding paths for agents
to reach their goals while reducing path costs and avoiding
agent collisions. To create more immersive experiences for
simulation-based training and instruction activities, enhanced
MAPF approaches for tactical simulation purposes can be
investigated. These advancements entail the exploration of in-
creasingly realistic agents and virtual terrain scenarios. Hence,
achieving fidelity between the modeled virtual agent behaviors
and those observed in the real world becomes critical.

Many defense simulation systems present requirements for
military units’ behaviors modeled as Multi-Agent Systems,

particularly regarding the doctrine-based coordinated move-
ment of these agents in the virtual environments. In the Artifi-
cial Intelligence (AI) literature, whenever MAPF algorithms
are properly adjusted to the modeling of such simulation
system needs, they effectively resolve tactical and strategic
agent navigation problems. For instance, this is the case
of agents’ navigation capabilities implemented in simulation
systems that permit users to plan and execute tactical missions
involving terrestrial military vehicles [2], [3]. Systems like
these require that the combined movement of the simulated
vehicles be as realistic as possible to show the users how
tactical missions would be executed in the real world.

The problem is that most MAPF algorithms proposed in the
AI literature, such as [4]–[6], still superficially consider, or
even neglect, the computation of low-cost and topographically
safe routes in terrains with uneven relief. Fig. 1 illustrates
a common real-world problem where originally static agents
(with no pre-planned movements in the current mission sit-
uation) are located at terrain positions that obstruct the use
of more direct routes for other agents that, due to the need
of attributed missions, have higher movement priorities. Such
clearance of low-cost terrain relief corridors is still more
important when mission agents are forced to navigate rough
terrain regions because they must deviate from the static
agents. As depicted in Fig. 1, the need is to determine whether
the movement of the stationary agents is fundamental to
the search for higher-quality tactical routes for agents with
increased military value according to the mission situation. In
simulation systems that consider real-world maps to model the
virtual environment, such as those used in military training,
solving this kind of tactical navigation problem is crucial.

This work proposes a novel MAPF approach for computing
more direct and realistic routes for agents in terrains with
uneven topography. The approach considers that the modeled
agents have limited movement capabilities due to the steep
terrain inclinations, the agents’ orientation (direction), and the
maximum angles for executing curves. Most importantly, the
proposed MAPF algorithm addresses scenarios where other

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 814

(a) (b)

(c) (d)

Fig. 1: MAPF for a problem with task agents a1 and a2
moving towards goals g1 and g2, considering obstacles on
the map. (1a) presents a support agent a3 as an obstacle in
the planned path. This agent is stopped in a potential low-
cost and topographically safe route that could be used to
compute another agent’s path. (1b) shows that the agent with
no originally planned movement a3 frees up terrain regions
to compute a more direct route for other agents with higher
movement priority. (1c) presents a better path blocked by
agents a3 and a4. Due to their movement priority, the agents
obstructing the passage of others do not release the route on
the terrain relief. In contrast, (1d) presents a situation where
a more direct path is calculated where the movement priority
of agent a1 is higher than that of agent a2.

stationary agents (called support agents) are taken as (mobile)
obstacles to the safe and low-cost topographic movement of
the agents (called task agents) executing given military mis-
sions. As investigated through different experiments, whenever
the overall movement density - a metric that considers the
number of movement stops and curves resulting from the
planned routes of the MAPF algorithm - associated with mov-
ing such static agents is better than that of avoiding them, the
algorithm computes topographic routes by searching additional
displacement routes for these support agents. With a statistical
model of Generalized Linear Regression [7], the efficiency
of the proposed MAPF solution for agent-based simulation is
analyzed, providing evidence of its benefits compared to cases
in which the obstacles impair the computation of more realistic
and, therefore, higher-quality tactical route solutions.

II. BACKGROUND TO THIS WORK

MAPF is a computationally complex problem, classified
as NP-Complete [8] for optimal solutions. Consequently, its
resolution needs ongoing research into implementing and
refining novel strategies that yield computationally efficient

solutions. Such MAPF problems can be formulated as graph
search problems, which correspond to the tuple [9]:

⟨G,A,∅,Vstart,Vgoal⟩

such that G = (V, E) is a graph, V is the set of terrain nodes
and E is the set of edges that represent the allowed movements
between these nodes, A = {a1, a2, ..., an} is the set of agents,
Vstart = {s1, s2, ..., sn} and Vgoal = {g1, g2, ..., gn} are the
sets of start and goal agent locations, and ∅ = {c1, c2, ..., ck}
is the set of movement constraints.

