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Abstract—In this work we present a novel approach for gener-
ating cardiovascular data using a modified WaveNet architecture.
This can enable further research in areas where data is scarce and
hard to obtain. By generating additional time series data in a set
of animal tests performance of existing models could be improved
and more difficult approaches, that require substantial amounts
of data, attempted. We validate our approach on a classification
task and compare it to similar methods of data augmentation.

Index Terms—Time Series, Data Augmentation, Medical Ap-
plication

I. INTRODUCTION

In the realm of medical applications, accurate and reliable
classification of data is important for diagnosis, treatment, and
patient care.

However, the efficacy of classifiers heavily relies on the
availability of sizable and representative data sets. Ethical
considerations play a pivotal role when creating these sets,
i.e. privacy protection for patients and animal testing. The
generation of synthetic data offers a more ethical alternative to
traditional methods of data expansion, particularly when these
expose their subjects to potential harm. Moreover, synthetic
data generation can accelerate the data collection process,
making it a faster and more cost-effective strategy compared
to traditional methods.

Funding by the German Federal Ministry for Education and Research
(BMBF) under reference number 01|S21056C is gratefully acknowledged.

One potential application is the development and utilization
of left ventricular assist devices (LVADs), as gathering relevant
data such as the pressure of a ventricle is invasive and thus
difficult and expensive in terms of availability and feasibility
[1].

To this end, we propose a modified WaveNet model [2]
to generate synthetic medical data, particularly tailored to
physiological signals that exhibit sinusoidal attributes, such
as the behavior of a heart ventricle. We validate our trained
model on a downstream task using data augmentation to show
its feasibility.

This paper is structured as follows: We first discuss related
work with regard to data synthetisation in general and for
medical applications in particular. Then, we describe our
method for generating novel data points and the experiments
conducted to validate our approach. Lastly we discuss potential
ways for further improvement and future work.

II. RELATED WORK

Different architectures of deep learning have been applied
to data augmentation problems regularly in the past. Certain
architectures have proven themselves to be advantageous in
specific domains, such as generative adversarial networks
(GANs) [3] and de-noising diffusion models [4] in the domain
of image generation [5], [6]; or the transformer architecture [7]
in text generation.
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Reference [8] gives an overview of commonly used archi-
tectures for time series data augmentation models.

Reference [9] employs data augmentation techniques for
improving the accuracy of a classifier, focussing on LSTM
[10] architectures.

Conventional convolutional neural nets (CNNs) have mostly
been used for time series classification [11] which use data
augmentation to improve the CNNs performance rather than
using the CNN for data augmentation. Nevertheless, there
are approaches which use CNNs for time series forecasting
[12], which can be applied to data augmentation. There are
also approaches with hybrid architectures which focus on
combining CNNs and LSTMs [13], [14], or on convolutions
and GANs [15].

WaveNet has been used for data augmentation mostly in the
domain of speech processing [16]. Another approach employs
a modified WaveNet on non-speech applications, stepping out-
side the time series domain by using non-causal convolutional
layers and using WaveNet for predictions, only employing data
augmentation techniques for training the model [17].

Data augmentation techniques employing deep learning
have also already been applied to the medical domain, how-
ever, these seem to mostly focus on image data [18], [5],
[6]. This is also the case for cardiovascular data [19]. Other
methods, such as physical simulation, however, have been
applied to time series data [20].

III. DATA

The data set we employ consists of cardiovascular data
gathered from pigs [1], [21]. It is presented as time series
data of several different sensors, ranging from non-invasive to
very invasive collection methods. The most invasive of these
dimensions are the left ventricular pressure (LVP) and the
calibrated left ventricular volume (LV). As such, accurately
generating these dimensions is of particular interest. The right
ventricular pressure (RVP) is very invasive as well, but less
important for the application in left ventricular assist devices.
Among the less invasive dimensions are the pulmonary arterial
pressure (PaP) and flow (PaQ).

The data is generated by artificially inducing specific heart
conditions, also called interventions, in each subject. In each
data collection session, only one intervention is induced. The
distribution of these interventions across the data collection
sessions can be seen in table (I). Intervention 1 corresponds
to pre-load reduction. Intervention 2 and 3 are different kinds
of after-load increases, intervention 4 are speed-ramps and
intervention 10 corresponds to changes in contractility.

