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Abstract—Email is one of the most common methods of
official and personal communication to exchange information.
For the administration department, dealing with hundreds of
emails with the same type of inquiries or requests results in
a huge operational overhead. In this study, we explore email
classification models. An email classification system should
understand the topics in the email content for categorizing
emails and indicate if an incoming email should be handled by
the mailbox owner. Email categorization based on topics is a
multi-label classification task. Most existing email categorization
models perform binary classification to identify spam, phishing,
or malware attacks. We propose a CNN-BiLSTM model for
multi-class email classification. Our experiments show that
compared to the two other models that we implemented namely
CNN (76.19%) and BiLSTM (61.9%) models, the CNN-BiLSTM
(83.33%) and Hierarchical CNN-BiLSTM models (85.33%) have
much better performance.

Index Terms—Email Classification, CNN-BiLSTM, Natural
Language Processing

I. INTRODUCTION

Despite the emerging communication technology and the
existence of a variety of meeting platforms, emails remain to
be the most used communication method in all organizations.
In 2019, 293.6 billion emails were sent and received each
day, which was expected to exceed 347.3 billion daily by
2022 [1]. Despite the availability of a FAQ (Frequently
Asked Questions) database, or information posted on web-
sites, people often do not spend enough time searching for
necessary information, and instead send emails to inquire
about the information they need. Especially at the university,
many emails contain similar questions during the time of
admission, the beginning of the term, exams, and graduation.
With the growth of Machine Learning (ML) and Deep
Learning (DL) techniques, intelligent systems can be built
to offload some of this work from the administration to
automatically categorize emails [2]–[6]. An intelligent email
response system can reduce the workload of answering these
similar questions by categorizing emails based on the topic.

Historically, email classification algorithms were based
primarily on probabilistic methods, with only two categories
to identify: spam and non-spam emails [2]. Machine learning
methods perform better than traditional probabilistic methods
and have become increasingly popular in recent years [7]–
[10]. In the word semantic vector space, a word embedding
scheme such as GloVe [11] enables computers to understand
natural language by linking a word or character to its
corresponding vector (usually unique). A computer could

use this vector to understand and calculate the meaning and
correlation between words, find the nearest neighbors (syn-
onyms), and visualize concepts and relationships between
words and characters. It is possible to classify emails into
multiple categories using the embedding vectors as inputs to
machine learning and deep learning models [9], [12], [13].

This paper presents our work on multiclass email classi-
fication based on the email content. The challenges include
the following: a) an email can include multiple topics which
requires the email to be categorized under multiple topic
classes which also increases the difficulty in generating
automatic responses, b) absence of good training datasets, c)
domain specific vocabulary and word/sentence context must
be interpreted properly, d) email body can contain email
chain i.e., previous emails and responses, and e) privacy of
emails must be taken into consideration. In this study, we
address all the above challenges by proposing a deep learning
model for multi-class email classification and create a real life
dataset by developing an email extraction tool for Microsoft
Outlook. We apply natural language processing (NLP) and
word embedding techniques to process the text and generate
semantically rich embedding vectors to feed into our machine
learning models. We compare the classification results with
other models and demonstrate a superior performance in
classifying emails for both a benchmark data set and our
generated data set.

The rest of the paper is organized as follows. Section II
presents the related work. The email extraction tool is de-
scribed in Section III. Implementation, training and validation
of the deep learning models are illustrated in Section IV.
Section V presents the conclusion including a list of future
work.

II. RELATED WORK

The recent Convolutional Neural Networks (CNNs) such
as ConvNets [14] achieved superior performance in topic
classification when applied at the character level. In Natural
Language Processing (NLP), the Long Short-Term Memory
(LSTM) [15] model has demonstrated superior performance
because it can not only extract data features from the input
text but can also learn long sequential patterns in the text.
Researchers have reported that CNN-based NLP models can
also be used to classify documents, including emails, and
achieve competitive results.
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Michailoff et al. [3] apply the NB classifier and Deep
Neural Network (DNN) to classify emails under different
root folders such as Mobile and Fixed telephony, and other.
The result shows that the DNN (84.2% Accuracy) performs
better than the NB classifier (76.21% Accuracy) but it is
(2.5215 ∗ 1011 complexity) more compute-intensive than the
NB classifier (1.28 ∗ 107 complexity).

