
Automatic Distance-Based Interpolating Unit
Detection and Pruning in Self-Organizing Maps

Willem S. van Heerden
Department of Computer Science

University of Pretoria
Pretoria, South Africa

https://orcid.org/0000-0002-9736-7268

Abstract—The self-organizing map (SOM) is an unsupervised
neural network that uses neuron weight vectors to model training
data. Some neurons, called interpolating units, have weight
vectors that do not model training data, and instead represent
boundaries between emergent data clusters. Interpolating units
are useful for distinguishing such clusters using SOM visualiza-
tions. However, automatic (non-visual) detection of interpolating
units would be advantageous for SOM analysis. This paper
proposes a novel algorithm, based on inter-neuron distances in
weight vector space, for identifying and possibly pruning inter-
polating units. Existing methods for interpolating unit detection
are surveyed, highlighting drawbacks not associated with the
proposed algorithm. Focusing on classification task performance,
SOMs which are pruned using the proposed algorithm are
compared to unpruned SOMs. This analysis demonstrates that
interpolating unit pruning does not adversely affect SOM model
quality, and suggests that the proposed algorithm warrants
further investigation for application in data science.

Index Terms—artificial neural networks, self-organizing fea-
ture maps, data science, data mining, emergent phenomena

I. INTRODUCTION

The self-organizing map (SOM) is an unsupervised neu-
ral network [1], which has been the focus of abundant re-
search [2]–[4]. SOMs are useful for data analysis, and have
been used in fields as varied as the finance [5], medicine [6],
astronomy [7], and pandemic analysis [8], [9].

A SOM consists of neurons, each of which has a weight
vector. The weight vectors model the SOM’s training data.
Often, after SOM training, a subset of weight vectors do not
represent any of the modeled data. The neurons of such weight
vectors form boundaries between neuron groups representing
training data clusters, and are called interpolating units.

In many SOM visualizations [10], interpolating unit mark-
ing allows humans to easily analyze clusters. However, SOM-
based cluster discovery [11] and rule extraction [12]–[14], use
the weight vectors as a model of the SOM’s training data.
Here, interpolating units are noise that does not characterize
training data [15]. It is thus hypothesized that interpolating unit
removal will simplify the SOM data model, but not reduce the
performance of methods that rely on this data model.

This paper proposes a novel algorithm for detecting and
pruning interpolating units. The algorithm relies on the dis-
tances between neighboring neurons’ weight vectors. The
paper surveys existing methods for interpolating unit detection,
and identifies associated drawbacks which do not affect the

proposed algorithm. Finally, an empirical analysis compares
the performance of SOMs pruned by the algorithm and SOMs
that remained unpruned. The experiments used a classification
task performed on several data sets.

The remainder of this paper is organized as follows: Sec-
tion II discusses SOMs. Section III describes the properties
of interpolating units, while Section IV surveys and critically
discusses existing interpolating unit detection methods. Sec-
tion V discusses the novel algorithm for interpolating unit
detection and pruning, and Section VI outlines the empirical
investigation. Lastly, Section VII concludes the paper and
suggests future avenues of research.

II. SELF-ORGANIZING MAPS

The SOM is an unsupervised neural network developed by
Kohonen [16]. A SOM can train on unclassified data, unlike
supervised learning methods, and is thus unaffected by biased
class information. SOMs are more versatile than supervised
methods due to the prevalence of unclassified data.

Fig. 1 (a) shows the SOM architecture. A training data set is
denoted DT = {z⃗1, z⃗2, . . . , z⃗PT

}. Each training example is an
I-dimensional vector denoted z⃗s = (zs1, zs2, . . . , zsI). Each
attribute value, zsv , within z⃗s is a real value.

A SOM has a map structure of neurons, usually forming
a two-dimensional Y × X grid, where Y and X are the
number of rows and columns, respectively. The neuron at row
x and column y is nyx. A lattice defines the connections
between adjacent neurons. Each nyx has an I-dimensional
weight vector, w⃗yx = (wyx1, wyx2, . . . , wyxI). The real-valued
weight wyxv represents training set attribute zsv .

