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Abstract—Sound-based insect wingbeat classification presents
a unique challenge with implications for areas such as mosquito
control and the prevention of mosquito-borne diseases. This
paper introduces a straightforward modified ResNet-9 model to
address this challenge by utilizing one-dimensional convolutional
layers. The architecture of the proposed ResNet-9 model is
outlined in detail. Impressively, the model can accurately classify
fruitflies and mosquitoes using raw audio data instead of relying
on spectrograms. Its performance surpasses the majority of
preceding models while concurrently reducing the number of
trainable parameters by 90%. The results from this research
carry notable significance for practical applications in insect
control and disease prevention.

Index Terms—Audio classification, ResNet architecture, Deep
Learning, Mosquito Wingbeat

I. INTRODUCTION

Annually, diseases carried by mosquitoes afflict over 700
million people worldwide and result in over a million fatali-
ties [1]. The roster of these illnesses is extensive, encompass-
ing illnesses such as malaria, dengue fever, Zika virus fever,
yellow fever, West Nile fever, and various forms of encephali-
tis [2]. Different species of mosquitoes are responsible for
transmitting each of these diseases. Efficient monitoring plays
a crucial role in controlling and preventing the spread of these
diseases. Therefore, the classification of mosquitoes is of great
importance and requires quick and accurate methods.

Fawazz et al. [3] provide a detailed overview of methods
for time series classification. In our case, there are two main
machine-learning approaches employed for this task: audio-
based and image-based classification. Image-based solutions
rely on analyzing images of mosquitoes to classify them [4]–
[6]. Additionally, it has been observed that different mosquito
species produce distinct audio characteristics through their
wingbeats [7]. This observation justifies the exploration of au-
dio or audio-like signals for classification purposes. Addition-
ally, acoustic sensors are easier to use in practice, as locating
flying insects and taking an image of them during flight would
require an ultra-short exposure camera and expensive motoric
equipment [8]. In audio-based methods, the raw wingbeat
recordings or transformed data obtained through techniques
such as short-time Discrete Fourier Transform (DFT) or Dis-
crete Fourier Transform (DFT) are utilized [9]–[14].

Rigakis and Potamitis [15], [16] developed a system for
recording insect wingbeats using large aperture optical sensors
that convert light fluctuations caused by wing occlusion into
acoustic signals. They created the Wingbeats and Fruitflies
datasets. The Wingbeats dataset was subsequently investigated
using various state-of-the-art deep learning architectures [14],
[17]. Fanioudakis et. al. converted the audio signals into
spectrograms and achieved a test accuracy of 96% using a
DenseNet-121 model. However, these results could not be
replicated according to the article [14].

It was shown that even inexpensive mobile phones are ca-
pable of capturing acoustic data related to mosquito wingbeat
sounds [18]. The resulting Abuzz dataset was also examined
using the so-called WbNet architecture proposed in [14], which
was initially developed for the Wingbeats dataset.

In our contribution, we describe and apply a ResNet-based
model to the Wingbeats, Fruitflies, and the Abuzz datasets,
incorporating one-dimensional convolutional layers. We also
support our work with numerical experiments. Our findings in-
dicate that a small raw time-domain signal processing ResNet
architecture can outperform the current state-of-the-art solu-
tions on large benchmark datasets (Wingbeats and Fruitflies)
while being on par or even more advantageous in terms of
processing speed. We repeated the numerical experiments of
the articles [14], [17], but using a strict train-validation-test
separation to measure model generalization capabilities and
avoid data leak, which is suspected to be present in the original
publications according to the corresponding repositories* ,
this also ensures a fair comparison. For further details see
Section II-B. To mention a few examples our proposed small
and large models achieved 95.37% and 95.43% average test
accuracies on the Wingbeats dataset among five different runs
surpassing both the DenseNet-121 model’s [17] 5-run average
test accuracy of 91.92% and the test accuracy of 90.32%
achieved by the WbNet architecture [14]. In the case of aver-
age test accuracies on the Abuzz dataset, WbNet models with
best validation accuracies achieved 67.25% average test ac-
curacy while our proposed models outperform it with 85.49%
and 90.33%. Despite conducting numerous experiments, it was