Each data collection session consists of five phases, out of
which we selectively utilize only two in our analysis: Phase

TABLE I: Distribution of interventions across data collection
sessions and available samples.

Intervention 1 2 3 4 10 Phase 1
# Sessions 158 5 109 3 31 all / 306
# Samples 2111 33 2164 55 1268 2651

one contains the data from before the induction of the actual
intervention. As such, it can be seen as a baseline, which would
correspond to normal or healthy behavior of the heart and is
consistent across all different kinds of interventions. Phase
three on the other hand contains the actual intervention of
each data collection session.

We downsample the data from 1khz to 50hz, as there is no
meaningful loss of information due to jitters in the data and
reducing the size of input data improves the efficiency of the
training algorithm. Additionally, we only use a selection of the
available dimensions, i.e. the aforementioned LVP, LV, RVP,
PaP and PaQ.

For training our modified WaveNet, we split the data into
smaller windows. As input for the model we take signals of
length 200, i.e. 4 seconds and predict the next 100 timesteps,
i.e. 2 seconds. To increase the amount of training data, we
split the signal using a sliding window of half the input length,
effectively doubling the amount of available training data.

IV. METHOD

The architecture for our approach is a modified version
of the original WaveNet architecture, specifically their global
conditioning variant we implemented using PyTorch [22].

The first modification is the change from a single dimension
input, such as a typical audio signal, to the multi-dimensional
data presented by the medical data set. As such,

p(x⃗|h) =
T∏

t=1

p(x⃗t|x⃗1, ..., ⃗xt−1,h) (1)

describes the multi-dimensional conditional distribution
p(x⃗|h) of the medical data given condition h (i.e. intervention)
and the previous signal points x⃗i (see Eq. (3) [2]).

Likewise, the conditional activation function (see Eq. (2)
[2]) is described as

z = tanh(Wf,k ∗ x⃗+ V T
f,kh)⊙ σ(Wg,k ∗ x⃗+ V T

g,kh)

where x⃗ is the n-dimensional waveform, V∗,k are learnable
linear projections, W∗,k are learnable convolution filter, k is
the layer index and f and g denote filter and gate respectively.
To guarantee the correct interaction between the input signal’s
dimensions, the convolutional layers in our proposed WaveNet
modification convolute all input to all output dimensions.

A. Output Layer Changes

The second modification to the original WaveNet architec-
ture lies in the omission of the final softmax layer. Reference
[23] shows that transforming the regression problem into
a multi-modal classification problem increases performance,
the particular features of this data set make this approach
unfeasible.

Adding the softmax layer requires a discrete normalization,
which forbids the model from producing data outside of those
discrete values. However, this discretization might not be
desirable, depending on normalization details. Changes in the
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distribution of a models input -by extension of each of the
models layers’ input- forces the model to continuously adapt
to these changes, ultimately leading to slower learning and
worse model performance [24].

Normalization can be achieved in a number of ways. Each
data collection session could be normalized to its own max
and min values. However, this would mean that the signals of
some data collection sessions, would no longer be distributed
like others, as e.g. an exceptionally high LVP would shift the
center of the whole signal severely up. This is especially the
case for signals of intervention 10, as they strain the heart of
the subjects, which leads to, among other things, higher than
normal pressure and lower then normal volume in the heart.
In this case, data of phase one would no longer be consistent
across data collection sessions, harming performance.

Another approach would be to normalize across all data
collection sessions. In this case most of the data would be
squished, loosing details of the signal and extreme cases
may even lead to computational problems due to rounding
errors. Additionally, slight differences in the test subjects and
application of the sensors during data collection manifest
in distribution changes between data collection sessions. An
example of such a distribution difference between two data
collection sessions can be seen in Fig. (1). While the minima of
both signals are virtually identical (6.53 vs 6.85), the maxima
differ substantially (60.5 vs 51.55).

Discretizising the signal and leaving some headroom, i.e.
not using the most extreme values is plagued by the same
problems outlined above; Even more so, since these extreme
values can have a very high false positive rate [23].

To increase the amount of samples, the model is never fed
the whole signal, but only windows which could be normalized
individually. However, in this case much of the information

Fig. 1: Example of different value distributions across different
data collection sessions. Pictured are two LVP signals of phase
one gathered from different subjects as well as intervention 1
(blue) and 10 (red).

contained in the signal would be lost. It would, e.g. not be
clear if the window is in an area of exceptionally low or high
pressure, leading again to poor performance.

