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Abstract— Evolutionary optimization methods have been 

utilized to optimize a wide range of models, including many 

complex neural network models. Manual parameter selection 

requires substantial trial and error and specialist domain 

knowledge of the inherent structure, which does not guarantee 

the best outcomes. We propose a three-layered novel 

architecture for semantic segmentation and optimize it using 

two distinct evolutionary algorithm-based optimization 

processes namely genetic algorithm and particle swarm 

optimization. To fully optimize an end-to-end image 

segmentation framework, the network design is tested using 

various combinations of a few parameters. An automatic search 

is conducted for the optimal parameter values to maximize the 

performance of the image segmentation framework. 

Evolutionary Algorithm (EA)-based optimization of the three-

layered semantic segmentation network optimizes parameter 

values holistically, which produces the best performance. We 

evaluated our proposed architecture and optimization on two 

benchmark datasets. The evaluation results show that the 

proposed optimization can achieve better accuracy than the 

existing approaches. 

Keywords—image segmentation, semantic segmentation, 

scene parsing, genetic algorithm, deep learning 

I. INTRODUCTION 

The objective of semantic segmentation is to assign pre-

determined semantic categories like objects (e.g., motor 

vehicle, animal, pedestrian) and backgrounds (e.g., roadway, 

tree, building) to each pixel in the image. The outcome of 

semantic segmentation is a dense pixel-wise annotation of an 

image that has an identical resolution as the input image. 

Semantic segmentation enables us to obtain a more precise 

and rich representation of the image content, which makes it 

a fundamental step in computer vision techniques with 

numerous applications such as image understanding and 

editing. 

Semantic segmentation involves dividing an image into 

meaningful classes and identifying relationships between 

them, which presents challenges. Crucial systems, such as 

hazard detection, image compression, augmented reality, AI-

based smart monitoring, robot vision, and autonomous 

vehicle navigation rely on accurately detecting the presence 

of predefined objects in an environment. The diverse 

appearance of objects, in both structured and unstructured 

complex natural scenes make it challenging to label pixels 

precisely with an object category. Fig.1 displays a selection 

of images from our experimental datasets with their annotated 

labels, demonstrating various challenges. The class objects 

exhibit variations in appearance and are influenced by factors 

like occlusion, illumination, angle, and size. The robust 

segmentation network must perform three tasks 

(classification, localization, and edge delineation) on each 

object to achieve high accuracy. The following is a brief 

overview of our key contributions to this paper: 

a) Our proposed architecture consists of three layers, 
holistically optimized through the evolutionary algorithm. 
These layers (i.e., visual feature layer, context feature layer, 
and integration layer) capture optimal parameter values. We 
conducted two sets of experiments. The evolutionary 
algorithms based on Particle Swarm Optimization and Genetic 
Algorithms play a crucial role in improving accuracy by 
selecting the optimal parameters. 

b) The co-occurrence probability information between 
object classes from the training samples is extracted 
effectively by our architectures' contextual layer. It leverages 
the patterns in the object's spatial data, both locally and 
globally (block-wise), to obtain the desired information. 

c) As evidenced by robust evaluation using the widely 
used Stanford Background Dataset [1] and CamVid [2] 
benchmark datasets, the proposed method exhibits 
satisfactory performance on both image segmentation 
datasets. Our results are comparable to previous methods on 
both SBD and the CamVid street scene dataset. 

 

 

 

 

 

 
 

  

Fig. 1.  Semantic segmentation densely predicts semantic categories from 
natural images taken in an unrestricted setting. Annotated ground truth 

images are presented in the bottom row, while original images are 

presented in the top row. 
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II. PREVIOUS WORKS 

A. Evolutionary Computation-based Optimisation 

The application of evolutionary algorithms to address a 
variety of hyperparameter optimization and search problems 
has been widely reported. Two Evolutionary Algorithms (EA) 
such as Particle Swarm Optimization (PSO) [5, 6] and Genetic 
Algorithm (GA) [3, 4] remain at the forefront in solving 
parameter optimization problems. While a solution based on 
the PSO algorithm is efficient for continuous optimization, 
GA-based solutions are more suited for optimization with 
binary data. Previous research has employed Genetic 
Algorithms for optimizing the weights of artificial neural 
networks [7] and for determining the structure of neural 
network models [8, 9]. 