According to [6], an action is a function a : V → V where
a(v) = v′ indicates that when an agent performs an action on
a vertex v, the result of this action is v′. The objective of each
agent is to find a set of actions a forming a path pi such that:
the path is collision-free, meaning two agents cannot occupy
the same vertex at the same time; the paths found for each
agent are optimal or sub-optimal, ensuring that the distance
traveled by each agent is minimized.

As investigated in many application scenarios, the Conflict-
Based Search (CBS) [10] algorithm can effectively solve
complex MAPF problems. It is organized in two phases: i)
the high-level search to minimize the sum of the costs of
the agents’ paths, considering possible conflicts between them,
and ii) the resolution of the conflicts found at the global level,
making adjustments in the agents’ paths.

The CBS high-level search uses a search tree to generate
candidate solutions, identifying possible conflicts between the
agents’ paths and storing this information on each node of
the search tree. At each algorithm iteration, the node with the
lowest total cost is selected. Then the children of this node are
expanded if there is a conflict in the calculated paths, applying
a constraint to avoid agents’ conflicts. A conflict is represented
by the tuple ⟨A, v, t⟩, A being the conflicting agents occupying
a vertex v at time t. If no conflicts exist on the current node,
it is selected as the problem solution.

The CBS low-level search aims to resolve the previously
identified conflicts. To do this, the search tree is traversed
again, and each conflict is resolved through a spatio-temporal
reservation technique. This technique adjusts the start or finish
time of an agent’s task. These conflicts can be of the vertex
type: agents cannot occupy the same vertex at the same time,
or edge type: agents cannot occupy the same edge at the
same time. Constraints are added to the tree nodes, and the
algorithm checks whether they are satisfied before expanding
a node. A constraint ⟨i, v, t⟩ corresponds to an impediment of
the agent ai from occupying the vertex v at time t. This low-
level resolution step is developed by adapting a single-agent
pathfinding algorithm, such as A∗.

The work in [11] discusses a path search approach where
the A∗ algorithm uses an agent prioritization ranking in the
search. That is relevant when dealing with the modeling of
MAPF problems where agents have different responsibilities
in the executed simulations. Instead of planning the path of
all agents simultaneously, this strategy applies the concept of
Cooperative Pathfinding [12], which calculates the path of each

815

agent according to a defined priority. In doing so, the vertices
and edges of each agent’s path are added to a reservation table.
Then, the next agent’s path is calculated to avoid colliding
with the reserved nodes. This algorithm is extremely efficient
in calculating the agents’ paths because it does not need to
recalculate several paths in each collision.

The work in [13] investigates the navigation behavior of
car-like robots. In particular, it considers the size of such
agents and their movement limitations based on the axis and
rotation of the vehicle wheels, therefore limiting the movement
according to the agent’s position and direction within the
environment. Considering the kinematic and spatio-temporal
constraints of such agents, the CL-MAPF algorithm optimizes
the paths of the various agents while moving in a shared
environment with obstacles and dynamic changes. Moreover,
its CBS algorithm uses a Hybrid-State A* planner for the low-
level solution, restricting occupied areas in a continuous time
according to the speed, size, and rotation of the agent to terrain
areas in the discrete-time t.

The work presented in [14] and [9] investigates the concept
of dynamic terrain configuration in MAPF, which refers to
strategies that modify the terrain structure to improve the
agents’ navigation. With such a terraforming, environment
configurations can be defined as states of a graph, where a
family of G = {G1, G2, ..., Gn} represents all possible graphs
of a specific environment. Each configuration may represent,
for instance, different positions of obstacles on the terrain.
To identify potential route improvements for agents, the ter-
raforming approach suggests that these improvements may be
related to the changes computed in the environment configu-
ration. This implies a series of graphs where the configuration
graphs represent the vertices, and the route improvements are
the edges. For graphs that can be dynamically configured, the
work in [9] investigates the presence of mobile obstacles and
changing agents. These changing agents are responsible for
configuring the mobile obstacles on the terrain according to
the current movement needs of the considered agents.