SOM training adapts the map structure to model the I-
dimensional training data, where the map has fewer dimen-
sions than I . The SOM model has two characteristics:

1) The map models the training data’s probability density
function. A neuron represents similar training examples,
and weight vectors fall within dense training data areas.

2) The model preserves the training data’s local topological
structure. Mutually similar data examples are repre-
sented by neurons close to one another in the map space.

Fig. 1 (b) shows the outcome of SOM training using a two-
dimensional map and training set. Crosses represent training
examples. Gray circles are the original weight vector positions,
where dashed lines connect adjacent weight vectors. Black

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1298

zPT 1 zPT 2

wyx2

z21 z2I

z11 z12

...

wyx1

DT

wyxI

...

. . .

z1I

zPT I

z22

zPT
:

z2:

...

. . .

. . .

z1:

Neuron yx

x
x
xx

x

x
x

(a) (b)

Fig. 1. General structure and operation of a SOM. (a) Architecture of a SOM. (b) The local effect of SOM training on two-dimensional data.

circles show weight vectors after training, with solid lines
connecting adjacent weight vectors. Weight vector movement
towards training examples illustrates the first property of SOM
models. The location of training examples close to adjacent
trained weight vectors highlights the second property.

Several SOM training algorithms exist, all of which update
weight vectors to achieve the two model properties. The pop-
ular stochastic method [16] is assumed here, which repeatedly
selects a training example and updates all weight vectors rela-
tive to the example’s map location. The specifics of stochastic
training are comprehensively described by Kohonen [1].

After SOM training, it is possible to find the neuron
(called the best matching unit or BMU) that is responsible for
modeling a data example. For data example z⃗s, the BMU has
the weight vector that is closest to z⃗s using a distance measure.
Euclidean distance is often used, and is assumed here.

III. PROPERTIES OF INTERPOLATING UNITS

Interpolating units are neurons with weight vectors that do
not represent part of the training data a SOM models [17], and
are thus redundant. Interpolating units are a natural byproduct
of stochastic SOM training, and have the following properties:

1) Interpolating units are isolated in the map, with weight
vectors far from all neighboring weight vectors. Usually
the distance measure that defines BMUs is used.

2) Because interpolating units do not model training data,
such neurons are usually not BMUs of any data exam-
ples from the same distribution as the training data.

An emergent cluster is a set of neurons with similar weight
vectors, which model a cluster in the training data. Interpo-
lating units often form borders between emergent clusters.
Interpolating unit marking thus often aids data analysis.

Interpolating unit pruning has potential benefits when meth-
ods focus only on emergent clusters. For example, pruning
improves the performance when clustering algorithms discover
emergent clusters, which Section IV-B describes [11], [17].

IV. EXISTING DETECTION TECHNIQUES

Existing interpolating unit detection techniques can be
extended into pruning methods by removing the identified

neurons from the map. Pruning disrupts the neuron grid’s
lattice, possibly disconnecting parts of the map. This prevents
the use of methods relying on a fully connected lattice.

Detection methods are based on the two properties of
interpolating units. Most existing interpolating unit detection
techniques use map structure visualizations to allow human-
led exploratory discovery of interpolating units. An interactive
tool is used to view the visualization and manually mark
interpolating units. Some examples of such visualizations are
shown in Fig. 2. All visualizations are based on the same
SOM, which was trained on the Iris data set [18].

A. Detection Using Local Distance

The first category of interpolating unit detection methods
focuses on distances between the weight vectors of neighbor-
ing neurons. These techniques thus identify interpolating units
using the first property that Section III mentions [17].

Fig. 2 (a) shows a U-matrix [19] of the Iris SOM. Hexagons
containing dots represent neurons, and empty hexagons denote
connections between neurons. Grayscale encoding represents
inter-weight vector distances. Lighter shades represent smaller
distances and darker shades indicate larger distances. Dark ar-
eas contain interpolating units that are far from all neighboring
neurons. The U-matrix shows that interpolating units often
benefit SOM visualizations, because these units help humans
distinguish emergent clusters (here interpolating units form a
boundary between two lighter-colored clusters).