B. Semantic Segmentation 

A comprehensive evaluation was conducted on the 
publicly available semantic segmentation datasets and the 
pros and cons of different ConvNets-based semantic 
segmentation architectures. Many CNN-based network 
models outperformed advanced semantic segmentation 
methods. Recently developed image or scene parsing models 
utilized implicit global [10] or local context [11] along with 
convolutional visual features. However, these methods are 
ineffective in integrating relative and absolute contextual 
information with the visual characteristics effectively. The 
proposed method, on the other hand, is based on explicit 
context integration. Two main techniques have been used in 
published semantic segmentation articles: multi-scale context-
based methods and deep ConvNets variations. 

Earlier techniques for classifying pixel labels involved 
either the individual extraction of visual features around each 
pixel in an image [12] or the extraction of features in patches 
[13].  Image segmentation architectures that utilized feature 
hierarchies employed region proposals to obtain class labels 
in some of the earliest scene segmentation tasks [14]. 
However, features based on global context perform better than 

those based on individual pixels, as the latter cannot 
effectively capture the statistics of adjoining regions, while 
feature extraction using patches is susceptible to background 
noise from objects. Spatial pyramid-based pooling in PSPNet 
[15] improves scene parsing accuracy by incorporating global 
contextual statistics. Nguyen et al. [14] introduced a network 
based on a hybrid Deep Network-Gaussian Process (GP) for 
the segmentation of scene images into lane and background 
regions. This architecture differs from existing deep learning 
approaches by combining a dense network of limited 
parameters with a robust nonparametric GP classifier. In both 
visual and quantitative evaluations, this Gaussian Process-
based classifier outperforms SegNet [16] and Bayesian 
SegNet [17]. However, the study only evaluated and 
compared with other techniques for a single class (pedestrian 
lane). 

Yu et al. [18] proposed BiSeNet as a two-branche 
architecture for real-time semantic segmentation. The Detail 
Branch captures the spatial details with wide channels and 
shallow layers. The Semantic Branch, in contrast, extracts 
categorical semantics with fewer channels and deep layers. 
These two features are merged to obtain a comprehensive 
feature representation. ParseNet [19] leverages image-level 
information by utilizing each pixel's global features. PSPNet 
[15] improves accuracy by employing a pyramid pooling 
module that gathers useful multi-scale contextual information. 
Zhang et al. [20] proposed EncNet introduces a Context 
Encoding Module to emphasize class-dependent feature maps 
and record semantic context. Deeplabv2 [21] and Deeplabv3 
[22] integrate contextual information through the use of atrous 
spatial pyramid pooling, which involves dilated convolutions 
parallelly with varying rates. Despite the importance of 
context in real-world image parsing, the integration of both 
global and local context in a single network architecture has 
not yet been thoroughly explored. Our goal is to utilize the 
statistical characteristics to infer class labels by capturing 
essential neighboring class information as context. 

 

Fig. 2. A cutting-edge optimization approach is used to optimize the proposed new multi-layered image segmentation framework. In the first layer, 
we compute class probability using superpixel visual features. In order to estimate the probability for classes, the second layer computes context 
characteristics utilising superpixel blocks probability and votes from neighbouring superpixel. The probability vector acquired from the visual feature 

classification (layer 1) and the contextual attributes are ideally fused to get the final class label for each superpixel in the final integration layer (layer 2). 
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III. PROPOSED METHOD 

We propose a new framework that optimises our deep 
semantic segmentation architecture using evolutionary 
algorithms. Two different optimization frameworks using 
Genetic Algorithm (GA) and Particle Swarm Optimisation 
(PSO) are utilized for a limited number of iterations to find the 
optimal parameter values for the segmentation architecture. 
Fig. 2 presents the building blocks of the architecture to 
achieve our goal of high-resolution semantic segmentation. 
The process starts with the extraction of the visual features 
from the segmented superpixel patches, which are then fed 
into the visual feature classification layer. This class-semantic 
supervised classifier produces class-wise probability matrices 
for all superpixels, indicating the probabilities of each 
superpixel belonging to one of the object classes. The 
contextual layer is divided into two parts, each of which 
extracts different types of contextual information (local and 
global region-based) from each superpixel in the image. 
Contextual features are generated by combining the class 
probability matrices obtained from the visual classification 
layer and the Object Co-occurrence Priors (OCPs) obtained 
during the training process. The visual and contextual features 

are integrated through a multi-layer perceptron (MLP) 
network, which assigns the final class marker for each 
superpixel. 

