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Instituto Politécnico Nacional
Mexico City, Mexico
0000-0002-9167-9084
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Abstract—This work proposes the design of a robust controller
for the perturbed kinematic model of the unicycle mobile robot,
considering a neuro-identifier that imposes restrictions on the
identification error. The controller is based on integral sliding
modes (ISMs) and the approximation provided by a differen-
tial neural network (DNN) for the tracking error dynamics,
represented as an uncertain time-varying linear system. The
methodology ensures asymptotic stability for the tracking error
despite multiplicative disturbances in the control channel. The
ISM compensates for the matched dynamics identified with
the DNN. Then, a feedback controller based on a Barrier
Lyapunov function minimizes the effect of unmatched dynamics
while fulfilling state restrictions by solving a set of Linear
Matrix Inequalities. Simulation results show the feasibility of
the proposed strategy against classical controllers.

Index Terms—Differential Neural Networks, Integral Sliding
Modes, Attractive Ellipsoid Method, Barrier Lyapunov Functions

I. INTRODUCTION

A. Preliminaries

Various engineering applications require autonomous mo-
bile robots (MRs) to solve particular tasks [1], [2]. For
example, in agriculture, using mobile devices allows the iden-
tification of pests by monitoring greenhouses and plantations
through terrestrial and aerial mobile robotic systems. Con-
sequently, the design of control algorithms allows trajectory
tracking, point-to-point movement, or control from a reference
model. One of the main challenges involved in creating
control techniques for MR is the presence of non-holonomic
constraints that limit the use of conventional methods such as
linear controllers [3].

Different MRs require a particular analysis to develop
control algorithms according to their kinematic configuration.
One of the most studied MRs, due to its versatility and
freedom of movement, is the Unicycle Robot (UMR), whose
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application in real problems is varied [2]. It is important to note
that static algorithms cannot stabilize the UMR, based on the
Brockett condition [4]. Consequently, most control algorithms
implement time-varying feedback control strategies or con-
trol algorithms with variable structures that bring robustness
against matched perturbations. Many of these developments
consider the kinematic, which does not include external forces
such as gravity and/or friction in the wheels [5]. However,
other phenomena such as skid, slippage, and noise coupled
to the control signal must be considered to obtain a robust
algorithm for good MRs performance in real applications [6].

Some developments for the control of the UMR implement
artificial intelligence such as fuzzy logic [7] or neural networks
to produce a time-varying input signal that guarantees the
closed-loop stability of the error [8]. Other non-linear tech-
niques consider discontinuous signals to achieve zero tracking
error in finite time despite the external uncertainties [6] and
[9]. ISMC allows the rejection of disturbances in the control
channel and the establishment of nominal control. Composite
strategies with high-order sliding modes, discontinuous con-
trols, and feedback techniques have been proposed based on
the so-called ellipsoidal methods [10].

In the case of multiplicative disturbances in the control
channel, the dynamics can be represented as an uncertain time-
varying system. DNNs allow the identification of partially or
entirely unknown nonlinear systems. Unlike static networks,
the main advantage of these systems are the adaptation laws of
the network from controlled Lyapunov functions, guaranteeing
practical stability, which is a consequence of the finite number
of elements in the approximation base [11]. This approxima-
tion error can be rejected by robust techniques based on sliding
modes.

B. Contributions

This article proposes a solution to the tracking trajectory
problem of a UMR with disturbances in the control channel.
The tracking error dynamics represented by an uncertain time-
varying system will be identified by the DNN whose stability
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is studied through a Barrier Lyapunov function. The DNN
identifier restricts the value of the identification error to be
rejected later with the ISMC.

C. Notation

The following notation is used throughout the document; the
trigonometric functions are denoted as s (θ) = sin (θ), c (θ) =
cos (θ), t (θ) = tan (θ), sc = sin θ

θ , ∥φ∥2Λ is the weighted norm
with Λ⊤

λ > 0, i.e., ∥φ∥2Λ = φ⊤Λφ, In is the identity matrix
with dimension n× n.