We opted therefore to normalize the signals of each data
collection session according to the values of its phase one,
which consequently worked best in our experiments. While
this carries the problem of introducing data from outside the
normalization range as input and as target, due to exposing
the model to this kind of data during training, those can not
be considered as unexpected data. Moreover, all signals of
a data collection session are distributed equally to those of
all other data collection sessions of the same intervention,
especially those signals of phase one. However, introducing
data from outside the normalization range does permit us from
effectively using discretization.

B. Loss changes

The third modification to the WaveNet model lies in the loss
used for training. Our modified WaveNet model is -in contrast
to the original WaveNet- trained using a single Soft-DTW loss
[25], as our domain does not provide us with an analogue to
the original WaveNets frame position. As the data is collected
from living subjects, their heart-rate is not completely constant
and may speed up or slow down during a data collection
session, resulting in a x-axis shift in the target signal, thus
making the Soft-DTW loss suitable to this application.

C. Manual ECG Construction

Despite the original data set including heart rate information
in the form of an ECG signal, we opted to manually construct
such signals in the form of sine waves. The sensors measuring
ECG may produce slightly different output in between data
collection sessions, based on their placement, application and
different specimens. The simpler and less noisy synthetic heart
rate produced better results in our tests then the original,
slightly noisy data. Our synthetic ECG signal is generated as
follows: The signals for LVP and LV are sinoid and tend to
have high derivations of the first order around their roots. We
thus calculate the roots of the LVP signal and draw a sine
wave between every two roots. Such a exemplary manually
constructed heartrate signal can be seen in Fig. (2).

V. EXPERIMENTS

In this section, we will go into some architecture details and
then present the evaluation of our approach.

A. Architecture Details

The proposed WaveNet model utilizes ten stacked residual
WaveNet blocks. We decided to only generate a subset of the
available dimensions, i.e. LVP, LV, RVP, PaP, PaQ as described
in chapter (III). This improves the computational efficiency
of our approach, while not decreasing the accuracy of the
resulting generator, especially for the LVP and LV dimensions.
Additionally, we use the intervention as the conditional input,
which enables us to produce data of a specific intervention.
However, we chose to model the data of phase one as an
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(a) Original ECG signal.
(b) Generated ECG signal (red) with the corresponding LVP
signal (blue) and identified roots (black).

Fig. 2: Original (left) and manually constructed (right) ECG signal for training of the model.

additional kind of intervention, the reason being two-fold:
Firstly to provide more training data, and secondly to serve
as baseline data, as all interventions are similar, pathological
variations of the phase one data. We performed a hyper-
parameter grid-search on the previously mentioned parameters
and chose the model which performed best in replicating an
unknown test signal for the following experiments.

B. Evaluation with Random Forest

For the evaluation of our approach we conduct a simple
classification experiment using random forest (RF) [26]. To
this end we train a number of RF classifiers which classify a
given input signal of length 200 by their intervention. This is a
relevant downstream task as it is not trivial and can be helpful
for low powered implanted devices such as LVAD controllers
[21]. We specifically use scikit-learns implementation [27] of
the RF algorithm and use their default parameters. We chose
to employ only the most medically invasive dimensions LVP
and LV, and utilize a train-test split of 80% to 20%.

We first train RF on the training set of the original data.
Then, we augment the training data set using our modified
WaveNet and thus double the available training data, with
which we then train another RF, however, we do not interfere
with the class imbalance. See Fig. (3) for an example of
generated data. We also augment the original data set using
SMOTE [28], which is particularly suitable to augment our
highly imbalanced original data set; As well as a LSTM model,
trained similarly to our modified WaveNet model, based on
PyTorch’s [22] implementation. We also provide a baseline in
form of the unmodified Wavenet, trained with a maximum log
likelihood loss and without our proposed output layer changes.
We opted to normalize akin to the modified model, truncating
the signal when outside the normalization range. Lastly, we
trained a CNN utilizing temporal convolution layers. We then
test each classifier on the test set of our unaugmented original
data. The results of ten repetitions of these experiments can

be seen in table (II). The difference between the overall score
of the classifier trained on unaugmented data to each of the
classifiers trained on modified WaveNet, SMOTE and LSTM
augmented data is significant with at most p < 4.3 · 10−4,
which we calculated using scipy’s [29] Welch t-test [30].