A. Features based on visual properties 

The proposed feature extraction algorithm uses 
superpixels, which are over-segmented clusters of pixels 
created from an input image, to extract visual features. In the 
feature selection process, the most impactful features are 
selected from the visual information. The visual feature 
classifier is trained using the visual features that are extracted 
from the superpixel patches of training image samples from 
the dataset. The visual feature classifier uses the superpixel-
level feature vector as input, and a fully connected network 
with a single hidden layer learns various patterns for 
classification.  The classifier's efficiency is enhanced 
throughout training by selecting appropriate feature subsets.  

B. Features based on contextual properties 

The contextual features of the classes are extremely 
important in the proposed framework. By calculating the 
probability of adjacent superpixels in both the close 
surroundings and the entire image, we precisely construct the 

 

Fig. 3.  The proposed flow diagram of PSO-based optimisation of the context-based neural networks for image segmentation. 

 

Fig. 4.  The proposed architecture of the GA-based optimization system for image parsing 
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relationships between superpixels. Local probabilities are 
estimated using the immediately adjacent superpixels while 
calculating global probability, superpixels within a spatial 
block are assessed. The probability values take into account 
both local and global information. 

Modeling local context using statistics of adjacent 
superpixels: The localized contextual information 
incorporates valuable information from the surrounding 
superpixels. The probability vector of the adjacent superpixels 
for each superpixel is estimated. Each superpixel casts a vote 
for the surrounding superpixels based on a pre-determined 
class label, which leads to the computation of an object co-
occurrence priors matrix. This matrix provides class 
probability statistics for the surrounding superpixels for each 
superpixel and contains probability matrices for neighboring 
superpixels that were estimated from the training sample. 

Modeling global context using statistics of block-wise 
superpixels: The reliance on long-range superpixel 
correlations is heavily influenced by block-wise voting for 
each superpixel. Both the absolute position of objects and their 
spatial arrangement offsets are considered using block-wise 
estimation. The block-wise encoding creates a balance of 
absolute and relative regions, encoding the absolute location 
of each block while encoding the relative location offsets of 
objects in the spatial relations between blocks. The spatial 
distributions encoding method of all blocks also encodes 
directional spatial relationships between blocks (E.g., 
interactions between left and right blocks). 

C. Optimal integration of three features 

The integration layer seeks to give every superpixel a class 
label through our final integration layer's weight optimisation. 
The most likely visual characteristic from visual feature-based 
prediction and two types of contextual characteristics from 
context-sensitive voting are integrated using optimized 
weights. A weighted majority technique is utilized to assign a 
class label to each superpixel. The integration layer (a single 
hidden layer MLP network) estimates the correlation of visual 
and contextual characteristics during integration. 

D. Optimization 

Particle Swarm Optimization (PSO): Our proposed 
PSO-based architecture optimisation method considers the 
feature dimension, the count of nodes in the visual feature 
classifier, the count of nodes in the integration layer, and other 
hyperparameters for optimisation. Gradient-based 
optimization methods are not effective for parameter 
optimization due to their non-differentiable and non-convex 
nature. The PSO technique creates multiple models from the 
initial model, initializing the population chromosomes or 
vectors with parameter range values (as presented in Fig. 3). 
The fitness evaluation determines which model performs the 
best by computing the cost. Due to the random initialization 
value of parameters during the model’s optimisation process, 
some models perform better than others. 

The segmentation network was optimised with a 
population size of 25, 0.01% mutation rate, and 0.05–0.1% 
crossover rate. Over the iterations, the accuracy improved, and 
its best value was attained when the crossover rate was 0.1. In 
our experiment, the convergence was accelerated during the 
high crossover rate. The proposed network learns parameters 
in each layer to generate an approximation. 