An aggregate distance matrix [20] is less detailed than a
U-matrix. Only the mean or median distance between each
neuron and the neuron’s neighbors is shown.

Weight vector projections visually preserve all inter-weight
vector distances [21]. Fig. 2 (b) shows a Sammon’s mapping
projection [22] of the Iris SOM. Points represent weight
vectors and lines connect weight vectors of adjacent neurons.
Points surrounded by large spaces are interpolating units.

Gradient fields [23] represent, for each nyx, a visualization
vector pointing towards the probable cluster center of nyx. The
visualization vector of nyx is influenced by all other neurons,
where neurons with weight vectors closer to w⃗yx contribute
more. Thus the visualization vector of nyx points towards

1299

(a) (b) (c)

Fig. 2. Visualizations of the same SOM trained on the Iris data set. (a) U-matrix. (b) Sammon’s mapping. (c) Data histogram.

neurons closer in weight space. Neurons farther from nyx in
map space are also scaled to contribute less to the visualization
vector of nyx. Information from local neuron neighborhoods
is thus more strongly represented. The degree of the scaling
increases or decreases the effect of more distant neurons. A
gradient field is therefore similar to a U-matrix or aggregate
distance matrix, but takes a variable amount of local weight
information into account. In a gradient field visualization, a
neuron is an interpolating unit if all neighboring visualization
vectors point away from the neuron.

A borderline visualization [17] is similar to a gradient
field visualization. The visualization draws a line segment
orthogonal to the gradient field visualization vector for each
nyx. Line segments thus represent likely cluster boundaries.
Longer line segments surround interpolating units on the map.

B. Detection Using Cluster Discovery
It is possible to directly detect emergent clusters as a whole.

Emergent clusters are discovered by applying a clustering
algorithm to the map weight vectors [11]. Such methods
group together similar weight vectors that represent emergent
clusters. These methods thus also consider the first property
of interpolating units, but focus on larger uniform map areas.
Interpolating units are neurons that fall on the borders between
clusters, and are identifiable if clusters are visualized.

Many general-purpose clustering algorithms exist (e.g.,
Ward [24] and k-means [25] clustering), and are often used for
emergent cluster discovery. SOM-specific clustering methods
have also been proposed (e.g., the U*C algorithm [26]).

C. Detection Using Data Density
The focus now shifts to interpolating unit detection using

the second property of interpolating units. These techniques
thus concentrate on the density distribution of data examples
as related to the weight vectors of a trained SOM.

Fig. 2 (c) shows a data histogram visualization [27]. All Iris
training examples were first mapped to BMUs. The visualiza-
tion grayscale encodes each neuron, showing the number of
examples sharing the neuron as a BMU. The darker a neuron’s
shade is, the higher the number of mapped examples. Neurons
with the lightest color have no mapped examples.

When comparing Fig. 2 (c) to Fig. 2 (a), it is clear that every
interpolating unit is never a BMU. However, many non-BMU

neurons fall within emergent clusters and are not interpolating
units. This is because the data set is sparse and does not
adequately cover the map. Data density is thus not a reliable
indicator of interpolating units when training data are scarce,
particularly if maps are very large.

Smoothed data histograms [28] map each z⃗s to the b neurons
with w⃗yx closest to z⃗s. Example z⃗s belongs to nyx with a
degree inversely proportional to the distance between w⃗yx and
z⃗s. Clusters and interpolating units are more easily identifiable
than in a standard data histogram.

P-matrices [29] display a pareto density estimate [30], or
PDE, for each neuron. The PDE for nyx is the number of data
points within a hypersphere radius of w⃗yx. The radius defines
the minimum volume that preserves maximum information.
Neurons with low PDE values are interpolating units.

Graph based cluster visualizations [31] use graph edges to
connect similar data examples (either the d closest examples,
or examples within a hypersphere radius of one another).
Examples are mapped to BMUs, and the graph connections are
superimposed on the map. Networks of edges cover emergent
clusters, and no edges connect to interpolating units.