Yasin et al. [7] compare performances of the RF (0.991 F1-
score), the NB classifier (0.945 F1-score), the SVM (0.969
F1-score), the NN (0.977 F1-score), and the DT (0.984 F1-
score) using F-measure for detecting phishing emails. The
result shows that the RF achieves the best performance.

Alsmadi et al. [2] use three different SVMs to detect spam
emails. Each of SVM is formulated on the top 100 frequent
words, the top 100 frequent words after removing stop words,
and N-Gram terms. They report that all three SVMs show a
very high True Positive(TP) rate while the SVM with N-
Gram shows the best False Positive Rate.

Kiritchenko et al. [4] improves the learning speed of the
SVM (94.01% Accuracy) and the NB (91.51% Accuracy)
classifier by applying a co-training algorithm. The algorithm
trains two classifiers based on two different sets of features
and each time one model only adds the most confident pre-
diction to the class. They report that the SVM performs very
well with the co-training algorithm while the NV classifier
performs very poorly.

III. EMAIL EXTRACTION TOOL

We develop a tool for extracting emails from a popular
email management system such as Outlook to extract and
use real emails to validate our proposed models.

The “pypff” library is used to extract emails from the
Outlook email data file (.pst) and export them to a CSV
file for further processing. This way the tool can run locally
on the users’ machine which would extract, anonymize,
and package the data to send to our proposed IERS that
runs locally or on a back-end server. The code can be
packaged as an executable file to transfer and deploy on the
user’s machine. The entire system uses “os.outlook” library
to be able to process email internally and send responses
immediately.

A. Limitations

The tool we developed can only handle .pst and .ost files
from the Outlook application and currently process only
the English language. However, it can be extended to other
languages with modifications to the regex, using different
splitters and NER models matching the target language.

B. Email Processing

The data is stored in Pandas data frame format after being
extracted from the Outlook email data file or directly from
Outlook.

Processing Subject Line: We remove “re:” from the
subject of the conversation.

Cleaning Email Body: The email body is processed using
five regex expressions:

Fig. 1: Email Splitters(A:Splitter 1, B: Splitter 2)

1) Remove embedded hyperlinks
2) Remove unembedded hyperlinks
3) Remove redundant newline
4) Remove any invalid characters (anything other than

alphabets, numbers, @, commas, colons, and dots)
5) Remove redundant spaces
Extracting Complete Conversation from Multiple

Emails: Replies of emails often include the content from the
previous email between two parties. To extract conversations
between the same parties from subsequent emails, we select
emails having the same subject line, and then extract the
longest email, which contains all the dialogues denoting a
complete conversation between two parties.

Splitting Conversation: Next, we split different topics of
conversation based on the context with two splitters as shown
in Fig. 1.

1) Email header (email header contains 4 new lines with
“property:” and ending in “subject: subject of the whole
conversation”)

2) On [date] sender wrote:
A description of our algorithm is shown in Algorithm 1.

Each conversation is assigned a unique “conversation index”
property that indicates whether an email with the same
subject belongs to the same conversation.

Anonymization: Anonymization of email text is done
using Stanford Named Entity Recognition tagger (Stanford
NER tagger) [16], which can identify words that have the
“person” property. A temporal dictionary is established for
each conversion to store the occurrence of the same name in
that conversion. The names are then replaced with random
names from a name database. In the case the NER tagger
fails to detect all the names, we apply a backtrack step that
searches the email text for the same word in the temporal
name dictionary and replaces it. It is possible to ensure that
all the same names in the conversation will be replaced in the
same way by utilizing the longest email in the conversation.
However, NER tags cannot recognize non-English names or
names within sentence fragments. The processed data can be
exported as a CSV file or stored in memory for the next
processing step as described below.

IV. EMAIL CLASSIFICATION

We develop and validate several classification models to
determine the categories of emails after they have been
extracted.

CNN models have a parallel structure that captures spatial
information better but ignores the sequence information from
the input data. Therefore, we combine the CNN model with
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Algorithm 1 Email Data Preprocessing
Input : A pandas data frame (DF in) contains all the data
from outlook data file
Output : A pandas data frame (DF r) with emails in each
conversation split down
1: Remove all re: in the subject of the input data

frameDF in
2: Create an empty data frame DF r to store the result
3: Initialize a subject index i = 0
4: for each subject S in data frame DF in: do
5: Create a data frame DF containing all emails with

that subject sorted by DateTime while the top-most email
is the latest email under that subject.

