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Abstract—Federated learning (FL) enables collaborative model
training while keeping data decentralized. However, system
heterogeneity and statistical differences in decentralized data
can introduce biases and unfairness. This paper surveys existing
bias mitigation techniques in FL across various phases of the
training process. We identify sources of bias and present a critical
analysis of current fairness-aware FL algorithms, categorizing
them as preventive (Pre-processing) or reactive (in-processing
and Post-processing) based on when bias mitigation is applied. In
addition, this paper reveals open challenges in balancing fairness
and efficiency in FL, handling non-independent and identically
distributed (non-IID) data, and ensuring privacy. This survey
lays out the foundation for developing unbiased and privacy-
preserving FL systems without discrimination in the future.

Index Terms—Federated Learning, system heterogeneity, Bias
mitigation, decentralized data, fairness.

I. INTRODUCTION

Machine learning (ML) has experienced a rapid evolution-
ary trajectory since its inception, marked by the emergence
of numerous methodologies uniquely suited to various appli-
cations and contexts. Today, these technologies have become
inextricably woven into the fabric of our daily existence,
seamlessly integrating with innumerable aspects of our lives.
Consequently, an immense volume of data is constantly being
generated, offering scores of opportunities for developing and
implementing intelligent-driven learning services like disease
diagnosis systems, search engines, and recommendation sys-
tems [1], which are significantly enhancing the decision-
making processes [2]. To effectively utilize this voluminous
data, it must be consolidated within a centralized infras-
tructure for training machine learning models. The process
often results in substantial computational and storage costs
while posing notable data privacy and security risks, ne-
cessitating sensitive data protection. New legal frameworks,
such as the General Data Protection Regulation (GDPR), and
the California Consumer Privacy Act (CCPA) brought about
a paradigm shift in data storage, management, and usage
[2], [3]. These regulations unequivocally mandate that data
must be retained within their origin of jurisdiction, inevitably
creating isolated data silos. Federated learning (FL) sprang
up as a significant advancement in addressing the limitations
of the traditional centralized machine learning models. This
privacy-preserving distributed conceptual breakthrough offers
a promising solution to the critical challenges associated with

data privacy and model ownership in machine learning [4]–
[6]. Over the years, many federated platforms have been
developed and made available through open-source licenses.
Such media include the Federated AI Technology Enabler
(FATE) by WeBank, TensorFlow Federated (TFF) by Google
and lots more. Industries like healthcare, telecommunications,
finance, education, and urban computing are at the forefront
of adopting and leveraging FL on a large scale, as evidenced
by recent advancements and innovative implementations [2].
The FL ecosystem is shown in Figure 1.
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Fig. 1. The federated learning ecosystem, where LM represents the local
model, GM represents the global model, and 1, ..., N represents the clients.

Despite its advantages, FL exacerbates the problem of bias,
through system heterogeneity, statistical heterogeneity, client
selection, incentive mechanism design, and communication
efficiency [7]. Bias is a complex and multifaceted issue
that emerges at many stages of FL. When client selection
protocols hinge on some characteristics, such as the device’s
computational capabilities [8], clients with more considerable
assets are likely to have greater representation. Interestingly,
bias can produce a pattern where client participation correlates
with their socioeconomic status, racial background, or sexual
orientation. For instance, let us say a bank is trying to ascertain
a customer’s ability to repay a loan before approving it. The
system may rely on sensitive variables like race and gender or
even skin color to learn predictions that may not be accurate.

Many fairness-conscious FL methods have been suggested
from different viewpoints. Fairness in FL refers to the eq-
uitable treatment of various stakeholders in the FL process,
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such as servers, the clients (i.e. data owners), and the final
users of the FL model [9]. Several variables can influence
fairness, such as client selection, model optimization, con-
tribution evaluation, and incentive distribution [10]. Fairness-
conscious FL methods strive for diverse fairness concepts, in-
cluding performance distribution fairness, good-intent fairness,
group fairness, selection fairness, contribution fairness, regret
distribution fairness, and expectation fairness [11]. Nonethe-
less, most of these techniques prioritize achieving fairness
objectives without considering their effect on FL’s efficiency
[12]. To attain a fair distribution of performance, choosing
a more significant number of clients or raising the number
of local epochs might be necessary, which in turn increases
communication and computation expenses [13]. Also, attaining
contribution fairness might necessitate assessing each client’s
influence on the overall model performance, potentially lead-
ing to increased convergence cost [14]. Adjusting or applying
regularization to the loss function based on sensitive charac-
teristics may be necessary to accomplish group fairness [15],
which could decrease model precision [16]. As a result, it is
imperative to ensure fairness in FL that guarantees equitable
treatment and a high-quality global model [17].