To sum up, the terraforming-like concept analyzed in this
work involves considering that obstacles have their own move-
ment capabilities. This is the case for vehicles parked on
the terrain (support agents) that perform minimal movements
to enable other agents (task agents) with higher movement
priorities to use optimized paths. Thus, this concept is relevant
to modeling realistic paths for the tactical movement of
simulated forces, provided that the devised MAPF method is
properly augmented to fulfill the needs of the targeted agent-
based simulations. Moreover, this work is motivated by CL-
MAPF [13] as it aims to simulate the movement of car-like
agents, where this research is particularly focused on agents
that have to safely navigate in terrains with topography [15].

III. A MAPF APPROACH WITH SUPPORT AGENTS’
NAVIGATION

The research problem investigated in this work is the realis-
tic tactical movement of mission-critical agents in topographic
terrains. It means that the simulated agents should execute

navigation behaviors as closely as possible to the real-world
agents’ behaviors. This is fundamental for simulation-based
training and instruction activities to effectively provide human
learners with experiences that can be leveraged in solving
similar real-world problems.

In virtual environments used in military simulation sys-
tems, agents representing modeled vehicles assess the terrain
relief and navigate on its safe and low-cost routes while
executing planned tactical activities [2], [3]. When agents
are located at specific tactical positions and need to occupy
other positions, they ought to exhibit an organized movement.
One of the challenges in scenarios where the vehicles are
deployed to tactical positions is that these positions are located
between terrain areas with rough terrain relief. Moreover, other
modeled agents are often displaced along with these terrain
positions. Despite the presence of these stationary agents on
low-cost corridor routes of the terrain, which can be considered
static obstacles for the agents that need to move to complete a
given mission safely, the navigation behaviors executed by all
agents should explore route choices that would be observed in
the represented real-world scenarios.

In many simulation problems where the space for the
topographic agent movement is limited, such as within tactical
positions in military operations executed in hilly terrains, cer-
tain agents end up performing more frequent stop-and-go and
winding navigation behaviors. These attempts to stop, start,
and change direction end up causing more congestion in the
tactical area, leading to chaotic movement patterns. In extreme
situations, this unrealistic tangled, messy movement scenario
resembles a ”spaghetti”. Therefore, this work approaches the
planning of agent routes to avoid the ”spaghetti” behaviors
in virtual simulations. Furthermore, it does that considering
that the pathfinding models the simulated vehicles’ movement
characteristics besides realistic terrain conditions.

A. Topographic Terrain Selection and Agents’ Behavior

The elevation map in Fig. 2a (available at [16]) was selected
to develop this work. It is represented as a square matrix
in which each position stores a height value. The terrain
selection considers the histogram formed from the elevation
angles of the terrain, aiming for a normal distribution graph. A
histogram with low values referring to the inclination angles
would result in a flat terrain with few natural obstacles to test
the agents’ limits. On the other hand, very high slope angles
would result in various path corridors throughout the terrain,
limiting the freedom of movement for the agents.

To navigate on terrains with topography, the selected maps
represent the navigation costs, which are based on the terrain
resolution. This information is used when calculating the
distance between two adjacent nodes on the terrain during
path planning. The movement between nodes representing the
terrain respects the terrain’s movement restrictions and the
distance cost between them. As described in Fig. 3, each agent
moves on the navigation map according to its orientation (N,
S, E, and W), where perpendicular movement to the agents’
orientation is not allowed.

816

(a) (b) (c)

Fig. 2: The chosen terrain has a resolution of 3,000 × 3,000 pixels. Each pixel corresponds to a rectangular area of 3×3 squared
meters in the real-world terrain, totaling an area of 81 km2. (a) Map visualization. (b) 3D representation of the selected terrain
slice. (c) Histogram showing the distribution of elevations in the terrain slice used in the tests conducted in this study.

(a) (b)

(c)

Fig. 3: Constraints and minimal movement of agents. (a) Agent
movement according to the direction they are oriented (N, S,
E, and W) while respecting the maximum curve angles of the
agents. (b) Minimal movement of support agents (obstacle) o.
(c) Support agent o clears up a path for task agent a1.

Considering an elevation map of the terrain, the navigation
restriction between the vertices of the navigation graph is de-
termined by the agents’ movement capabilities while moving
through the relief elevations. The elevation map is represented
as a three-dimensional matrix (x, y, z), where each (x, z) pair
of coordinates has a height y to be used in the local g(n) and
heuristic h(n) (in this work, the Euclidean distance function
in the R3) path cost calculations of the A∗ cost function
f(n) = g(n) + h(n). As described in [17], the navigation
cost between two vertices can be computed as presented in
Fig. 4a, where g(n) is given by (1):

g(x) =
√
d2 +∆h2 (1)

(a) (b)

Fig. 4: Example of movement limitation defined by d = 1
and αmax = 45◦. The agent a1 is unable to move between
vertices where ∆h is greater than 1.0, causing the agent to
take a longer path on the map. (a) Movement cost between
two vertices. (b) Route of agent a1 to the destination g1 given
the terrain heights h represented at each vertex.