6: while DF is not empty do:
7: Get the first email FE in DF
8: Split FE by the email splitters mentioned in

Section III-B to get a list dialogue list that contains each
dialogue in this conversation.

9: Create a temporary dictionary nameDict to store
names

10: Processing each dialogue of the conversion with
NER tagger, Replace all words with person entity with
a random name. Depending on the length of continuous
existence, will be replaced with first name (middle name)
(last name) in the nameDict, if the name replace pair does
not exist, replace with random and store the origin name:
replaced name pair into the dictionary

11: Append each dialogue to the DF r with the
subject index i

12: Remove other email conversations that contain
the same dialogues in dialogue list in DF

13: end while
14: i = i + 1
15: end for
16: Return the result data frame DF r

the LSTM model which is good at learning sequences, into a
CNN-BiLSTM model that can perform better in multi-label
topic classification. CNN performs well on concise email
data, but can not process long sequences, whereas LSTM
assists with learning the sequence information.

We designed and implemented 4 different deep learning
models: a) CNN, b) BiLSTM, c) CNN-BiLSTM, and d)
Hierarchical CNN-BiLSTM model. The models are described
below.

For training and validating the models, we use a publicly
available dataset, Dataset 1, which has 18 different topic
classes. The best performing model is then applied to a real
life dataset, Dataset 2, having two classes. This dataset was
created using our email extraction tool and the labels were
added based on the email content and the sender information.
The datasets are also described below in this section.

A. Model Description

1) CNN model: Rather than using a sequential architec-
ture, CNN on the word level uses a parallel architecture

Fig. 2: CNN model structure

Fig. 3: BiLSTM model structure

similar to that used for image processing. By applying
different filter sizes to the text representation, CNN models
are able to extract features of varying lengths from the subtext
of the email content. Following the max-pooling layer, these
features reconstruct a new embedding of the entire email
content to feed to the fully connected layer.

There are 100 filters of sizes 3, 4, and 5. Therefore, the
embedding feed to a fully connected layer has a dimension of
300. As a result, there are three fully connected layers with
dimensions of (300, 128), (128, 32), and (32, 14) respectively.
All fully-connected layers except the last layer are activated
using the ReLu activation function. All dense layers have a
bias. Fig. 2 presents a visualization of the model architecture.

B. BiLSTM model

To compare the performance, we also implement a BiL-
STM model as shown in Fig. 3. In this model, we use two
layers of BiLSTM with a hidden size of 64 for each BiLSTM
layer. There are two fully connected layers before prediction
with sizes of (128,32) and (32,14) respectively.

1) CNN-BiLSTM model: In the CNN model, we add
BiLSTM layers between the max-pooling layer and the fully
connected dense layer. BiLSTM models are fed directly with
data from the max-pooling layer. In this study, two BiLSTM
layers with a hidden layer of size 64 were used to avoid
over-fitting because the dataset is quite small. In the CNN-
BiLSTM model, the BiLSTM replaces one of the dense
layers with an input size of 300 and an output size of 128.
Fig. 4 presents a visualization of the model architecture.

2) Hierarchical CNN-BiLSTM model: As the dataset is
structured hierarchically, we apply a hierarchical classifica-
tion model containing two parallel CNN-BiLSTM branches
inspired by Kolisnik et al. [17], we have modified our CNN-
BiLSTM model into a hierarchical model, which will attempt
to classify the main-category and subcategories simultane-
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Fig. 4: CNN-BiLSTM model structure

Fig. 5: Hierarchical CNN-BiLSTM model structure

ously. One CNN-BiLSTM branch (teacher branch) predicts
the main-category in the same manner as the combined model
(main pipeline) while the other CNN-BiLSTM pipeline in-
corporates input from the hidden state of the BiLSTM layer
of the main pipeline into the hidden state of the BiLSTM
layer in this pipeline. The hierarchical structure of the CNN-
BiLSTM model is shown in Fig. 5.

We use a decaying weight w to control the bias of the loss
function. Its initial value is 0.99, decays by 0.03 for each
epoch, and has a minimum value of 0.1.