Privacy issue introduces another dimension to addressing
FL bias. Since safeguarding data privacy constitutes a primary
driving force behind adopting FL, it becomes an essential
factor impacting the development and implementation of bias
detection and mitigation strategies. Therefore, efforts to rectify
biases within FL must account for the constraints imposed
by privacy requirements and explore solutions capable of
addressing bias while adhering to these limitations.

This paper provides an extensive overview of bias mitigation
techniques in FL. The main highlights of this review are
outlined as:

• We give an in-depth analysis of how different sources
of bias propagate through the federated learning pipeline
and influence the model training.

• We present a critical analysis of current Fairness-Aware
FL techniques and classify them based on their concepts
of fairness.

• We also identify challenges and research directions in this
area.

The subsequent sections in this paper are organized as
follows: Section II discusses the sources of bias in federated
learning. Section III outlines mitigation techniques currently
deployed across various phases of the training process. Section
IV concludes the paper and section V provides future research
directions.

II. BIAS FACTORS IN FEDERATED LEARNING SYSTEMS

Although bias may come from human sources, it presents
technical issues. Owing to the inherent nature of FL, it presents
unique challenges in achieving bias-free machine learning
models. The paramount source of bias is attributed to the non-
Independent and Identically Distributed (non-IID) feature of
the distribution over the collaborating devices and becomes
reflected in the parameters of the global model [18].

Let the local dataset at client k be represented as
Dk ∼ Pk(x, y). With non-IID data, Pk(x, y) ̸= Pj(x, y) for
k ̸= j; hence, the data distribution varies across different
nodes. Consequently, certain classes or outcomes y may be
over-represented at some clients relative to others, thereby
introducing skew in the global model’s learning curve [19].
One example is developing a machine learning model to
identify diseases using patient data from Hospitals A and B.
Hospital A in a particular region might have a specialty in
heart diseases, thus having more data related to many kinds
of heart diseases. Conversely, Hospital B might specialize
in cancer research, resulting in a richer dataset on diverse
cancer types. The varying disease data distributions across
these hospitals illustrate a non-iid scenario in FL, as the data
is not distributed both independently and identically. Clients
that have larger datasets often influence the learning process
due to the variations in data quantities and quality across
various nodes (hospitals in our case) [20], [21]. During the FL
training process, the local model (LM) updates computed by
each client may be skewed, and this distributional imbalance
will be mirrored in the updates to the global model (GM).
This can mathematically be represented as:

∆θskewed = η ·
∑
k

γk · nk

n
∆θk, (1)

where ∆θskewed is the skewed update to the global model
parameters; η denotes the learning rate (a scalar that de-
termines the step size in the direction of the gradient. It
essentially scales the magnitude of the model update);

∑
k

is summing over all local datasets indexed by k. Each client’s
contribution to the global update is not just determined by
the sheer volume of its data represented by nk

n , but also
by a skewness factor, γk·. The skewness factor measures
the extent to which a client’s data distribution deviates from
the overall data distribution. A value of γk = 1 proposes a
typical distribution, while γk could deviate from 1, signifying
skewness. ∆θk is local model update parameter for the data
Dk on client k. Consequently, the adjustments to the global
model embody both the uneven distributions of data across
clients and their respective data volumes. This nuanced un-
derstanding guarantees that the model continues to respond to
the varying and potentially biased data environments within
federated networks.

Systemic heterogeneity can also intensify bias. Different
nodes (clients) in the system may have different statistical
properties, computational capabilities, or other attributes that
influence their capacity to contribute to the learning process
[22]. Due to the remote nature of the ecosystem, clients
with superior computational power or network connection
shoulder a more significant contribution to the global model
than the resource-constrained clients [23]. Mathematically,
this manifests in the federated averaging as:
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∆θ = η ·
∑
k

(
CkVkAk

CtotVtotAtot

)
∆θk, (2)

where ∆θ represents the change in the global parameters
of the model; η is the learning rate; Ck, Vk, and Ak are
the computational capacity, data volume, and availability of
node k, respectively; Ctot, Vtot, and Atot are the aggregate
computational capability, data volume, and availability of all
nodes. ∆θk remains the local model update evaluated on the
local data Dk at node k. ( CkVkAk

CtotVtotAtot
) represents the relative

computational capability, data volume, and availability of each
node. This biases the global model toward the distribution of
clients with ample resources.