II. PROBLEM STATEMENT

The kinematic model of UMR showed in figure 1 is given by
the following set of nonlinear ordinary differential equations

θ̇ = [1 + d1(t)]ω,

ẋ = [1 + d2(t)]c(θ)v,

ẏ = [1 + d2(t)]s(θ)v,

(1)

where x ∈ R and y ∈ R denote the midpoint between
the wheels and θ ∈ R represents the orientation angle of
the UMR. v ∈ R and ω ∈ R are the linear and angular
velocities of the UMR, respectively. These variables constitute
the control inputs of the system. The terms of d1 and d2 can
contain time-varying perturbations, which are multiplicative
to the inputs and may come from the commands given to
the controllers when executing a control task or non-modeled
kinematics proportional to the control inputs. Some examples
are the skidding and slippage of the wheels (For more details,
see [12], [13]). The following assumptions is fulfilled in this
manuscript.

Assumption 1: The time-varying perturbations d1 and d2
are unknown but bounded, i.e.,

−1 < di(t) ≤ dmax < 1, i = 1, 2 (2)

The constraint di ≥ −1, ∀t ≥ 0 avoids any change of the sign
in the control input.

The problem statement is to design an ISMC that com-
pensates the estimated unknown dynamics through a Barrier
DNN identifier.

III. ROBUST CONTROL DESIGN

A. Time-varying tracking error dynamics

The reference model is given by the following set of
ordinary differential equations

θ̇d = ωd,

ẋd = c(θd)vd,

ẏd = s(θd)vd,

(3)

where xd, yd are the UMR desired positions in the X − Y
plane, θd is the desired angular position, and, vd and ωd are
the linear and angular reference velocities.

Assumption 2: The desired velocities are continuous and
bounded, i.e., vd y ωd, i.e., 0 < vd < vd(t) ≤ vd, y ∥ωd∥∞ ≤
ωd, tal que vd(t) ∈ V ⊂ R and ωd(t) ∈ W ⊂ R, for all t ≥ 0.

Fig. 1. Robot tipo uniciclo (UMR)

Similarly, xd ∈ X ⊂ R and yd ∈ Y ⊂ R, for all t ≥ 0. Here,
the subsets V, W, X and Y contains the admissible inputs and
feasible trajectories.

The tracking error is defined as

e1 = θd − θ,

e2 = c(θ)(xd − x) + s(θ)(yd − y),

e3 = c(θ)(yd − y)− s(θ)(xd − x),

(4)

and, based on (1) and the reference system (3) the dynamics
of the tracking error becomes

ė1 = −ωd1(t) + τ1,

ė2 = [1 + d1(t)]ωe3 − vd2(t) + τ2,

ė3 = −[1 + d1(t)]ωe2 + vds(e1),

(5)

where the virtual control inputs τ1 and τ2 are defined as

τ1 = ωd − ω,

τ2 = vdc(e1)− v.
(6)

Notice that (5) can be described as a linear parameter
varying linear system, i.e.,

ė = A(ρ)e+B[τ + F (ρ)d], (7)

where e = (e1, e2, e3)
⊤ ∈ R3, τ = (τ1, τ2)

⊤ ∈ R2, d =
(d1, d2)

⊤ ∈ R2. Matrices A(ρ), B y F (ρ) have the following
definition

A(ρ) =

 0 0 0
0 0 [1 + d1(t)]ω

vdsc(e1) −[1 + d1(t)]ω 0

 ,

B =

 1 0
0 1
0 0

 , F (ρ) =

(
0 −ω
−v 0

)
,

(8)
The vector ρ = (vdsc(e1), [1 + d1(t)]ω)

⊤ ∈ R2 the
vector of scheduling variables, which considers the parametric

1281



uncertainties to be identified by the DNN. The control signal
is defined as

τ = u0 + u1. (9)

Based on the work described in [14], the control input
(9) has two main components: a discontinuous element u1

based on SM to compensate matched perturbations, and the
nominal controller u0 composed of a feedback controller and
the estimation obtained with the DNN.

B. Constrained non-parametric modeling of the tracking error

Let us assume that the tracking error in (7) is approximated
by a DNN with the following structure

ė = (A0 +W ∗
1 σ1(e)) e+B (τ +W ∗

2 σ2(e))+f̃(e, ρ, d), (10)

where A0 ∈ R3×3 is a Hurwitz matrix, W ∗
1 ∈ R3×3 W ∗

2 ∈
R2×2 are the weights that best approximate (in some sense) the
uncertain model. These values are unknown but bounded, i.e.,
∥W ∗

i ∥2F ≤ W+
i , i.e., any quadratic matrix norm with i = 1, 2.