Zhang and Li [32] propose non-BMU interpolating unit
identification, which automatically marks neurons that are
never BMUs as interpolating units. Erroneous interpolating
unit identification is likely, especially for sparse training data
and large maps. This approach is therefore discouraged.

D. Detection Using Combined Measures
Finally, detection can combine the two interpolating unit

characteristics. Thus map weight space information and the
training data’s relationship to the map are both used.

A U*-matrix [33] combines the U-matrix and P-matrix. U-
matrix values are modified with a scaling factor. High P-matrix
values decrease corresponding U-matrix values, reducing local
distance importance and smoothing out erroneous interpolating
units within large clusters. For low P-matrix values, the scaling
increases the corresponding U-matrix value, ensuring clear
interpolating unit representation.

V. PROPOSED ALGORITHM

This section presents a novel algorithm for automatic in-
terpolating unit detection using local distances. The algorithm
avoids many problems associated with existing methods.

1300

Create and train a SOM, map, with Y ×X neurons
Define frac, a parameter defining a pruning threshold
for all neurons nyx in map do

Define neighyx, a set of neurons neighboring nyx

Define totalyx = 0, an inter-neighbor distance for nyx

for all neurons ny′x′ ∈ neighyx do
Update totalyx = totalyx + ∥w⃗yx − w⃗y′x′∥2

end for
Compute meanyx = totalyx ÷ |neighyx|

end for
Find mean(map), the mean of all meanyx

Find stdev(map), the standard deviation of all meanyx

for all neurons nyx in map do
if meanyx −mean(map) > frac × stdev then

Mark nyx as an interpolating unit
Optionally remove nyx from map

end if
end for

Fig. 3. Algorithm for distance-based interpolating unit pruning.

Visualization requires human analysis, which is time con-
suming, error-prone, and biased. This affects all the methods in
Section IV, except non-BMU interpolating unit identification.
The proposed algorithm avoids human interpretation. Cluster-
ing algorithms, which often have shortcomings or biases [34],
are also not used. Non-BMU interpolating unit identification
tends to erroneously mark neurons. The proposed algorithm
avoids this problem due to not relying on data density.

Fig. 3 shows the algorithm, which marks neurons unusually
far from neighbors in weight space. For each nyx, the mean
distance is found between w⃗yx and all neighboring neuron
weight vectors. The overall mean and standard deviation of
these distances are computed over all nyx. Neurons are marked
as interpolating units (and possibly pruned) if they have mean
distances greater than a fraction, frac, of a standard deviation
from the overall mean. Algorithm efficiency is impacted
mainly by the number of neurons in the map.

Fig. 4 marks interpolating units in the Iris SOM using vary-
ing frac values. Comparing Fig. 4 (b) to the visualizations in
Fig. 2 shows that interpolating units are successfully identified
if an appropriate frac value is used. Fig. 4 (a) shows that
a lower frac value selects interpolating units more liberally,
while in Fig. 4 (c) a larger frac value causes under-selection.

TABLE I
OPTIMAL SOM AND DISTANCE-BASED PRUNING PARAMETERS

Data Set Y,X η(0) τ1 σ(0) τ2 frac

Iris 5 5.488 1 432.617 2.119 77.539 0.369

Ionosphere 7 3.848 1 209.961 1.818 59.570 0.800

Monks 1 14 6.055 849.609 10.445 9.766 1.620

Monks 2 15 8.867 1 365.234 1.348 31.641 1.401

Monks 3 11 9.941 577.148 3.029 83.008 1.162

Pima 12 2.070 1 376.953 9.797 52.734 0.103

VI. EXPERIMENTAL WORK

The proposed algorithm is only justified if it does not mark
neurons critical to a SOM data model. The performance of
unmodified SOMs was thus compared to SOMs pruned by
the algorithm, using SOM-based data classification [35].