Another source of bias is the fusion algorithm used by
the central server to aggregate the weighted average. The
algorithm’s design may vary, which invariably influences
the final model. Some algorithms are designed to equally
incorporate model updates from clients, while some perform
weighted averages based on client size (clients with larger
datasets influence the global model than those with smaller
datasets) and can over-represent subsets of clients:

∆θ = η · F (wk,∆θk) + β ·B(F,Dk), (3)

where F represents the fusion algorithm deployed by the
central server. The term wk denotes the weights associated
with each client k, potentially based on criteria like data
size. Critically, B(F,Dk) captures the bias introduced by the
fusion algorithm for the data at client k. This bias, adjusted
by the factor β, accentuates the discrepancies between the
ideal and actual aggregations by the fusion algorithm, This
underscores the crucial part that the aggregation technique
plays in potentially introducing biases to the global model
update.

Data class imbalance may prejudice learning algorithms
toward the predominant class, resulting in a bias toward
the minority class. This becomes difficult to make sound
judgments in situations such as fraud detection and medical
diagnosis [24]. In FL, there are two types of data imbalance:
local imbalance and global imbalance. The Local imbalance
occurs when the class distribution of each client’s dataset is
misrepresented. One client might possess numerous Class A
samples and limited Class B samples, whereas a different
client could exhibit the reverse distribution [25]. This mis-
match could lead to performance issues in scenarios involving
FL where privacy requirements prohibit data redistribution.
There is a global imbalance where all consumers in the
federation favor particular classes. Even if each client’s local
dataset appears to be balanced, the preponderance of certain
classes in the datasets of multiple clients may cause this skew
[26]. To maintain fairness, FL must investigate data imbalance
solutions.

III. BIAS MITIGATION TECHNIQUES

Bias can spring up throughout the FL training process. A
number of authors have carried out studies on bias-mitigating
techniques over the years. Their main goal ensures that sensi-
tive attributes like gender or race are not the determining factor
for the outcome of an FL model. According to Dr. Jennifer
Chayes, the former managing director of Microsoft Research,
”It is possible to design algorithms that are more fair than
conventional human decision-makers. This is achieved despite
the obstacles presented by training data with inherent bias”
[27]. Depending on their application within a machine learning
pipeline [28], the numerous FL bias mitigation techniques
can vary as pre-processing, in-processing, and post-processing.
These are further classified as Preventive Techniques (pre-
processing), which seek to avert biased models from the
training data; and Reactive Techniques, that uncover and
correct bias when detected during and or after the training
(i.e. in-processing and post-processing).

A. Pre-processing bias mitigation techniques

Bias mitigation of pre-processing begins with the data to
be trained because the way data is used for training the
learner decides the model’s outcome. It involves analytically
manipulating the data like imputing missing values, selecting
extrapolative variables and aggregation [29]. Abay et. al.
[30] explored the case of imbalance on sensitive features
such as gender and race; particularly, where client datasets
showed a non-uniform distribution of these features. They
propose a unique pre-processing technique labeled Reweigh-
ing. Reweighing is a pivotal instrument for constructing
fair machine-learning models by adjusting and assigning the
weights of instances in the training set prior to training [31].
With this method, we gain access to the whole training dataset
and calculate the weights on the ratio between predicted
probability (Ppre) and the observed probability (Pobs) of the
sample’s sensitive features. Given the data privacy restrictions
inherent to FL, which preclude direct access to the data,
the authors proposed two modifications to the reweighing
method that are applicable to FL settings: Local reweighing,
where each client computes reweighing weights locally on
its own dataset and uses them for its local training during
the pre-processing. Here, there is no communication between
clients and the aggregator to reveal the sensitive features and
or data sample details [32]. Even when only a portion of
the participating clients use it, this technique addresses bias
effectively without affecting prediction accuracy. The authors
also propose a differentially private global variation of the
local reweighing called global reweighing, which relies on
each client’s willingness to share details of their sensitive
features and their noisy sample counts with the aggregator and
other participants. The differential privacy noise is introduced
via a well-known privacy mechanism [33] and by adjusting
the quantity of noise being injected, clients are able to regulate
their data leakages toward bias mitigation. However, one major
limitation of this technique is that it is not suitable for FL
with dynamic participation settings. It recalibrates the global
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reweighing weights as the number and size of training sets
change in the course of training which invariably reduces the
accuracy of the global weights. Zhu, Y et al. [34] propose
a novel method called M3Fair to address this limitation. This
technique extends the current reweighing technique to account
for intersectional bias and to strike a balance between machine
learning performance and fairness. They defined sensitivity
levels as the sum of weights for numerous sensitive features
within a sample and assign level weights to each sensitive
feature. The weight coefficients for samples according to their
sensitivity levels and labels are then cumulated and applied
to the loss function of the models. In addition, the authors
present a technique for identifying sensitive characteristics that
consistently show tendencies of bias across four evaluation
metrics namely: Disparate Impact (DI), Statistical Parity Dif-
ference (SPD), Average Odds Difference (AOD), and Equal
Opportunity Difference (EOD) [35]. Using this technique, they
select the sensitive feature for reweighing and assign level
weights to them based on their bias tendencies. The M3Fair
technique was then applied to three datasets: Adult, Tongji
Hospital COVID-19 dataset (TJH), and HM Hospitales Covid
Data Save Lives (CDSL) [36], and its accuracy was compared
to that of no mitigation and single-feature reweighing. Their
findings indicate that M3Fair achieved superior or equivalent
fairness across all the metrics. It also exhibited encouraging
results and could be applied in various domains, although there
was a minor decrease in model performance. However, this
method of bias detection relies on binarizing each feature
by comparing its mean value, which may fail to convey
the nuances of continuous or categorical features. More so,
manually assigning level weights for sensitive features based
on bias may add subjectivity and arbitrariness since M3Fair
solely examines dataset bias, not model or post-processing
bias.