Genetic Algorithm (GA): The proposed network architecture 
considers various parameters, including the feature 

dimension, count of nodes in the visual classification layer, 
and count of nodes in the integration layer (as shown in Fig. 
4). Traditional gradient-based optimization techniques are not 
effective due to the non-differentiable and non-convex nature 
of the parameter optimization problem [23]. We use GA to 
create several offspring from the initial model, which is 
initialized with parameter range values for the population 
chromosomes or vector. The fitness evaluation tests compute 
the cost to determine the best-performing model. The models' 
performance can vary due to random initialization. The 
network selects the optimal set of parameters for each layer. 
The GA parameters for the network optimisation were set to a 
population size of 25, a mutation rate of 0.01, and a crossover 
rate between a range of 0.05 to 0.1. During the optimization 
process, a higher crossover rate was found to speed up 
convergence, with the best accuracy obtained when the 
crossover rate was 0.1. The proposed context-based 
architecture uses a GA-based framework to automatically 
determine the optimal value of parameters by searching the 
solution space. The value encoding approach was used in the 
genetic algorithm-based optimization, where the chromosome 
is represented by real, integer, or character values. This 
encoding scheme is well-suited for our continuous search 
problems, commonly used in neural networks for finding 
optimal weights.  

IV. RESULTS AND DISCUSSIONS 

This section presents the achieved accuracy from the 

proposed optimized architectures and discusses them. Our 

experimentation was carried out on two benchmark datasets, 

and a thorough performance review of recently published 

works in image segmentation techniques was performed to 

compare the performance. 

A. Datasets 

Segmentation evaluation dataset: The proposed 

methodology was validated using the Stanford Background 

Dataset (SBD) [1] and the CamVid [2] dataset. The SBD [1] 

consists of 715 outdoor scenery photos sourced from public 

databases and was annotated using an online platform 

operated by Amazon (Amazon Mechanical Turk), 

categorizing image pixels into eight predefined categories or 

undefined categories. For the experiments, the SBD is 

partitioned into three sets, namely training data (70% 

samples), fitness evaluation data (15%), and final test data 

(15%). The data samples are chosen at random for training, 

fitness evaluation, and testing. 

The CamVid [2] dataset features manually annotated 

labels for 32 object classes and valuable experimental data 

for evaluating image segmentation models. The images in 

this dataset are extracted from video footage captured from a 

car's perspective, which adds diversity to the object classes 

represented. This dataset is well-regarded among computer 

vision researchers for its significant contributions, and its 

original resolution of 960 × 720 was down-sampled to 480 × 

360 for our experiments, following previous studies. Like 

SBD, the CamVid dataset is also partitioned into 3 sets (i.e., 

70% of samples are used for training models, and the 

remaining samples are equally allocated for fitness evaluation 

and testing. The training and fitness evaluation data sets are 

used for the stochastic gradient descent search and genetic 

beam search to induce the neural network models, while the 

test data set was used for final image segmentation to evaluate 
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the performance of the trained/learned neural networks. Note 

that the test was not used at any stage of the 

training/evolutionary process. 

B. Implementation details 

Our model was developed using the Python and MATLAB 
environments with the support of the Global Optimization 
Toolbox, Image Processing Toolbox, and Neural Network 
Toolbox. All evaluations were conducted on a High-
Performance Computing (HPC) cluster facility with dedicated 
16 processing nodes and 160 GB of RAM. 

C. Evaluation on Stanford Dataset  

Table I displays the results obtained from the Stanford 

dataset. The GA-optimised model scored 92.42% accuracy, 

and the PSO-optimised model achieved 92.35% accuracy 

with a population size set to 25. Table I also compares the 

accuracies reported by previous works with the accuracy of 

our proposed GA-based and PSO-based optimised models. 

Table I shows 92.18% class accuracy obtained using the GA-

optimised model, while PSO optimised model obtained 

92.15% accuracy. Fig. 5 showcases the qualitative results 

obtained from the Stanford Background dataset, indicating 

that the proposed solution predicted object pixels with high 

precision. 