Fully unsupervised SOMs (both unpruned and pruned) were
trained on several data sets. The experiments used the Iris,
ionosphere, monk’s problems, and Pima Indians diabetes data
sets, all from the UCI Machine Learning Repository [36]. Data
sets were preprocessed by one-hot encoding nominal attributes
and scaling attribute values to a [0.0, 1.0] range.

Neurons were labeled using supervised example-centric
neuron labeling [37], which has been shown to be superior
to other supervised labeling approaches [15]. Unsupervised
labeling was not used because its results are difficult to inter-
pret [38]. Example-centric neuron labeling matches training
examples to BMUs. Each BMU is then labeled with the most
common class within the BMU’s matched examples. Neurons
that are never BMUs are left unlabeled.

Each training set example was then matched to a BMU,
the label of which became the classification of the example.
Finally, the same classifications were applied to a test data set,
which was unseen by the SOM during training.

Square maps were used, implemented in SOM PAK [39]
with extensions suggested by the author [15]. Training ceased
when a moving average (over 30 training iterations) of
the training quantization error’s standard deviation reached
0.0001, or after 100 000 training iterations elapsed.

Table I shows the results of parameter tuning for unmodified
SOMs on each data set. The parameters are Y and X (number
of map rows and columns), η(0) (initial learning rate), τ1

(a) (b) (c)

Fig. 4. Iris SOM interpolating units marked by the proposed algorithm. (a) Using frac = 0.05. (b) Using frac = 1.0. (c) Using frac = 2.5.

1301

(learning rate decay constant), σ(0) (initial kernel width), and
τ2 (kernel width decay constant). The pruned SOMs used the
same parameters, but frac was additionally tuned.

Tables II to V show the experimental results, each focusing
on a different performance measure. Means and standard devi-
ations of measures are reported, calculated over 30-fold cross-
validations that dictated training and test set sizes. For each
comparison between the unpruned and pruned approaches, a
non-parametric Wilcoxon signed-rank hypothesis test [40] was
performed at a 0.05 confidence level. A Bonferroni correc-
tion [41] accounted for the multiple comparisons problem. A
p-value is reported for each hypothesis test. When the p-value
indicates a statistically significant difference, the more optimal
performance measure is highlighted in bold.

Table II shows the mean, c, and standard deviation, σc,
of training set classification error. A statistically significant
performance difference is only highlighted for the ionosphere
and Pima Indians diabetes data sets. Here, the unpruned SOMs
outperformed the pruned SOMs, but not by very large margins.
Mean performance differed by 2.02% on the ionosphere set,
and 3.526% on the Pima Indians diabetes set. All other
cases showed no significant differences. Pruning thus did not
introduce a great training performance penalty.

Test set classification error is a better indicator of real-
world algorithmic performance, and is shown in Table III. The
mean, t, and standard deviation, σt, of the measure are shown.
There was no statistically significant performance difference
for any of the data sets. This indicates no negative real-world
classification performance penalty introduced by interpolating
unit pruning, for the investigated data sets.

Table IV focuses on the mean, u, and standard deviation, σu,
of the percentage of unlabeled neurons left by the supervised
example-centric neuron labeling. Unlabeled neurons represent

TABLE II
TRAINING SET CLASSIFICATION ERROR PERFORMANCE

Data Set
No Pruning Pruning

p-value
c σc c σc

Iris 3.655 0.705 4.046 1.067 0.165

Ionosphere 10.137 1.221 12.157 1.496 1.080 × 10−5

Monks 1 18.126 1.084 18.373 1.452 0.390

Monks 2 15.766 0.657 15.774 0.716 0.972

Monks 3 23.828 1.792 24.386 2.002 0.117

Pima 20.588 0.971 24.114 1.002 1.863 × 10−9

TABLE III
TEST SET CLASSIFICATION ERROR PERCENTAGE PERFORMANCE

Data Set
No Pruning Pruning

p-value
t σt t σt

Iris 4.000 8.137 2.667 6.915 0.500

Ionosphere 11.515 10.923 13.030 10.592 0.453

Monks 1 20.000 12.358 22.381 12.118 0.434

Monks 2 20.238 10.116 19.286 10.469 0.832

Monks 3 26.429 12.178 28.095 10.927 0.316

Pima 26.133 9.951 26.800 9.974 0.684

less interesting areas of the SOM model. If pruning reduces the
unlabeled neuron percentage, then neuron removal is focusing
on these uninteresting (and thus redundant) areas. Pruning
reduced the percentage of unlabeled neurons significantly in
all cases. In the Iris, ionosphere, and Pima Indians diabetes
sets, unlabeled neurons were almost entirely removed.