B. In-Processing Bias Mitigation techniques

In-process bias mitigation is performed at the algorithmic
level, where learning algorithms are modified to bring about
fairness. This technique comes to play in order to alleviate the
limitations of the pre-processing techniques. The fundamental
classifier’s optimization problem is altered by introducing a
discrimination-aware regularizer or bias mitigation constraints
[37]. The primary goal of in-processing bias mitigation is to
ensure systems are both fair and accurate. But this mitiga-
tion approach may be limited to particular machine-learning
models and learning algorithms. An example is [38], where
their proposed technique focuses on logistic regression models.
Abay et. al. [30], proposed Federated Prejudice Remover,
a technique that adds fairness-aware regularizer to the loss
function. Every client in this ecosystem implements the prej-
udice remover algorithm [38] to perform the training of a
less biased local model. The ultimate goal is to minimize
the mutual information between the sensitive features and the
predicted outcome. Each client computes the local gradient
associated with the regularizer and sends it to the server, which
in-turn aggregates and updates the global model accordingly

[39]. Only the gradients of the regularizer are exchanged
which preserves privacy. Howbeit, the major challenge is
the selection of a reasonable coefficient for the regularizer
which leads to degradation in accuracy and performance
metrics. Another ubiquitous mechanism is the implementation
of adversarial learning for bias mitigation across different
applications [40] [41] [37]. This technique trains a separate
adversarial network to predict protected demographic details
based on biased labels. The adversarial learning then enables
the fairness-oriented model to dissociate protected data from
possible biases. Goodfellow et al. [42] proposed the Generative
Adversarial Network (GAN) structure. Devised for generating
images, the technique leverages multiple rival networks for
model training that would delude one another. The adversarial
network acts as a discriminator in a typical GAN setting.
The fair network strives to reduce the probability of the
discriminator predicting the protected feature accurately based
on the model’s output while concurrently preserving its own
accuracy. Hence, adversarial learning contributes to reducing
the influence that a protected feature may have on the model’s
predictions; thereby decreasing the inherent bias associated
with the feature in the model’s predictions. The strength of this
technique is its vast applicability across divergent datasets and
use cases. It also boasts accuracy as it upholds data integrity.
Furthermore, it does not require presumptions regarding the
dataset’s distribution. Nevertheless, it demands access to the
model parameters, rendering it impractical in scenarios with
black-box models.

C. Post-Processing Bias Mitigation techniques

The post-processing approach is a set of techniques applied
after the global model has been aggregated, but now the aim
is to achieve balanced results. This adjustment to the model
predictions is made under a specified fairness constraint. Like
pre-processing, one core advantage of this technique is its
ability to operate without access to the model specifications
- adjusting only the results in place of the classifier or
training data [43]. This characteristic facilitates its application
in a black-box environment [44]. Intriguingly, as the post-
processing techniques do not require entry into the input
characteristics, they can be directly implemented in the joint
distribution comprising the labels Y and the model predictions
Ŷ , demonstrating the adaptability of this method. However,
modifying outputs could potentially distort the accuracy of
the entire model. For example, striving for balanced gender
representation instead of focusing purely on qualifications may
decrease the hiring of competent men – an effect sometimes
termed positive bias or affirmative action. Although this pro-
cess might affect the precision of the model, it fulfills the
intended goal in the long run.