*https://github.com/xutong30/WbNet-ResNet-Attention
https://www.kaggle.com/code/left13/mxnet-densenet121-0-955-acc-full-set
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Species Wingbeats Abuzz
Ae. aegypti 85553 324

Ae. Albopictus 20231 197
An. Gambiae 49471 171

An. Arabiensis 19297 95
Cu. pipiens 30415 66

Cu. quinquefasciatus 74599 62

TABLE I: Element numbers of each class in the Wingbeats
and in the Abuzz datasets.

consistently found that both the DenseNet-121 and MobileNet
architectures outperformed our proposed network when ap-
plied to the Abuzz dataset. Given the relatively small size of the
Abuzz dataset, the fact that our proposed models demonstrate
a significant performance advantage over other models on
the Fruitflies dataset as well may mitigate this issue, i.e.
our small ResNet-9 model achieved here 97.64% average test
accuracy among five different runs, while the performance of
other models remained below 93%. Our repository with the
supporting source code is publicly available† .

The paper is structured as follows. In Section II, we provide
the descriptions of the investigated Wingbeats, Fruitflies, and
Abuzz datasets. Section III describes the proposed network
architectures, methods, and experiments in detail. In Sec-
tion IV the corresponding classification and efficiency-related
results are presented. Finally, we summarize our findings in
Section V.

II. DATASETS AND PREPROCESSING

A. Descriptions

Three publicly accessible datasets, namely Wingbeats [16],
Fruitflies [15] and Abuzz [18], are analyzed in this research.
The Wingbeats and the Abuzz datasets encompass raw audio
signals from six mosquito species spread across three different
genera. These species include Ae. aegypti, Ae. albopictus, An.
arabiensis, An. gambiae, Cu. pipiens, and Cu. quinquefas-
ciatus. The data were recorded individually at the Biogents
premises in Regensburg, Germany, employing large aperture
optoelectronic devices for the Wingbeats dataset. Each audio
recording maintains a duration of 0.65s meaning it encap-
sulates 5000 samples at an 8 kHz sampling rate. The total
number of recordings amounts to 279, 556. Imbalances in the
dataset are observed, the specifics of which can be referred to
in Table I.

The Fruitflies data were gathered from the areas of Gouves
and Chersonisos in Crete, following the same method of
collection. This dataset consists of audio signals captured from
three distinct species of fruit flies: Drosophila melanogaster,
Drosophilia suzukii, and Zaprionus. These signals were sam-
pled at a rate of 8kHz. The dataset includes a total of 34, 518
recordings, with each recording lasting for a duration of 0.65
seconds. The class sizes are detailed in Table II.

In the Abuzz dataset, data acquisition was carried out using
mobile phones. The original recordings varied in length, with
some lasting up to 5 minutes, and sample rates being either

†https://github.com/szbela87/insect wingbeat classification

Species Fruitflies
Dr. melanogaster 6, 064

Dr. suzukii 10, 142
Zaprionus 18, 312

TABLE II: Element numbers of each class in the Fruitflies
dataset.

8kHz or 44.1kHz. The dataset employed in this study is the
preprocessed version from the article [14], meaning that the
original recordings were divided into segments, each being
10 seconds long. Technical details can be accessed in the
code repository associated with the WbNet architecture ‡. The
dataset contains a total of 915 recordings, with the distribution
of elements for each class provided in Table I. All signals
were converted to 8kHz sampling rate during the numerical
experiments.

B. Data preprocessing

Raw audio signals are used in all datasets during the
analysis. To ensure a fair comparison with the results from
the articles [14], [17] the datasets are partitioned into training
and testing sets in precisely the same manner. The training
set comprises 80% of the data, and a validation subset is
subsequently split from this in a stratified way to measure
generalization capabilities. This yields a 60/20/20% split for
the training/validation/testing sets, with the exact sizes of the
sets available in Table III. The data are then preprocessed
in the most straightforward way possible, treating the entire
dataset as the measured data of a single variable. Consequently,
simple standardization is performed by computing the nec-
essary scalars, the mean and the standard deviation, of the
training set.