C. Datasets

We use the dataset proposed by Singh et al. [18] in
this study as Dataset 1. The database contains 255 emails
which are divided into three main-categories and 14 sub-
categories separating emails from an administrative section
of a university, with nearly equal numbers of emails in
each subcategory. For example, an IT department receiving
requests for assistance with computer problems will have
the department name as the main-category and the specific
request type such as a clicker problem or a WiFi outage
as a sub-category. Dataset 1 contains only the email body.
Other information such as the subject, time, and sender is not
included. The labels indicate the recipient of the email and
the request type. A few examples from Dataset 1 are shown
in Fig. 6.

Since Dataset 1 only contains the email body, we do not
apply our Algorithm 1 described in Section III-B. However,
we apply our algorithm to a real-life dataset, Dataset 2, as
explained later. We created Dataset 2 for testing our method
for a real-life use case scenario.

1) Extracted Real World Dataset: To demonstrate a real-
world application of the model, we construct a simple dataset
as dataset 2 by extracting emails from Outlook using the
algorithm described in section III and divide the same into
informative and non-informative emails. Emails that contain
information about device maintenance, conference activities,
meetings notice, and class broadcast are considered informa-
tive emails received from the Senior Systems Analyst, Grad-
uate Program Assistant, and thesis Supervisor. In addition to
informative emails, we label non-informative emails as those
containing newsletters, event invitations, and surveys from
the school. Dataset 2 contains 346 informative emails and
423 non-informative emails.

Description of the use case scenario including the valida-
tion results are given later in this paper.

V. MODEL IMPLEMENTATION

A brief overview and the architecture of the 4 models we
implement in this study are presented below followed by the
experimental validation the models.

A. Model Configuration

We use the categorical cross-entropy loss as (1) as the loss
function and use the Adam optimizer for training the models.
The learning rate for all the models is set to 3e-4 to avoid the
model converging too fast to a sub-optimal solution, except
for the Hierarchical CNN-BiLSTM which uses a decaying
learning rate. All the layers in the model have a dropout of
0.2, and all the dense layers in the model have a bias.

All the BiLSTM layers use the Tanh activation function
as (2). All the dense layers except the last before output use
the ReLu activation function as shown in (3). The last dense
layer before the output uses the Softmax activation function
as shown in (4).

−
M∑
c=1

yo,c log(po,c) (1)

tanh(x) =
ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
(2)

ReLu(z) = max(0, z) (3)

σ(zi) =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . ,K (4)

B. Experimental Setup

The email texts are padded with pad tokens to make all the
emails have the same maximum length of 128 tokens. The
text is tokenized using a tokenizer from the NLTK library
[19], and each token is converted into a vector embedding of
300 dimensions using the GloVe library [11].

We select the same number of samples from each category
as the testing set, which makes the leftover training data
unbalanced. Thus, We use SMOTE (Synthetic Minority Over-
sampling Technique) library [20], on the training Dataset 2
to upsample and balance the training set.
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Fig. 6: Example data for email classification

Fig. 7: Accuracy curves during training process

C. Model Training

Dataset 1 was split at a 80-20 ratio with 80% training
and 20% test data to train and validate the model perfor-
mance. We tested other ratios, but increasing the testing set
size would result in performance loss due to overtraining.
Dataset 1 is small with only 255 emails which are divided
into three main-categories and 14 sub-categories. We validate
all 4 models (CNN, BiLSTM, CNN-BiLSTM, and hierarchi-
cal CNN-BiLSTM) and test their performances.

For the BiLSTM model, CNN and pooling layers were
removed and the embedding was fed directly into the BiL-
STM model. Each model except the BiLSTM was trained
for 50 epochs due to fast convergence of the models. The
BiLSTM model was trained for 100 epochs. We measure the
performance of the model using accuracy as our validation
method as shown in (5).

Accuracy =
Numberofcorrectpredictions

Numberoftotalpredictions
(5)

D. Results

We compared the performances of LSTM and Bidirectional
LSTM having one LSTM layer, two LSTM layers, and two
Bidirectional LSTM layers. The latter (BiLSTM) achieved
the best results in terms of classification accuracy. The
charts showing training performance in Fig. 7 for CNN and
CNN-BiLSTM models indicate that, in general, CNNs and
CNN-BiLSTMs converge very quickly, reaching the best
performance within 30 epochs, while the BiLSTM models

TABLE I: Results on classification models

Model Training Testing
Accuracy Accuracy

CNN 100% 76.19%

Bidirectional-LSTM 99.2% 61.9%

CNN-BiLSTM 100% 83.33%

Hierarchical CNN-BiLSTM 100% main 96% main
100% sub 85.33% sub

converge slowly, and require many more epochs to achieve
optimal performance.