In Fig. 4a, d indicates the distance between each vertex
node, determined by the resolution of the elevation map, and
∆h is the difference between the heights of vertices vi and
vi+1. For an agent to navigate between two nodes vi and
vi+1, the angle formed by −−−→vivi+1 and the x-axis must be less
than or equal to αmax, as shown in Fig. 4b. In this work,
ascending and descending a terrain inclination have the same
topographical cost, causing the same effect in a route.

B. A Two-Step MAPF Solution

The steps for defining agent priorities and executing the
MAPF algorithm depend on the attributed missions that one
or more agents must execute in the simulations. Once the
movement agent limitations are defined, the MAPF algorithm
computes collision-free paths for the agents on the topographic
terrain. It involves (i) the calculation of the route for task
agents and (ii) the calculation of the route for support agents,
as detailed in Algorithm (2).

817

First, the MAPF approach proposed in this work explores
the Cooperative Search [11], [12] to compute paths for the
task agents. That is because this algorithm internally uses
priority information in its agent path computations. Moreover,
paths in terrains with topography are often computed within
path corridors determined by the terrain relief. Due to the
need for computing routes where high-priority agents execute
an organized movement behavior through these corridors,
tests developed in this work showed the Cooperative Search
algorithm is the best choice.

Second, the proposed approach also explores the Conflict-
Based Search (CBS) method [10] to solve conflicts between
paths computed to support agents. That is because multiple
support agents may need to move from their current stationary
positions to allow the Cooperative Pathfinding method to
determine more direct routes for task agents. While multiple
support agents need to move, the CBS method solves the
conflicts between the returned paths. Algorithm 1 demonstrates
how paths are calculated for support agents that uncondition-
ally avoid task agents.

Algorithm 1 Avoidance Method
1: pos← Agent.position
2: pos.t← 0
3: OPEN ← pos
4: while OPEN not empty do
5: pos← best node from OPEN
6: if has constraints for pos then
7: Path get path using pos.parent
8: return Path
9: end if

10: for ni ∈ pos.Neighboors do
11: if ni not visited in time t then
12: Insert ⟨ni, pos.t+ 1⟩ into OPEN
13: end if
14: end for
15: end while

Algorithm 2 MAPF Mobile Agents Method
1: Solutions← ∅
2: ReservationTable← ∅
3: TaskAgents← selectTaskAgents(Agents)
4: according to TargetMission
5: while TaskAgents is not empty do
6: taskAgenti ← removeHighPriority(TaskAgents)
7: taskAgenti.Constraints← ReservationTable
8: taskAgenti.Path←
9: PathAvoidingReservation(taskAgenti)

10: ReservationTable←
11: ReservationTable+ taskAgenti.Path
12: Insert taskAgenti to Solutions
13: end while
14: MobileAgents← selectMobileAgents(Agents)
15: according to TargetMission
16: MobileAgents.Paths←
17: ConflictBasedSearch(MobileAgents)
18: using Avoidance() with ReservationTable
19: Insert MobileAgents to Solutions
20: return Solutions

1) Movements Constraints and Spatio-Temporal A∗: As
shown in Fig. 3a, the agents have limited movement ca-
pabilities based on their orientations, making perpendicular
movements to their orientation impossible. All task and sup-
port agents have the same movement constraints determined
by the terrain inclinations. This study defines the maximum
inclination an agent can use when moving at 20°. This angle
was established after conducting tests on the terrain in Fig. 2a.

The movement possibilities for agents used in the de-
velopment of this work, as shown in Fig. 3, are (i) move
forward, maintain the current direction; (ii) move left, maintain
the current direction; (iii) move right, maintain the current
direction; (iv) move left, turn 90° to the left; and (v) move
right, turn 90° to the right. The agent can turn without
changing its geographic direction, or it can turn and change its
orientation based on the side of the curve (turning left involves
a 90° left turn while turning right involves a 90° right turn).
This implementation represents a “lane change” and a “closed
curve”. For the spatio-temporal A∗ algorithm, in addition to
the movement characteristics described above, a “Wait” action
was considered in the implementations conducted in this work.