Experiments based on the works of Fanioudakis et. al. [17]
and Wei et. al. [14] use the same preprocessing steps as in
the corresponding supporting code published by the authors.
Therefore, the DenseNet-121 and MobileNet experiments [17]
are executed on the non-standardized spectrograms, while
the WbNet architecture [14] uses the same standardization
procedure on the resulting spectrograms. We keep the spec-
trum processing parameters (e.g.: FFT bins, hop length, etc)
unchanged and stick to the published configuration.

Dataset Training Validation Testing
Wingbeats 167, 739 55, 914 55, 913

Abuzz 549 184 182
Fruitflies 20, 710 6, 904 6904

TABLE III: Sizes of the training, validation, and testing sets.

III. PROPOSED METHODS

A. The proposed model

We propose a straightforward ResNet-9 model [19]. The
smaller network contains a total of approximately 670K train-
able parameters and the larger one has around 8M parameters.
Graphical representations of the architecture are presented in

‡https://github.com/xutong30/WbNet-ResNet-Attention

588



Figures 1. Further abbreviations in Figures 1 are explained as
follows:

• Conv1D(I,O): one-dimensional convolutional layer with
I input channels and with O output channels,

• GELU: The GELU activation function
• BN(I): Batch normalization in I channels,
• FC(I,O): Fully connected layer between I and O neu-

rons.
• avgpool,2: Performs average pooling operation on the

input by the kernel size 2, this is also the size of the
stride here.

• AdaptiveAvgPool1d(1): Performs adaptive average pool-
ing operation, in this case, the size of the output is 1 by
each channel.

The kernel size is 11 and the size of the padding is 5 in the
one-dimensional convolution layers. The pooling size was set
to 5 only in the case of the Abuzz dataset. Furthermore, the two
sideways arrows in Figure 1 represent the residual connections.

(a) Smaller model with 670K
trainable parameters

(b) Larger model with 8M
trainable parameters

Fig. 1: The architecture of the proposed ResNet-9 models.

B. Experiments

We conduct experiments on all three datasets introduced in
Section II using the proposed ResNet-9 models of both sizes.

Stochastic Gradient optimizer and One-cycle learning rate
scheduler [20] are used with Nesterov momentum during the
training. The selection and configuration of the learning rate
scheduler were also vital elements of our research.

The additional parameter configurations for the training
are available in Table IV. These parameters were chosen
empirically through model evaluations under varying settings

on the validation set to circumvent both overfitting and under-
fitting. This philosophy was employed for the selection of the
optimizer as well.

We conduct baseline experiments with regards to
DenseNet121 and MobileNet architectures proposed by
Fanioudakis et. al. [17] and the WbNet architecture by Wei
et. al. [14]. We investigated both the original papers and the
released source code and found that these solutions were
using the test set for evaluations during training, which is a
form of data leak according to Goodfellow et. al. [21]. To
solve this problem we use the same three-fold data split as
with the ResNet-9 models, but keep all the training parameters
the same as the original authors set them. Additionally, to
comply with our Python 3.8 system we reimplement the code
from Fanioudakis et. al. [17] to use PyTorch instead of MxNet
while keeping all the algorithmic aspects unchanged. During
training on the Fruitflies dataset we adopt Wingbeat’s training
configuration for the three baseline models mentioned above.

The evaluation metric applied to the test set was accuracy.
More precisely, this implies that the weights of the model
that yielded the best validation accuracy during training were
saved, and the model was subsequently evaluated on the test
set. To mitigate the stochastic effect of weight initialization
and batch ordering we perform a total of 5 runs in each
experiment and report the mean accuracy of them. All models
were executed on a single NVIDIA GeForce RTX 3090 GPU,
using Python 3.8 with supported libraries PyTorch, Librosa,
Pandas, and NumPy.