Finally, Table V illustrates the mean, r, and standard devi-
ation, σr, for the percentage of pruned neurons. Of course, no
neurons were pruned from the unmodified SOMs. However,
the proposed algorithm pruned a significant number of neurons
for all data sets. Particularly high mean percentages were
pruned for the Iris, ionosphere, and Pima Indians diabetes sets,
although the standard deviations were also quite high. In all
these cases more than 24% of neurons were removed, despite
maps being relatively small, with less room for redundancies.
It is likely that pruning will be even more effective on very
large maps, where interpolating units are more prevalent.

Overall, the results indicate that the proposed algorithm’s
pruning was focused on the least important parts of the SOM
data model. This was achieved while not significantly affecting
the real-world error produced by the classifying task. In fact,
the highest degrees of pruning (in the Iris, ionosphere, and
Pima Indians diabetes sets) were associated with the removal
of almost all unlabeled neurons. Therefore, the most aggressive
pruning removed most redundant neurons from maps. The
proposed algorithm thus warrants consideration for either
identifying or pruning interpolating units from SOMs.

The optimal frac value was problem dependent, with no
clear trend in optimal values. Interestingly, low frac values
often resulted in higher pruning percentages (e.g., in the Iris,
ionosphere, and Pima Indians diabetes sets). The level of
pruning produced by a particular frac value is thus strongly
affected by a map’s data model characteristics.

TABLE IV
UNLABELED NEURON PERCENTAGE PERFORMANCE

Data Set
No Pruning Pruning

p-value
u σu u σu

Iris 19.467 3.104 0.400 1.221 1.863 × 10−9

Ionosphere 3.810 1.912 0.680 1.116 5.960 × 10−8

Monks 1 43.469 3.065 37.466 4.204 2.012 × 10−7

Monks 2 49.807 1.885 41.067 2.812 1.863 × 10−9

Monks 3 32.700 4.967 23.526 3.899 7.451 × 10−9

Pima 3.264 1.317 0.440 0.562 1.863 × 10−9

TABLE V
PRUNED NEURON PERCENTAGE PERFORMANCE

Data Set
No Pruning Pruning

p-value
r σr r σr

Iris 0.000 0.000 33.733 5.626 1.863 × 10−9

Ionosphere 0.000 0.000 24.014 3.156 1.863 × 10−9

Monks 1 0.000 0.000 5.731 1.134 1.863 × 10−9

Monks 2 0.000 0.000 8.119 1.213 1.863 × 10−9

Monks 3 0.000 0.000 11.322 1.711 1.863 × 10−9

Pima 0.000 0.000 42.824 3.433 1.863 × 10−9

1302

VII. CONCLUSION

This paper discusses interpolating units in SOMs, and
surveys existing methods for identifying interpolating units. A
novel algorithm for identifying and potentially pruning inter-
polating units is proposed. The proposed approach has several
benefits over existing methods, primarily stemming from the
reliance of existing approaches on fallible human analysts. An
empirical investigation on several data sets is reported, which
showed that the proposed algorithm successfully identified and
pruned redundant interpolating units. This was achieved while
not disrupting the quality of the SOM’s predictive ability.

Future work will analyze the proposed algorithm’s classi-
fication performance when using other labeling approaches,
such as weight-centric neuron labeling [37]. Interpolating
unit pruning will be investigated for supervised and semi-
supervised SOMs [35]. Automatic interpolating unit pruning
will also be compared to SOM-based approaches designed
to avoid producing interpolating units, for example SOM-
kMER [42]. Edge detection for the identification of interpolat-
ing units on the borders of discovered emergent clusters will
also be investigated. The improvement of automatic interpo-
lating unit detection using data density is another potential
future avenue of investigation. Finally, automatic interpolating
unit detection could also be based on the other visualization
techniques mentioned in Section IV.