C. Discussion of Results

Due to the heavy class imbalance, the classifier trained only
on the original data performs poorly on interventions 2 and
4. Consequently, while its overall accuracy is quite high, its
average class accuracy suffers.

While the classifier trained on SMOTE-augmented data
performs worse over all data, it improves the performance
on the underrepresented interventions 2 and 4. This would
be expected due to the oversampling methods employed by
SMOTE.

While the classifier trained on LSTM’s data augmentation
performs slightly worse over all data than the baseline of
no augmentation, the generated data is capable of increasing
performance on intervention 10. Considering that half the data
it is trained on was generated, this classifier is still nearly
as capable of classifying original data. As such, the data
generated by the LSTM seems to only impede the classifier
slightly.

The classifier trained on data augmented with the original
WaveNet improves the accuracy on the underrepresented in-
terventions 2 and 4, leading to an improved average class
accuracy compared to no augmentation whatsoever, roughly
on the same level as the SMOTE augmentation.

The classifier trained on CNN-augmented data especially
improves on the underrepresented interventions 2 and 4, but
shows a decrease in performance on the other interventions
as well as overall performance. However, it achieves a much
higher consistency in average class accuracy when compared
to the classifier trained on unaugmented data.
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(a) LVP Dimension (b) LV Dimension

Fig. 3: Example of a generated signal (red) in contrast to the original signal (blue). The first 200 data points are the models
input, while the last 100 are unknown to it and included here as a reference.

TABLE II: Results of the classification experiment, by class i.e. intervention and method used for data augmentation.

no augmentation SMOTE LSTM original Wavenet CNN modified Wavenet
Intervention 1 0.9118 ±0.0052 0.8935 ±0.0065 0.9013 ±0.0054 0.89 ±0.0081 0.7936 ±0.0082 0.9222 ±0.0115
Intervention 2 0.1556 ±0.0544 0.2 ±0.0667 0.0888 ±0.0444 0.3 ±0.0999 0.2143 ±0.0714 0.4 ±0.3000
Intervention 3 0.9359 ±0.0022 0.9243 ±0.0049 0.9243 ±0.0023 0.9359 ±0.0029 0.8448 ±0.0111 0.9667 ±0.0069
Intervention 4 0.0 ±0.0 0.0833 ±0.0833 0.0 ±0.0 0.0083 ±0.025 0.3250 ±0.1017 0.82 ±0.14
Intervention 10 0.9474 ±0.0068 0.9380 ±0.0061 0.9623 ±0.0055 0.9115 ±0.0054 0.8056 ±0.0099 0.9647 ±0.0126
Phase 1 0.9996 ±0.0008 0.9847 ±0.0020 0.9983 ±0.002 0.9802 ±0.0019 0.7969 ±0.0143 0.9720 ±0.0079
Overall 0.9414 ±0.0018 0.9289 ±0.0033 0.9372 ±0.0023 0.9256 ±0.0028 0.8055 ±0.0045 0.9518 ±0.0046
Average 0.6584 ±0.4138 0.6707 ±0.3765 0.6458 ±0.427 0.6709 ±0.3760 0.6300 ±0.2574 0.8409 ±0.2040

While the WaveNet-augmented classifier performs worse
on data of phase one, it improves on all other interventions
and in consequence performs better over all data compared
to the classifier trained on unaugmented data. Additionally,
it performs better than the baseline classifiers trained on
unaugmented, SMOTE-, LSTM- and CNN-augmented data in
almost all test cases and considered metrics. In particular, the
proposed WaveNet data augmentation combines an increase in
average class accuracy with a CNN-like boost in consistency.

VI. CONCLUSION

In this paper, we proposed a modified WaveNet architecture
for generating cardiovascular time series data and described
challenges and modification choices for such a domain. We
then evaluated our approach on a domain-relevant downstream
task with real-world data, showing it to improve upon data
augmentation methods established in the time series domain.

Future work should focus on truly continuous data gener-
ation. While it is generally possible to generate continuous
signals with our approach by simply feeding the generated
signal back into our model, it is currently not possible to
replicate complete data collection sessions accurately due to
the lack of data containing transitional periods between phase
one and each intervention. Addressing this limitation could
increase the performance of LVAD controllers and potentially
reduce detection time of cardiac events.

The proposed WaveNet architecture might also be used to
facilitate training and testing LVAD controllers as mentioned
in the motivation for our evaluation task.
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