Dataset Batch size Epochs Learning rate Weight decay
Wingbeats 32 25 0.0005 0.005

Abuzz 4 150 0.0002 0.005
Fruitflies 32 25 0.0001 0.005

TABLE IV: Training configuration for ResNet-9.

IV. RESULTS

A. Classification experiments
We found that our proposed ResNet-9 models have out-

performed other models on the Wingbeats and the Fruitflies
datasets. The numerical experiments in [14], [17] were re-
peated on all datasets with the same splitting for train-
ing/validation/testing sets to ensure a fair comparison among
the different models. We summarize these test accuracy results
in Table V, the two highest values in each column are marked
in bold.

The small ResNet-9 model achieved an average test accuracy
of 95.37% on the Wingbeats dataset, 85.49% on the Abuzz
dataset, and 97.64% on the Fruitflies dataset. These results
are computed as the mean accuracy over five separate runs.
These five results were obtained by saving the model with
the best validation accuracy during the training process and
then evaluating them on the testing set. While it’s important
to point out that ResNet-9 doesn’t deliver the highest average
test accuracy on the Abuzz dataset it outperforms the other
models on the other two datasets. It is important to highlight
that Abuzz is very small compared to Wingbeats and Fruitflies.
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Fig. 2: Performance on the different datasets for the accuracy generated from 5 independent runs by the small ResNet-9 model.
The shaded region is between the maximum and minimum values over the runs, while the boldface curve displays the average.

The evaluation on the validation set was performed every
1000 training batch and at the end of each epoch for the
Wingbeats dataset. For the Abuzz dataset, the evaluation oc-
curred after every 30 batch and at the end of each epoch, and
for the Fruitflies dataset, it was performed every 100 batch
and at the end of each epoch.

The evolution of the accuracies on the training and the
validation sets are shown in Fig. 2 for the small ResNet-9
model. The exact details about the test results based on
each species for the small and large ResNet-9 models can
be seen in Table VII and Table VIII, respectively. These
results were obtained from the models with the best validation
accuracy. In Figures 3 we present the confusion matrices
for the Wingbeats, Abuzz and Fruitflies datasets respectively
achieved by the best small ResNet-9 model. For the Wingbeats
and the Abuzz datasets the classes are arranged by genus
in pairs, i.e. Anopheles, Aedes, and Culex. For the dataset
Fruitflies, there are also two species of the same genus, namely
Drosophila. It can be observed that most misclassifications
occur between species of the same genus in all three cases.

However, this is not entirely true for the Abuzz dataset. In the
confusion matrix, we can observe that most misclassifications
arise from predictions for the An. Gambiae species class for
the small ResNet-9 model while in the case of the large
ResNet-9 model, the problematic class is the Ae. Albopictus.
Based on the Tables VII-VIII, we can also notice that
the predictions for the other classes are good based on the
evaluation metrics, similar to the Wingbeats dataset.

In general, our proposed models performed better for the
Wingbeats and the Fruitflies datasets compared to the Abuzz
dataset. Of course, this may also be due to the fact that
Wingbeats and Fruitflies contain much more recordings than
the Abuzz. It is also important to note that the audios were
short in both of the Wingbeats and Fruitflies, only 0.65s
long, and captured using advanced audio equipment, while the
Abuzz data were longer and recorded using mobile devices
in noisy environments, varying up to 5 minutes in length.
Therefore, Abuzz audio recordings were divided into multiple
10s long segments. We also find that by solving the data leak
problem of previously proposed architectures [14], [17], their

test performance dramatically drops compared to the originally
reported. We believe that this is due to the deceiving practice
of using the test set during training for internal evaluations.