REFERENCES

[1] T. Kohonen, Self-Organizing Maps, 3rd ed. Springer-Verlag, 2001.
[2] S. Kaski, J. Kangas, and T. Kohonen, “Bibliography of Self-Organizing

Map (SOM) papers: 1981–1997,” Neural Comput. Surv., vol. 1, pp. 102–
350, 1998.

[3] M. Oja, S. Kaski, and T. Kohonen, “Bibliography of Self-Organizing
Map (SOM) papers: 1998–2001 addendum,” Neural Comput. Surv.,
vol. 3, pp. 1–156, 2003.

[4] M. Pöllä, T. Honkela, and T. Kohonen, “Bibliography of Self-Organizing
Map (SOM) papers: 2002-2005 addendum,” Helsinki Univ. Technol.,
Tech. Rep. TKK-ICS-R23, 2009.

[5] M. Nordlinder, “Clustering of financial account time series using Self
Organizing Maps,” Master’s thesis, KTH Roy. Inst. Technol., 2021.

[6] P. G. Reddy, T. Ramashri, and L. Krishna, “Brain tumour region
extraction using novel self-organising map-based KFCM algorithm,”
Pertanika J. Sci. & Technol., vol. 31, no. 1, pp. 577–594, 2023.

[7] B. W. Holwerda, D. Smith, L. Porter, C. Henry, R. Porter-Temple,
K. Cook, K. A. Pimbblet, A. M. Hopkins, M. Bilicki, S. Turner,
V. Acquaviva, L. Wang, A. H. Wright, L. S. Kelvin, and M. W. Grootes,
“Galaxy and mass assembly (GAMA): Self-Organizing Map application
on nearby galaxies,” Mon. Not. R. Astron. Soc., vol. 513, no. 2, pp.
1972–1984, 2022.

[8] D. Galvan, L. Effting, H. Cremasco, and C. A. Conte-Junior, “The spread
of the COVID-19 outbreak in Brazil: An overview by Kohonen Self-
Organizing Map networks,” Medicina, vol. 57, no. 3, pp. 1–19, 2021.

[9] P. Melin, J. C. Monica, D. Sanchez, and O. Castillo, “Analysis of spatial
spread relationships of coronavirus (COVID-19) pandemic in the world
using self organizing maps,” Chaos, Solitons & Fractals, vol. 138, pp.
1–7, 2020.

[10] J. Vesanto, “Using SOM in data mining,” Licentiate’s thesis, Helsinki
Univ. Technol., 2000.

[11] J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,”
IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 586–600, 2000.

[12] A. Ultsch and D. Korus, “Automatic acquisition of symbolic knowledge
from subsymbolic neural networks,” in Proc. EUFIT, vol. 1, 1995, pp.
326–331.

[13] J. Malone, K. McGarry, S. Wermter, and C. Bowerman, “Data mining
using rule extraction from Kohonen self-organising maps,” Neural
Comput. Appl., vol. 15, no. 1, pp. 9–17, 2006.

[14] W. S. Van Heerden and A. P. Engelbrecht, “HybridSOM: A generic rule
extraction framework for self-organizing feature maps,” in Proc. CIDM,
2009, pp. 17–24.

[15] W. S. van Heerden, “Self-organizing feature maps for exploratory data
analysis and data mining: A practical perspective,” Master’s thesis, Univ.
Pretoria, 2017.

[16] T. Kohonen, “Self-organizing formation of topologically correct feature
maps,” Biol. Cybern., vol. 43, no. 1, pp. 59–69, 1982.

[17] G. Pölzlbauer, “Advanced data exploration methods based on Self-
Organizing Maps,” Ph.D. dissertation, Technischen Universität Wien,
2008.