σ1 : R3 → R3×3 and σ2 : R3 → R2 are the activation functions
of the DNN selected as sigmoid functions, i.e., each entry of
σi is described as

σz(e) =
(
az + bzexp

−(c⊤z e)
)−1

, (11)

where az ∈ R, bz ∈ R and cz ∈ R3 are free parameters defined
by the user. With this selection, σi with i = 1, 2 satisfies the
following sector conditions

∥σi(z2)− σi(z1)∥2 ≤ Lσi∥z2 − z1∥2, ∀zi ∈ R3, (12)

moreover, ∥σi∥2 ≤ σ+
i .

The unknown function f̃ : R3 × R5 × R2 → R3 in-
cludes the unmodeling dynamics, the uncertainties presented
in the mathematical model, and the approximation error, i.e.,
f̃ = Bf̃1 + f̃2. The approximation error depends on the
sigmoid basis of approximation that contains a finite number
of elements [15]. The dynamics of f̃ satisfies the following
assumption

Assumption 3: f̃ is bounded as ∥f̃∥2Λ ≤ f+, with Λ =
Λ⊤ > 0 being a positive definite matrix.

The DNN identifier is a copy of system (10), i.e.,

˙̂e = (A0 +W (t)σ(e))ê+B (τ +W2(t)σ2(e)) . (13)

The learning laws for the identifier are defined as

Ẇ1 = −αW1 −K1
P∆ê⊤σ⊤

1 (e)

Γ
,

Ẇ2 = −αW2 −K2
B⊤P∆σ⊤

2 (e)

Γ
,

Γ = ∆+ − ∥∆∥2P

(14)

where ∆ = ê− e is the identification error, ∆+ is the bound
for the Barrier function (to be defined below), K1 and K2

are positive definite matrices of appropriate dimensions known
as the learning coefficients of the DNN, P = P⊤ > 0 is

a positive definite matrix solution of the following matrix
(Riccati-like) inequality:

PA+A⊤P + PRP + αP +Q ≤ 0,

R = (W+
1 +W+

2 )I3×3,

Q = (σ+
1 + Lσ+

2
)I3×3, α ∈ R+.

(15)

The convergence of the DNN is given in the following
theorem.

Theorem 1: Let us consider the tracking error in (7)
approximated by the DNN defined in (10) and the identifier
proposed in (13) trained with the learning laws in (14). If the
matrix inequality in (15) is feasible for a matrix P = P⊤ > 0,
the identification error ∆ converges to the set defined by

B ≤ β
α , (16)

with β := W+
1 +W+

2 + f+ and α being a positive scalar.
Proof: The proof is omitted due to space constraints.

C. Integral sliding mode controller

The DNN identifier can be represented as (the time and
variable dependence are omitted in the rest of the manuscript)

˙̂e = Aê+ ϕ1 +B
(
ϕ2 + τ + f̃1

)
+ f̃2 (17)

where ϕ1 and ϕ2 are the unmatched and matched dy-
namics, respectively, of the approximation provided by the
DNN. They are defined as ϕ1 = B⊥ (

B⊥)+ W1σ(e)ê and,
ϕ2 = B+W1σ(e)ê + W2σ2. Notice that, according to [14],
In = BB+ + B⊥ (

B⊥)+. The terms f̃1 and f̃2 consider the
modeling and transient identification errors while ∆ converges.

Assumption 4: The dynamics of f̃2 are vanishing, i.e.,

∥f̃2∥Qf̃2
≤ ê⊤Q2e ê. (18)

With the definition of (9), the nominal control u0 is selected
as

u0 = Kê, (19)

where K ∈ R2×3 is a gain to be designed below. The robust
controller u1 is based on ISMC, and it is described as

u1 = −ϕ2 − ρ
(GB)⊤s

∥(GB)⊤s∥
. (20)

The gain ρ is a positive constant that must overcome the
uncertainties. s : R3 → R2 is the sliding surface defined as

s(ê) = G (ê(t)− ê(0))−G

∫ t

0

(A0ê(φ) +Bu0(φ)

+ϕ1(φ)) dφ (21)
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D. Main Result