In this case, an agent can occupy the same vertex more
than once by taking the “Wait” action. The problem is that a
wrong choice of heuristic to use in the MAPF algorithm can
result in excessive path repetition, as the Euclidean distance
may lead to routes with vertices spatially closer to the goal
but without direct paths to it. As observed in this work, the
MAPF algorithm will tend to visit the neighboring vertex of an
agent due to their shorter Euclidean distance to the destination,
causing them to be revisited multiple times when the agent
can remain stationary. This results in unnecessary repetition
of already visited nodes. To address this issue, the concept of
True Heuristic Distance [18] was implemented in this work. In
it, the A∗ algorithm is executed in reverse order, starting from
the goal towards the visited vertex. This enables the storage
of the cost of each visited node in a separate table. Whenever
the A∗ needs to check the distance from a node to the goal,
it verifies if this distance is already present in the table.

2) Moving the Task Agents: The MAPF approach investi-
gated in this work initially computes a solution for each task
agent using the Cooperative Search algorithm [12]. This algo-
rithm implements a prioritized search, executed individually
for each agent. The search is based on a pre-defined ordering
of the agents, where higher priorities are attributed to agents
that must execute a given mission in the current simulations.

Due to the need to model convoy moment behaviors, which
is quite common in the modeling of movement of forces in tac-
tical simulation scenarios, the agent with the highest priority is
the one occupying the front position of the convoy formation,
meaning there should be no other agents in front of it. The
priority order must follow these criteria since a vehicle with
higher priority naturally passes through the positions of lower-
priority ones to reach its deployment location. During the
initial calculation of the paths for task agents, the positions of
support agents are disregarded. Task agents are not responsible
for avoiding collisions unless they are with other task agents of

818

higher priority. As a result, support agents are not considered
in this stage of MAPF computation.

3) Moving the Support Agents: The CBS method is applied
at a later path search stage to solve path conflicts among
support agents. It is adapted to solve path conflicts between
support agents scattered throughout the terrain, where these
agents do not have predefined goal positions within the
current mission simulations. This allows the agents to have
the freedom to search for alternative paths to evade conflicts.
Since support agents do not have a defined order of movement
priority, adapting the Cooperative Search algorithm to handle
these conflicts has shown to be unrealistic and sometimes
inefficient. That is because an inappropriate ordering of these
agents leads to costly paths to avoid unrealistic conflicts.

In essence, once the path for each past agent is calculated
and stored in the Reservation Table, this table holds predefined
terrain obstructions for paths that can be computed for the
support agents. A support agent must avoid colliding with
a task agent without interfering with the latter’s trajectory.
As implemented in this work, support agents unconditionally
deviate from task agents, as they cannot occupy any vertex v
that is reserved in the table for a time step t. To solve potential
collisions among support agents, therefore, the CBS algorithm,
along with the Avoidance() function in Algorithm (1), is used.

The Avoidance() function executes a low-level search: the
step in which conflicts between previously computed paths are
resolved. Since the position of the support agent is irrelevant
to the solution, and it only matters whenever it clears a
path for another task agent, this function implements the A∗

algorithm without defined goals. It means that the algorithm
searches for a path until it finds a vertex without defined
restrictions, i.e., a vertex that no other agent will visit when
the concerned support agent occupies it. The final position of
the support agent in this search process does not matter in
the performed simulations. The agent also does not need to
return to the initial position since it originally cleared up a
low-cost route with decreased topographic costs between the
considered tactical positions.

In the conflict resolution step, therefore, the initial node
of the constructed search tree receives the entire Reservation
Table described earlier. Thus, it used this table as a movement
constraint in the latter MAPF computations. Once it is applied
to the initial node, all agent positions and conflict expansions
will have the positions of task agents along their trajectories
represented as movement restrictions.

In summary, the CBS is based on applying the Avoidance()
function as the Low-Level Search for the MAPF. Despite the
reduction of the conflicts between support agents achieved
by the CBS, the time-saving computations obtained in the
first stage of the proposed MAPF approach by ignoring the
obstacles become indifferent when combined with the cost of
conflict resolution among support agents.

IV. EXPERIMENTS AND RESULTS

The experiments conducted in this work evaluate the impact
of support agents’ movement to enable the computation of

more direct paths for task agents, thereby improving path
quality for mission-critical agents. The tests compare two path
planning methods: a) a MAPF method considering support
agents/obstacles that task agents must deviate, and b) a MAPF
method considering support agents that must clear paths for
task agents. The methods consider the movement restrictions
in Fig. 3a, which include the ability to move with terrain
inclinations less than 20° .