[18] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Ann. Eugen., vol. 7, no. 2, pp. 179–188, 1936.

[19] A. Ultsch and H. P. Siemon, “Kohonen’s self organizing feature maps
for exploratory data analysis,” in Proc. INNC, vol. 1, 1990, pp. 305–308.

[20] A. Varfis and C. Versino, “Clustering of european regions on the basis
of socio-economic data — A Kohonen feature map approach,” in Proc.
PASE, 1991, pp. 57–68.

[21] G. Pölzlbauer, “Application of Self-Organizing Maps to a political
dataset,” Master’s thesis, Technischen Universität Wien, 2004.

[22] J. W. Sammon, Jr, “A nonlinear mapping for data structure analysis,”
IEEE Trans. Comput., vol. 18, no. 5, pp. 401–409, 1969.

[23] G. Pölzlbauer, A. Rauber, and M. Dittenbach, “A vector field visualiza-
tion technique for Self-Organizing Maps,” in Proc. PAKDD, 2005, pp.
399–409.

[24] J. H. Ward, Jr, “Hierarchical grouping to optimize an objective function,”
J. Amer. Statist. Assoc., vol. 58, no. 301, pp. 236–244, 1963.

[25] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proc. BSMSP, vol. 1, 1967, pp. 281–297.

[26] A. Ultsch, “U*C: Self-organized clustering with emergent feature maps,”
in Proc. LWA, 2005, pp. 240–244.

[27] J. Vesanto, “SOM-based data visualization methods,” Intelligent Data
Anal., vol. 3, no. 2, pp. 111–126, 1999.

[28] E. Pampalk, A. Rauber, and D. Merkl, “Using smoothed data histograms
for cluster visualization in Self-Organizing Maps,” in Proc. ICANN,
2002, pp. 871–876.

[29] A. Ultsch, “Maps for the visualization of high-dimensional data spaces,”
in Proc. WSOM, 2003, pp. 225–230.

[30] ——, “Pareto Density Estimation: A density estimation for knowledge
discovery,” in Proc. GfKl, 2003, pp. 91–100.

[31] G. Pölzlbauer, A. Rauber, and M. Dittenbach, “Graph projection tech-
niques for Self-Organizing Maps,” in Proc. ESANN, 2005, pp. 533–538.

[32] X. Zhang and Y. Li, “Self-organizing map as a new method for clustering
and data analysis,” in Proc. IJCNN, vol. 3, 1993, pp. 2448–2451.

[33] A. Ultsch, “U*-Matrix: a tool to visualize clusters in high dimensional
data,” Philipps-Universität Marburg, Tech. Rep. 36, 2003.

[34] D. Fasulo, “An analysis of recent work on clustering algorithms,” Univ.
Washington, Dept. Comput. Sci. Eng., Tech. Rep. 01-03-02, 1999.

[35] W. S. van Heerden and A. P. Engelbrecht, “A comparison of map neuron
labeling approaches for unsupervised self-organizing feature maps,” in
Proc. IJCNN, 2008, pp. 2139–2146.

[36] D. W. Aha, C. L. Blake, S. J. Hettich, E. J. Keogh, C. J. Merz, and
P. M. Murphy, “UCI repository of machine learning databases,” 1998,
univ. California, Irvine.

[37] T. Kohonen, Self-Organization and Associative Memory, 3rd ed.
Springer, 1989.

[38] W. S. van Heerden and A. P. Engelbrecht, “Unsupervised weight-based
cluster labeling for self-organizing maps,” in Proc. WSOM, 2012, pp.
45–54.

[39] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen, “SOM PAK:
The Self-Organizing Map program package,” Helsinki Univ. Technol.,
Tech. Rep. A31, 1996.

[40] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

[41] R. G. Miller, Jr, Simultaneous Statistical Inference, 2nd ed. Springer-
Verlag, 1981.

[42] T. C. Siong, “A hybrid artificial neural network model for data visualisa-
tion, classification, and clustering,” Ph.D. dissertation, Universiti Sains
Malaysia, 2006.

1303