Wingbeats
Architecture TP Data BVA % TA % ATA %

small ResNet-9 (ours) 0.7M RS 95.55 95.43 95.37
large ResNet-9 (ours) 8M RS 95.65 95.35 95.43
DenseNet121 [17] § 7M SP 92.16 91.97 91.92

MobileNet [17] § 2M SP 91.41 91.14 91.20
WbNet [14] § 11M SP 87.62 91.09 90.32

Abuzz
Architecture TP Data BVA % TA % ATA %

small ResNet-9 (ours) 0.7M RS 95.11 87.36 85.49
large ResNet-9 (ours) 8M RS 97.28 92.86 90.33
DenseNet121 [17] § 7M SP 99.79 97.09 95.94

MobileNet [17] § 2M SP 100.00 92.98 93.69
WbNet [14] § 11M SP 62.50 73.63 67.25

Fruitflies
Architecture TP Data BVA % TA % ATA %

small ResNet-9 (ours) 0.7M RS 98.16 97.75 97.64
large ResNet-9 (ours) 8M RS 98.32 97.71 97.67
DenseNet121 [17] § 7M SP 92.65 92.68 92.91

MobileNet [17] § 2M SP 91.73 91.01 91.57
WbNet [14] § 11M SP 86.37 86.15 86.67

TABLE V: Accuracies for different architectures. The abbre-
viations stand for the following: TP denotes the number of the
trainable parameters, BVA means the best validation accuracy,
TA denotes the corresponding test accuracy for the model
with the best validation accuracy, ATA marks the average
test accuracy by the saved models with the highest validation
accuracies among five different runs, RS means raw samples
and SP shortens spectrogram.

B. Efficiency

As observed in the results of Table V, the small ResNet-9
model achieves a stable performance which is comparable
to the large ResNet-9 model. To provide further analysis of
the practical usability of such models Table VI compiles the
training (including both forward and backward steps) and
inference (only forward steps) batch processing times. The
two lowest values are written in bold. To account for memory

§Reevaluated experiment solving data leak in the original implementation.
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Fig. 3: Confusion matrices on the testing datasets for the small ResNet-9 model which has the best validation accuracy among
5 different runs.

Wingbeats
Architecture TP Features BS TTPS ITPS

small ResNet-9 (ours) 0.7M RS 512 0.45 0.14
large ResNet-9 (ours) 8M RS 256 1.83 0.43
DenseNet121 [17] ¶ 7M SP 256 0.85 0.30

MobileNet [17] ¶ 2M SP 512 0.38 0.14
WbNet [14] ¶ 11M SP 128 1.20 0.38

Abuzz
Architecture TP Features BS TTPS ITPS

small ResNet-9 (ours) 0.7M RS 64 3.00 1.08
large ResNet-9 (ours) 8M RS 32 20.97 5.11
DenseNet121 [17] ¶ 7M SP 32 13.08 4.20

MobileNet [17] ¶ 2M SP 32 5.40 1.86
WbNet [14] ¶ 11M SP 8 22.04 5.11

Fruitflies
Architecture TP Features BS TTPS ITPS

small ResNet-9 (ours) 0.7M RS 512 0.44 0.14
large ResNet-9 (ours) 8M RS 256 1.92 0.40
DenseNet121 [17] ¶ 7M SP 256 1.67 0.56

MobileNet [17] ¶ 2M SP 512 0.37 0.13
WbNet [14] ¶ 11M SP 128 1.22 0.42

TABLE VI: Sample processing speeds of different architec-
tures using the largest power of two batch sizes which fit
into 24GB memory. TP denotes the number of the trainable
parameters, BS marks the batch size, TTPS is training time
per sample in milliseconds, ITPS denotes inference time
per sample in milliseconds, RS means raw samples and SP
shortens spectogram. Processing speeds were averaged over a
full epoch of training and validation.

efficiency we use the largest power of two as batch size
which fits into a 24GB VRAM limit. This memory limitation
matches the memory limit of consumer-grade desktop GPUs.

This analysis thus illustrates the speed with which a widely
applicable cost-effective solution can perform this task, which
could help in controlling the spread of insect-borne infections.
To account for statistical instability our batch processing
time results are averaged over a full epoch of training and
validation.

¶Reevaluated experiment solving data leak in the original implementation.