The set of task agents was associated with identical move-
ment priorities and other movement capabilities. Each agent’s
initial positions and orientations were randomly generated
within specific quadrants on the terrain. Similarly, the destina-
tion positions of the agents were also randomly generated in
another quadrant. Using these predefined terrain areas, which
represent initial and final tactical positions associated with a
given mission, the computed paths for the agents resulted in
different degrees of conflict among them. Therefore, the tests
aimed to examine the quality of the resulting paths.

In the test executions, once the tested Cooperative Search
algorithm calculates the individual path for each task agent,
the stationary (but mobile) support agents are placed on the
terrain. Each support agent oi is positioned in such a way that
oi ∈ Πi, where Πi represents the pre-computed path of a task
agent. Consequently, n positioned support agents will obstruct
the route of n other task agents, either needing the movement
of these obstacles to clear up the route of such task agents or
requiring the computation of task agents’ routes that deviate
from the stationary support agents.

To assess the impact of adding obstacles to the previously
computed task agents’ paths, the tests conducted in this work
considered setups with 15, 30, 45, and 60 task agents with
15 obstacles along their paths. The distances between the task
agents’ starting and ending tactical positions were reduced,
and the support agents were placed closer to the task agents,
thereby reducing the distance between agents and obstacles
and increasing the conflicts to be solved.

The behavior associated with the support agents acting as
obstacles remains the same in all test scenarios, with one
configuration acting as mobile support agents and another as
static support agents. 22 initial and final tactical configurations
were used in the tests, each executed 5 times with varied
positions for the support agents, resulting in a set of 110 tests.
The same set of tests was applied for all numbers of task
agents, resulting in a total of 660 executed configurations.
To the statistical analysis, the number of test configurations
adheres to the sample size required for averaging with a 5%
margin of error and a 99% confidence level.

This work proposes a ”density” metric to assess a solution’s
quality level, following the metric proposals of [19]. The
metric, defined as Movement Density (MD), is expressed as
the inverse of the sum of the number of movement turns and
the simulation times a task agent remained stationary (i.e., due
to the used spatio-temporal path planning approach to avoid
path conflicts with other agents) in a given solution for all task
agents, as shown in (2):

819

(a) (b) (c) (d)

Fig. 5: Path results from (a and c) the MAPF Mobile Agents (MA) method where (a) support agents (blue dots) are moved
from their stationary positions to permit computing less winding, topographically safe and low-cost tactical routes, and (b and
d) the MAPF Static Agents (SA) method where these stationary agents are kept on their obstructive route locations.

MD =
1

1 +
n∑

i=1

(ti + bi)
(2)

where bi represents the number of stops for agent i, and
ti represents the number of path turns. The MD function
has a domain of 0 < MD ≤ 1, such that the smaller the
MD value, the greater the number of turns and stops in
a solution, indicating a lower quality solution (in extreme
simulation cases, spagetti-like agents’ navigation behaviors).
This result can be explained by the fact that paths with fewer
deviations and waiting times imply a solution with fewer
conflicts between task agents. A solution with MD = 1
indicates a solution with no stops and turns.

Fig. 6: MD metric results × path cost in meters.

TABLE I: Statistical results of the MD metric.

Estimation Std Deviation t Value P (> |t|)
Intercept -4.78E+00 2.14E-02 -223.915 <2e-16

MAPF SA 15 -1.34E-05 3.93E-06 -3.413 0.000656
MAPF MA 15 1.52E-01 2.38E-02 6.384 2.17E-10
MAPF SA 30 -9.80E-01 3.03E-02 -32.302 <2e-16
MAPF MA 30 -8.71E-01 2.96E-02 -29.407 <2e-16
MAPF SA 45 -1.78E+00 3.69E-02 -48.248 <2e-16
MAPF MA 45 -1.71E+00 3.70E-02 -46.383 <2e-16
MAPF SA 60 -2.11E+00 4.96E-02 -42.602 <2e-16
MAPF MA 60 -2.16E+00 4.97E-02 -43.32 <2e-16

The experimental results of the MAPF algorithms were sta-
tistically analyzed using a Generalized Linear Model (GLM)
(details of how to set up such statistical models can be
found in [7]). These models were implemented using the R
software and the Gamlss tool [20]. This statistical approach
enables the usage of different distributions to analyze the
obtained results. Thus, it is possible to establish a relationship
between a link function (here, a logarithmic function) and
a linear combination of explanatory variables Di. The base
method (D1) in this analysis is the MAPF SA - 15 Agents
configuration that computes paths to avoid static obstacles.