The following theorem describes the main result formulated
in this manuscript,

Theorem 2: Let us assume that the tracking error dynamics
in (5) is approximated by the BDNN identifier in (13). If the
matrix inequality Ω ≤ 0 with Ω as

Ω =

(
P2A0 +A⊤

0 P2 +BK +K⊤B⊤ +Qe + µP2 P2

P2 −QΦ

)
with QΦ a positive definite matrix, is feasible for a matrix
P2 = P⊤

2 ≥ 0 and the control τ (9) is implemented with the
nominal control u0 in (19) with the gain K obtained from (2)
and u1 selected as (20) with ρ = ∥f̃1− (GB)−1Gf̃2∥+γ and
γ > 0. The tracking error e in (5) has an stable equilibrium
point at the origin.

Proof: The time derivative of the sliding surface in (20)
is

ṡ = GB

(
−ρ

(GB)⊤s

∥(GB)⊤s∥
+ f̃1

)
+Gf̃2. (22)

Proposing the Lyapunov function Vs = s⊤s/2, with time
derivative along the trajectories of the tracking error imple-
menting the control (20) is

V̇s ≤ −∥(GB)⊤∥
(
ρ− ∥f̃1 − (GB)−1Gf̃2∥

)
. (23)

Selecting ρ as in Theorem 2, it is possible to guarantee the
existence of the sliding mode, i.e.,

V̇s ≤ −γ∥(GB)⊤∥V
1
2
s .

In the sliding surface, the equivalent control is defined as

vDeq = −(GB)−1Gf̃2 − f̃1, (24)

therefore, the tracking error dynamics in the sliding surface
becomes

˙̂e = A0ê+Bu0 +Φ, (25)

where Φ includes the unmatched perturbation ϕ1 and the
DNN dynamics that can not be compensated directly by the
controller, i.e.,

Φ = ϕ1 +
(
I3 −B(GB)−1G

)
f̃2. (26)

Based on Assumption 4, Φ is a vanishing term, i.e.,
∥Φ∥QΦ

≤ ê⊤Qeê. Defining the candidate Lyapunov function
V2 = ê⊤P2ê, with its time-derivative given as V̇2 = 2ê⊤P2

˙̂e,
and substituting the tracking error dynamics, the following
equation is obtained

V̇ = 2ê⊤P2 (A0ê+Bu0 +Φ) , (27)

with the nominal controller u0, and adding and subtracting the
term ∥Φ∥QΦ

, one has,

V̇ = ê⊤
(
P2A0 +A⊤

0 P2 +BK +K⊤B⊤ P2

P2 −QΦ

)
ê

− Φ⊤QΦΦ. (28)

Taking the upperbound of Φ and adding and subtracting
µ∥ê∥2P2

, it is possible to have the following equation

V̇ = ê⊤Ωê− µê⊤P2ê, (29)

with Ω already defined in Theorem 2. If Ω ≤ 0, V̇ ≤ −µV ,
this result implies exponential convergence of the tracking
error to the origin.

IV. SIMULATION RESULTS

This section shows the feasibility of implementing the
proposed control. The reference trajectory used in simulation
is xd = cos(w0t) and yd = sin(2w0t) with w0 = 0.2094.
Then, the desired velocities are given by ωd(t) = (ẋdÿd −
ẏdẍd)/(ẋ

2
d + ẏ2d) and vd(t) =

√
ẋ2
d + ẏ2d, and θd(t) =∫ t

0
ωd(τ)dτ . The value of the disturbances was selected as

d1(t) = 0.5 sin(3t)+0.3 and d2(t) = 0.5 cos(t)+0.3. All the
simulations were carried out with a fourth-order integration
method with a sampled period of 0.001 seconds. The initial
conditions of the UMR are x(0) = 1.01, y(0) = 0 and
θ(0) = 1.5.

A. Identificador por DNNs

The parameters of the identifier were selected as

A0 =

 −10 0 0
0 −10 0

0.1833 0 −10

 ,

P =

280 0 0
0 280 0
0 0 280

 .