From our results in Table I, all the models have a huge
gap between their training and test accuracy, which might
be due to overfitting issues. We also found that the LSTM
model does not learn from the dataset under some conditions,
resulting in very low accuracy for both training and testing.
We tested using the direct output and final hidden state and
changing the number of layers. The BiLSTM model with the
final hidden states used as the input to dense layers gave the
best performance. We also tested the LSTM model, which
gives 17% training accuracy and 13% testing accuracy. The
bad performance of the BiLSTM model may be caused by the
short input data or the embedding layers feeding embeddings
in an unexpected manner.

Compared to the CNN or BiLSTM, the combined model
achieved better results. Additionally, we examined how
SMOTE affected the training dataset. In general, SMOTE
resulted in approximately 40 more training examples, but did
not have a significant impact on the result with the maximum
length of each sentence being set to 128 characters. When the
maximum sentence length was set to a larger value, SMOTE
produced even worse results.

We investigated the accuracy of each class. The model al-
ways seemed to have difficulties with ADC (Adding Course),
COF (Course Offered), and WFO (WiFi Outage). By review-
ing the dataset, we discovered that most of the emails in
the WFO category mention “WiFi”. Although a very small
percentage in this category did not have this indicator, emails
in the other categories had similar indicators which affected
the model performance. The other two categories experience
similar results.

In general, since the dataset is so small and has too many
categories, each category has only around 18 emails. Only
80% of these emails are used for training. Therefore, there
may be no similarity in features among the emails within the
same category. The model cannot learn the important features
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Fig. 8: Validation result of real-world data

with such small number of data points.

VI. REAL WORLD USE CASE SCENARIO

We created a real world email dataset, Dataset 2 by
using our email extraction tool which extracts, cleans, and
anonymizes the data. We added labels based on subject, con-
tent and the sender to classify the emails into two categories:
informative and non-informative.

Since Dataset 2 contains only two categories and is quite
different from Dataset 1 that we used for model training, we
follow two approaches to validate the model as explained
below.

1) We use our pre-trained CNN-BiLSTM model on
Dataset 1 in Section IV-B1, fine tune it on Dataset 2
and set a threshold on softmax result. If the result is
above the threshold we classify the email as informa-
tive and otherwise as non-informative.

2) We modify the model architecture and completely
retrain the model with Dataset 2 to test the model
performance.

For validation 1, we fine-tuned our pre-trained CNN-
BiLSTM model for another 50 epochs on our simple
Dataset 2 using the same loss function, learning rate, and
optimizer as stated in Section V-A on the real-world data.
Then we try to find the best threshold by iterating the
threshold value from 0 to 1 with an increment of 0.05 for
each step. The model gives the best performance when the
threshold is set to 0.45, which gives a 0.56 F1 score. The
validation result is shown in Fig. 8.A

With validation method 2, We change the shape of the
final dense layer to (32,2) and train the model from scratch
on Dataset 2 for 50 epochs using the same loss function,
learning rate, and optimizer as stated in Section V-A. The
model gives 99.56% training accuracy and 86% testing
accuracy, 0.86 F1-score. The validation result is shown in
Fig.8.B

The huge difference in performance can be attributed to
the different vocabulary sizes. The vocabulary size in Section
IV-B1 is only 1,441 while Dataset 2 in this section has a
vocabulary size of 15,067. With the aid of our extraction
algorithms, we validate that our model is capable of handling
email classification tasks in real-life use-case situations.

VII. CONCLUSION

This paper presents an email classification model and an
email extraction tool. Our email extraction algorithm can
overcome the privacy issue and extract full conversations
instead of individual emails to make it easier to collect

data for model training. We design, implement, and compare
the performance among CNN, BiLSTM, CNN-BiLSTM,
and Hierarchical CNN-BiLSTM models using a university
departmental email dataset. We found CNN-BiLSTM model
and the Hierarchical CNN-BiLSTM models have a similar
performance, which is much superior to the CNN and BiL-
STM models. We also showcase a real-world application
of our email pipeline which includes email extraction and
classification. Our model achieves a satisfactory performance
of 86% accuracy with the real-life email data.
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