Fig. 5 presents path instances returned with the proposed
MAPF Mobile Agents (MA) method compared to the MAPF
Static Agents (SA) method. The test results for the MD metric
are presented in Table I and Fig. 6. The results in Table II
show that the MAPF MA algorithm with the 15, 30, and 45
agent’s configurations achieved a better Movement Density
(MD) than their corresponding MAPF SA results (i.e. when
the MD values are negative in Table II, the higher the negative
value, the worst the MD result; Fig. 6 better allows one to
assess these MD results). Moreover, the MD results for the
higher number of agents’ configurations optimized the results
of the base method used in the constructed statistical model
(i.e., as indicated by the negative values in Table II). An
exception of this trend was observed on the tests executed
with the 60 agents’ configuration. In this case, the resulting
paths from the MAPF MA method involving 60 agents had
worse MD values (−87.92) than its corresponding MAPF SA
method results (−88.41) because an increase in the number
of agents also led to increased stops, detours, and conflicts.
In reduced terrain spaces where many agents are involved in
the tactical movement tasks, moving the obstacles to clear the
routes may cause additional and unwanted obstructions for
other agents. However, as the MD results for the MAPF MA
method are, in general, higher than those for the MAPF SA
methods with the same number of agents, better quality paths
are generated when support agents move to allow computing
improved paths for task agents, reducing the number of stops
and curves in the computed trajectories.

820

TABLE II: Overall results for the tested configurations com-
pared to the base method MAPF SA 15 Agents.

Configuration Execution Expanded Movement
Time Nodes Density

15 Agents - MAPF MA -8.61% -16.77% 16.44%
30 Agents - MAPF SA -26.16% -47.08% -62.45%
30 Agents - MAPF MA -37.08% -62.64% -58.13%
45 Agents - MAPF SA -73.53% -81.87% -83.15%
45 Agents - MAPF MA -78.15% -88.53% -81.99%
60 Agents - MAPF SA -84.56% -94.70% -87.92%
60 Agents - MAPF MA -84.63% -95.94% -88.41%

Table II summarizes other test results. They show that
the MAPF MA algorithm is faster than the MAPF SA al-
gorithm when considering the same number of agents (e.g.,
for 45 agents, −78.15 is a better result than −73.53). Due
to the execution of conflict resolution procedures, however,
the computing time of all the MAPF-tested methods is on
the scale of minutes, where optimizations are still needed to
deal with real-time virtual simulation problems. Moreover, the
MAPF MA algorithm expanded fewer nodes on the grid terrain
representation during the pathfinding execution (e.g., for 45
agents, −88.53 is a better result than −81.87). The explanation
for this phenomenon is that static obstacles force collision
and recalculation of the previously returned paths. Since these
obstacles obstruct the previous lower-cost topographic routes,
the search needs to expand more terrain nodes along the path
to find new routes. This result also advocates for the benefit
of the proposed approach in moving the obstacles.

V. FINAL REMARKS

MAPF algorithms, due to their complexity, require contin-
uous research whenever one requires realistic path-planning
solutions for agent-based simulations. In this setting, this work
presents a MAPF approach for computing non-conflicting
paths in multi-agent simulation environments. The work an-
alyzes important MAPF requirements for modeling tactical
agent navigation behaviors in uneven terrains. A key proposal
presented here involves the possibility of moving stationary
agents with no planned movement in the current simulation sit-
uation. That aims to provide more organized, safer, lower-cost
topographic routes for mission-critical agents. The proposed
MAPF approaches this problem by combining and extending
the MAPF cooperative and conflict-based search methods to
construct enhanced paths for task agents to move between
tactical positions. Finally, it is possible to name important
directions for future work, such as MAPF implementation
enhancements to optimize the computing time of solutions for
real-time simulation applications; the study of different tactical
MAPF pathfinding algorithms for approaching other task and
support agents deployment situations, among others.

ACKNOWLEDGMENT

We thank the Brazilian Army Strategic Program ASTROS
for financial support through the SIS-ASTROS GMF project
(898347/2020) - TED 20-EME-003-00.