Wingbeats
Species Precision Recall F1-score

Ae. aegypti 96.58 97.26 96.92
Ae. Albopictus 93.70 90.83 92.24
An. Gambiae 92.74 94.57 93.65

An. Arabiensis 84.19 79.50 81.78
Cu. pipiens 96.74 96.55 96.64

Cu. quinquefasciatus 98.56 98.80 98.68
Abuzz

Species Precision Recall F1-score
Ae. aegypti 93.75 88.24 90.91

Ae. Albopictus 83.33 78.95 81.08
An. Gambiae 79.45 89.23 84.06

An. Arabiensis 94.12 82.05 87.67
Cu. pipiens 100 91.67 95.65

Cu. quinquefasciatus 92.86 100 96.30
Fruitflies

Species Precision Recall F1-score
Dr. melanog. 92.49 95.00 93.73
Dr. suzukii 97.04 95.64 96.33
Zaprionus 100 99.92 99.96

TABLE VII: Evaluation metrics for different mosquito species
by the best small ResNet-9 models on the investigated datasets.

Wingbeats
Species Precision Recall F1-score

Ae. aegypti 96.63 97.48 97.06
Ae. Albopictus 93.31 90.36 91.81
An. Gambiae 92.29 94.27 93.27

An. Arabiensis 83.49 78.23 80.78
Cu. pipiens 97.02 96.84 96.93

Cu. quinquefasciatus 98.67 98.81 98.74
Abuzz

Species Precision Recall F1-score
Ae. aegypti 91.89 100.00 95.77

Ae. Albopictus 77.27 89.47 82.93
An. Gambiae 95.08 89.23 92.06

An. Arabiensis 97.30 92.31 94.74
Cu. pipiens 100 91.67 95.65

Cu. quinquefasciatus 92.86 100 96.30
Frutflies

Species Precision Recall F1-score
Dr. melanog. 91.63 95.98 93.75
Dr. suzukii 97.59 94.88 96.21
Zaprionus 99.94 99.94 99.94

TABLE VIII: Evaluation metrics for different mosquito species
by the best large ResNet-9 models on the investigated datasets.
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V. CONCLUSION AND FUTURE WORK

In this study, we presented a simple approach for insect
classification based on audio signals using a straightforward
ResNet-9 model incorporating one-dimensional convolutional
layers.

We investigated three benchmark datasets, the Wingbeats,
the Fruitflies, and the Abuzz, which were recorded using
different kinds of sensors. Our proposed architecture achieved
high test accuracy on the Wingbeats and the Fruitflies datasets
using the raw audio data, outperforming previously reported
spectrum-based results on the Wingbeats dataset and the
numerical experiments carried out in this study, based on the
same architectures on the Fruitflies dataset. However, it was
not effective for the very small-sized Abuzz dataset. Apart
from that, the proposed smaller model is also streamlined
and efficient, it consists of 90% less trainable parameters
than the above-mentioned deep learning models to process
spectrograms. This leads to a processing speed that is on
par with, or sometimes even faster than a MobileNet-v2
architecture working on spectral data. Our research makes
a substantial contribution to advancing the development of
effective and precise methods for classifying for example
mosquitoes, thereby providing valuable support for controlling
and intervening in mosquito-borne diseases.

Future research topics include applications of industrial
time-series datasets, such as energy-efficient fault detection
which could benefit from the parameter-efficient models.

The exploration of multi-domain neural operators for
time series processing poses another question. Here Fourier-
transform-based neural operators would provide a possibly
strong, yet unexplored competitor to vanilla 1D convolutions.

VI. DECLARATIONS

A. Availability of supporting data

The Wingbeats dataset is publicly available in Kag-
gle https://www.kaggle.com/datasets/potamitis/wingbeats. The
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xutong30/WbNet-ResNet-Attention. The Fruitflies dataset
is publicly available at https://timeseriesclassification.com/
description.php?Dataset=FruitFlies. The codes and the datasets
used in this article are available on the GitHub page https:
//github.com/szbela87/insect wingbeat classification.
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