 
 

D. Segmentation Results on CamVid dataset 

On the CamVid test dataset, we used the broadly used 

Intersection-Over-Union (IoU) metric (i.e., the Jaccard 

Index) to assess how well our optimised models perform. The 

weighted Jaccard Index was used as the mean IoU metric to 

analyze the model's performance. It's a popular highly 

effective metric method used by the state-of-the art 

algorithms in semantic segmentation performance 

evaluation.  

The proposed GA-optimized three-layered network 

model achieved 78.68% mIoU on the Stanford dataset 

without using any pre-trained weights when the population 

was set to 25. The PSO-optimised model outperformed the 

GA-based optimised model with an accuracy of 81.77% 

mIoU when the population was set to 25. Table II compares 

the mean IoU with previously published techniques on the 

CamVid dataset and shows that the network model 

outperformed existing techniques using the best parameter 

choices. Fig. 6 showcases the qualitative results of the 

proposed approach on the CamVid dataset, with the top row 

displaying the test samples, the middle row displaying the 

corresponding annotation of test samples, and the bottom row 

interpreting the model-generated results from our PSO-

optimised segmentation model. 

 

 
 

 

TABLE I. COMPARISON OF SEGMENTATION RESULTS (%) WITH 

BENCHMARK APPROACHES ON THE STANFORD BACKGROUND 

DATASET 

Method Pixel Acc. Class Acc. 

Gould et al. [1]  76.4 - 

Lempitsky et al. [24]  81.9 72.4 

Farabet et al. [25] 81.4 76.0 

Sharma et al. [13] 82.3 79.1 

Luc et al. [26] 75.2 68.7 

Chen et al. [22] 87.0 75.9 

Zhu et al. [27] 87.7 79.0 

Proposed Method (GA) 92.42 92.18 

Proposed Method (PSO) 92.35 92.15 

 

   

Fig. 5. Qualitative accuracy on the Stanford Background dataset is 

achieved by the PSO-optimised model, displayed column-wise with 

original, ground truth, and network-labeled images arranged from top to 

bottom. 

TABLE II. COMPARISON OF SEGMENTATION RESULTS (%) WITH 

BENCHMARK APPROACHES ON THE CAMVID DATASET 

Method Pre-trained 
mIoU 

(%) 

Badrinarayanan et al. [16] ImageNet 60.1 

Huang et al. [28] ImageNet 62.5 

Yu and Koltun [10] ImageNet 65.3 

Zhao et al. [14] ImageNet 69.1 

Bilinski and Prisacariu [29] ImageNet 70.9 

Chandra et al. [30] Cityscapes 75.2 

Yu et al. [18]  ImageNet 78.5 

Proposed Method (GA)   -  78.6 

Proposed Method (PSO)   - 81.7 

 

 

   

Fig. 6. Qualitative accuracy on the CamVid dataset is achieved by the 
PSO-optimised model. We presented a top-down, columnar strategy to 

show sample test images, ground truth annotation, and the segmentation 

model annotated images. 
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V. CONCLUSIONS 

In this study, we propose a novel deep context-adaptive 

architecture for the segmentation of images semantically, and 

the performance was improved using evolutionary 

algorithms. The network utilizes the object co-occurrence 

priors matrices evaluated during the training phase to derive 

the contextual features. The context-based feature is intended 

to record label correlations of objects in a scene image over 

close-range and far-off distances. Our architecture 

optimization aims to determine the optimal combination of 

our network parameters that would produce the best 

accuracy. Two benchmark datasets were used in the 

experiments on the proposed image parsing model, which 

showed improved performance. Using the genetic algorithm 

as an optimizer on the SBD, we achieved an accuracy of 

92.42 percent, while on the CamVid dataset, we secured an 

accuracy of 78.68 percent mIoU. The PSO algorithm 

achieved almost equal performance (92.35 percent accuracy) 

on the SBD and, however, outperformed the genetic 

algorithm with 81.77 percent accuracy on the CamVid 

dataset. The comparative study presented in Tables I and II 

shows that our proposed model performs better, as evidenced 

by the results. Future studies will concentrate on further 

performance-improving optimization of the proposed model. 
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