REFERENCES

[1] C Macal. Everything you need to know about agent-based modelling
and simulation. Journal of Simulation, 10:144–156, 2016.

[2] Wojciech Dawid and Krzysztof Pokonieczny. Methodology of using
terrain passability maps for planning the movement of troops and
navigation of unmanned ground vehicles. Sensors, 21(14):4682, 2021.

[3] Cesar Pozzer, João Martins, Lisandra Fontoura, Luis A. L. Silva,
Mateus Rutzig, Raul Nunes, and Edison P. Freitas. Sis-astros: An
integrated simulation system for the artillery saturation rocket system
(astros). In Proc. of the 12th International Conference on Simulation
and Modeling Methodologies, Technologies and Applications - Volume
1: SIMULTECH,, pages 194–201. INSTICC, SciTePress, 2022.

[4] Taoan Huang, Sven Koenig, and Bistra Dilkina. Learning to resolve
conflicts for multi-agent path finding with conflict-based search. In Proc.
of the AAAI Conference on Artificial Intelligence, volume 35, pages
11246–11253, 2021.

[5] Sumanth Varambally, Jiaoyang Li, and Sven Koenig. Which mapf model
works best for automated warehousing? In Proc. of the International
Symposium on Combinatorial Search, volume 15, pages 190–198, 2022.

[6] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,
Thayne Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Kumar,
et al. Multi-agent pathfinding: Definitions, variants, and benchmarks.
In Proc. of the International Symposium on Combinatorial Search,
volume 10, pages 151–158, 2019.

[7] John Ashworth Nelder and Robert WM Wedderburn. Generalized linear
models. Journal of the Royal Statistical Society: Series A (General),
135(3):370–384, 1972.

[8] Bernhard Nebel. On the computational complexity of multi-agent
pathfinding on directed graphs. In Proc. of the International Conference
on Automated Planning and Scheduling, volume 30, pages 212–216,
2020.

[9] David Vainshtain and Oren Salzman. Multi-agent terraforming: Efficient
multi-agent path finding via environment manipulation. In Proc. of the
International Symposium on Combinatorial Search, volume 12, pages
239–241, 2021.

[10] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant.
Conflict-based search for optimal multi-agent pathfinding. Artificial
Intelligence, 219:40–66, 2015.

[11] Hang Ma, Daniel Harabor, Peter J Stuckey, Jiaoyang Li, and Sven
Koenig. Searching with consistent prioritization for multi-agent path
finding. In Proc. of the AAAI Conference on Artificial Intelligence,
volume 33, pages 7643–7650, 2019.

[12] David Silver. Cooperative pathfinding. In Proc. of the AAAI conference
on artificial intelligence and interactive digital entertainment, volume 1,
pages 117–122, 2005.

[13] Licheng Wen, Yong Liu, and Hongliang Li. Cl-mapf: Multi-agent path
finding for car-like robots with kinematic and spatiotemporal constraints.
Robotics and Autonomous Systems, 150:103997, 2022.

[14] Matteo Bellusci, Nicola Basilico, and Francesco Amigoni. Multi-
agent path finding in configurable environments. In Proc. of the
19th International Conference on Autonomous Agents and MultiAgent
Systems, pages 159–167, 2020.

[15] Qinghe Liu, Lijun Zhao, Zhibin Tan, and Wen Chen. Global path
planning for autonomous vehicles in off-road environment via an a-
star algorithm. International Journal of Vehicle Autonomous Systems,
13(4):330–339, 2017.

[16] ASF DAAC. Palsar radiometric terrain corrected high res, 2015.
NASA Alaska Satellite Facility DAAC.

[17] K Zhigalov, D KS Bataev, E Klochkova, OA Svirbutovich, and
GA Ivashchenko. Problem solution of optimal pathfinding for the
movement of vehicles over rough mountainous areas. In IOP Conference
Series: Materials Science and Engineering, volume 1111, page 012033.
IOP Publishing, 2021.

[18] Ariel Felner and Nathan R Sturtevant. Abstraction-based heuristics with
true distance computations. In Symposium on Abstraction, Reformulation
and Approximation, 2009.

[19] Amudapuram Mohan Rao and Kalaga Ramachandra Rao. Measuring
urban traffic congestion-a review. International Journal for Traffic &
Transport Engineering, 2(4), 2012.

[20] D Mikis Stasinopoulos and Robert A Rigby. Generalized additive models
for location scale and shape (gamlss) in r. Journal of Statistical Software,
23:1–46, 2008.

821