Pentyala et al. [45] propose PrivFairFL, a comprehen-
sive framework that amalgamates federated learning, secure
multiparty computation (MPC), and differential privacy (DP)
to develop machine learning models to combat bias against
certain demographics delineated by sensitive characteristics
like as gender or race [46]. PrivFairFL introduces two distinct
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TABLE I
FAIRNESS TECHNIQUES IN FEDERATED LEARNING

Category Technique & Key Idea Benefits Limitations
Data Preprocessing Reweighting: Adjust weights for bal-

ance
Class Rebalancing: Correct class imbal-
ance

Group fairness; efficiency Limited flexibility; reduces
data diversity

In-Processing Adversarial Learning: Remove associa-
tions
Regularization: Fairness penalty in op-
timization

Applicability; data integrity Access to model; high compu-
tation

Post-Processing Threshold Adjustment: Optimize
thresholds
Prediction Mod.: Achieve statistical
parity

Model-agnostic; simplicity Reduced accuracy; lack of
transparency

bias mitigation strategies: PrivFairFL-Pre and PrivFairFL-
Post, applied before and after the model training phase respec-
tively. The PrivFairFL-Pre debiases the consolidated training
dataset by assigning weights to the samples grounded in
the sensitive attribute and/or class label values. The MPC
computes the aggregated statistics of the label and sensitive
attribute value distributions across the federation, ensuring the
clients’ sensitive features remain undisclosed. Further privacy
enhancement is achieved by applying DP to the aggregated
statistics, providing a solid privacy guarantee [47]. The MPC
is essential for constructing Receiver Operating Characteristic
(ROC) curves for protected and unprotected groups without
requiring clients to reveal their sensitive attribute values or
data distribution. The PrivFairFL-Post rectifies the predicted
outcomes by determining the optimal classification thresholds
for each group using the almost balanced subset of data. Post-
construction ROC curves are perturbed using DP for formal
privacy assurance. A key characteristic of these strategies is
their independence from the model training phase, offering
flexibility to be integrated with any federated learning model
training technique.

PrivFairFL empirically proved to achieve group fairness in
federated learning with formal privacy assurances and also
improved the utility of the model even when put on the
scale with the baseline approach in [30]. PrivFairFL also
mitigated bias and established group fairness using real-world
datasets without clients having to provide sensitive features
or data distributions. PrivFairFL’s computational efficiency
and scalability also demonstrate its suitability for real-world
applications. However, achieving this group fairness may come
at the expense of reduced overall accuracy or performance
of the model. Moreso, the use of MPC and DP may incur
additional computational overhead. Furthermore, the efficiency
of PrivFairFL might also be influenced by the unique features
of the data and the particular challenge being addressed.

IV. CONCLUSION

This review paper has provided a comprehensive survey of
bias mitigation techniques for federated learning systems. We
discussed how bias is propagated in federated learning. We
categorized existing debiasing strategies based on their imple-
mentation during the pre-processing, in-processing, or post-

processing phases of model training. Managing non-IID and
unbalanced distributed data requires that robust bias mitigation
techniques be developed. To enhance model generalization,
potential directions include client weighting schemes, multi-
task representation learning, and transfer learning. Moreover,
regulations, such as the General Data Protection Regulation
(GDPR) that restrict data sharing, impose constraints on bias
mitigation necessitating solutions compatible with encryption
and differential privacy. What needs to be solved is the prob-
lem of advancing privacy-aware debiasing techniques tailored
for FL. As FL gains increasing traction across domains like
healthcare, finance, and smart cities, ensuring fairness and
mitigating unintended biases in FL systems will only grow
in importance.

V. DIRECTIONS FOR FURTHER RESEARCH

Future works should focus on developing customizable and
dynamic debiasing frameworks. These frameworks should al-
low practitioners to strike a balance between fairness, Integrity,
precision, privacy, scalability, and resiliency without sacrific-
ing one or the other. Training data bias refinement is a crucial
FL research area. The cross-silo scenario dominates FL bias
reduction literature because correcting bias in the cross-device
situation, where data variations are very dynamic, is more
complicated. Recent issues, including the necessity to account
for non-IID (non-independent and identically distributed) data
and the complexity of guaranteeing fairness across different
and changing devices, require additional investigation, espe-
cially in the cross-device scenario.
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