The learning coefficients were K1 = 10.5I3 and K2 =
10.7I2. Regarding the activation functions, σ1 q = 3 was
selected as σ1 =

[
σ1ij

]
i=1:3,j=1:3

with the following elements
(according to the definition e proposed in (11)):

aσ1
= 150ã

ã =
(
0.5 0.7 −0.2 1 0.5 0.7 −0.2 1 02

)⊤
,

bσ1
= 20b̃

b̃ =
(
1.5 1.7 1.2 1 2.3 −1.2 2.2 0.9 0.1

)⊤
,

cσ1
= 20×

0.5470 0.1890 0.3685
0.2963 0.6868 0.6256
0.7447 0.1835 0.7802

 .

We have the following definition for the second set of
sigmoidal functions σ2 =

(
σ21 σ22

)⊤
with the following

parameters

aσ2 = 15×
(
0.5 0.7

)⊤
, bσ2 = 50×

(
1.5 1.7

)⊤
,

cσ2
= 5×

(
0.5470 0.1890 0.3685
0.5470 0.1890 0.3685

)
.

The initial conditions of the weights (W1,W2) were chosen
arbitrarly with values between 0 and 1. The initial conditions
of the identifier were taken as zero.

Figure 2 shows the tracking error estimation by the iden-
tifier. It is important to note that the error trajectories are
estimated correctly after the training period. The training
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Fig. 2. DNN tracking error estimation The dotted blue line represents the
real trajectories and the solid red line represents trajectories generated by the
DNN.
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Fig. 3. Euclidean norm of the tracking error. Only the first 10 seconds of the
simulation are plotted, which is the time it takes for the network to identify
the error trajectories.

period was less than one second; this allows for compensating
the time-varying dynamics of the system through the control
composed of ISM and the feedback of states. Figure 3a depicts
the norm of the identification error. This metric corroborates
the performance of the identifier and the result obtained in
Theorem 1, which proves practical stability. For simulation,
the above emphasizes the network’s learning process, which
are the oscillations shown in the first 0.5 seconds of simulation.
Once this period passes, the identification error remains close
to zero. For the initial condition, the term ∆⊤(0)P∆(0) in
Γ shown in equation (14) is equal to 14.3139. Therefore, the
bound ∆+ was selected as 15 in the simulation. In Figure 3,
∆⊤P∆ did not grow above the value of ∆+. This is the effect
of the Barrier technique.
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Fig. 4. Comparison of the trajectory tracking of the UMR by the ISMC
compensating for the non-linearities coupled to the control using the DNN-
based identifier.

B. Integral sliding mode control

The control parameters by ISM were selected as G = B+,
γ = 0.75. The gain for nominal control u0 was obtained as

K =

(
1.75 0 3.4097
0 1.55 0

)
.

The proposed controller in this work was compared with
the strategy presented in [16], that is,

v = vd(t) cos(e1) +Kxe2,

ω = ωd +Kθe1 + vdKye2ϕ(e1),

ϕ(e1) =
sin(e1)

4
e1.

(30)

The values used in the simulation were Kx = Ky = Kθ =
4. Figure (4) shows the trajectory tracking of the UMR. Both
controls perform trajectory tracking. However, the presence of
the disturbance causes some oscillations with the controller
described in (30). Notice the oscillations produced by the
multiplicative disturbances d1(t) and d2(t). This oscillation
is completely attenuated by applying the control based on
ISM and DNNs. Figure 5 shows trajectory tracking in the
x − y plane. At first glance, it is impossible to appreciate
the advantages of the controller by ISMC. Due to the above,
figure 6 shows the norm two of the tracking error with
both strategies. The solid red line represents the tracking
error by applying the DNN, which presents oscillations at
the beginning of the simulation corresponding to the training
period of the DNN. Later, it converges to a smaller region than
the nonlinear controller proposed in the equations (30). This
graph demonstrates the advantages of applying the combined
algorithm between DNN and ISMC.

V. CONCLUSIONS

The technique applied in this article allows the estimation
of the time-variant part of the UMR tracking error using

1284



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5. Phase state diagram in the plane X − Y . The red line is the desired
trajectory, the blue line is the control compensating with the DNN and ISMC,
and the black dotted line is the control in (30)
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Fig. 6. Euclidean norm of the tracking trajectory error. The blue line
represents no linear control in (30), and the red line is the controller given
by the DNN and the ISM.

DNNs. The performance is improved with the compensation
of the unknown dynamics estimated by the DNNs. As a result,
obtaining a smaller convergence zone is possible compared to
classical control techniques. The effect of the Barrier DNN did
not allow the tracking error to grow above a given condition.
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