
Opposition-based Crossover Operation for
Differential Evolution Algorithm

1st Sevda Ebrahimi
Department of Electrical, Computer, and Software Engineering

Ontario Tech University
Oshawa, ON, Canada

sevda.ebrahimi@ontariotechu.ca

2nd Shahryar Rahnamayan
Engineering Department

Brock University
St. Catharines, ON, Canada

srahnamayan@brocku.ca

3ed Azam Asilian Bidgoli
Faculty of Science

Wilfrid Laurier University
Waterloo, ON, Canada

abidgoli@wlu.ca

Abstract—Differential Evolution (DE) is widely recognized
as an effective, robust, and gradient-free global optimization
algorithm. However, the DE algorithm’s search strategy has
certain limitations that present opportunities for further im-
provement. Opposition-based Learning (OBL) as one of the
efficient computational concepts provides the optimizer with the
capability of exploring the search space in opposite directions.
This research paper introduces a novel crossover scheme for the
DE algorithm based on OBL concept. Unlike existing approaches
in the literature, which primarily focus on utilization of OBL in
population level, proposed scheme takes the advantage of OBL
in operation level. In proposed scheme, the crossover operator
generates two trial vectors in opposite directions, enhancing the
exploration capability of the search strategy and taking a cautious
approach by regularly examining the opposite directions during
crossover. To evaluate the effectiveness of the proposed method,
a series of experiments are conducted using the CEC-2017
benchmark functions with two different numbers of dimensions:
30 and 50. The results demonstrate a significant improvement in
performance of the DE algorithm through the proposed method.

Index Terms—Evolutionary Algorithm (EA), Differential Evo-
lution (DE), Opposition-based Learning (OBL), Opposition-based
Crossover, Operation-level Opposition

I. INTRODUCTION

Evolutionary Algorithms (EAs) are stochastic metaheuristic
search methods based on Darwinian evolution and phenomena
of natural selection of the fittest [1]. In the past few decades,
EAs have been employed as a useful approach to tackle a wide
range of difficult problems and find solutions effectively [2].
Among these algorithms, Differential Evolution (DE) has re-
ceived a significant attention [3]. Just like other EAs, DE starts
its optimization process with a population initialization. The
population consists of several individuals defined as the po-
tential solutions for a given optimization problem. Individuals
are evolved within evolutionary processes including: mutation,
crossover, and selection operations which consequently lead
to generating new offspring which are expected to become
closer to the optimal solution generation-by-generation. With
the efficient search strategy and at times a prior knowledge
about the optimal solutions is available, the algorithm can
achieve a promising performance. However, in the lack of prior
knowledge, which is the most common scenario, DE starts
the optimization with random candidate solutions which may
reduce the chance of finding better solutions through evolution.

The concept of Opposition-based Learning (OBL) is first
introduced in [4]. The primary motivation of OBL is to search
for potential solutions in a search space by simultaneously
exploring both the opposite and primary directions of the
investigation process. OBL is used in various searching,
learning, and optimization algorithms including Reinforcement
Learning (RL) [5], Artificial Neural Networks (ANN) [6],
Fuzzy systems [7], and optimization algorithms. OBL proved
to be effective in improving search capability of several
metaheuristics including evolutionary computations such as
Genetic Algorithm (GA) [8], Differential Evoultion (DE) [9],
Ant Colony System Optimization [10], beluga whale Opti-
mization Algorithm [11], Harmony Search [12], Simulated
Annealing [13], Swarm Intelligence [14], and Multi-Objective
Optimization. The main idea behind OBL is simultaneously
evaluation of a candidate solution and its opposite in the search
space in order to have an effective investigation for an optimal
solution. This in fact, increases the likelihood of discovering
optimal solutions and empowers the exploration ability of the
algorithms.

In recent years, multiple research studies have been con-
ducted to expand the novel OBL approaches to enhance DE
algorithm. Opposition-based Differential Evolution algorithm
(ODE) is one of the most successful and well-known methods
developed by embedding OBL in population initialization
and generation jumping [9]. Different variants of DE have
been developed by utilizing the OBL concept with various
application. Quasi Oppositional DE (QODE) benefit from the
first variant of OBL in DE [15]. Generalized OBL is another
scheme embedded in DE algorithm developing Generalized
opposition-based DE (GODE) [16]. In [17], different strategy
of utilizing OBL concept is embedded in DE in mutation
operation. Centroid Opposition-based Differential Evolution
(CODE), defines the centroid-opposite point for the candidate
solution which gravity center of the population is used for gen-
erating opposite candidate solution instead of using minimum
and maximum boundary of candidate solution [18]. Another
different scheme of OBL concept is introduced to DE in [19],
when triple comparison method is conducted in selection step
including a random candidate solution, the target, trial, and
their corresponding opposites. These opposite solutions are
calculated based on principle definition for the opposite of

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 965

a point in OBL using minimum and maximum boundaries. A
comparative study conducted on performance of eight different
OBL schemes imbedded in DE in [20], to mention some; a
comprehensive survey on OBL was published in [21], [22].

In this paper, the concept of opposition-based optimization
is applied to DE algorithm in operation level, when performing
the crossover operation. The primary objective is to enhance
the algorithm’s capacity of exploring the optimal solution.
This technique allows the algorithm to intelligently explore
the search space with current candidate solution generated
by crossover and its opposite. Consequently, the evolutionary
algorithm will benefit from a broad view when searching
for the optimal solution. During the exploration, the oppo-
site candidate solution will support a high diversity for the
exploration, and during the fine-tuning it will contribute on a
finer exploitation depending on optimization phase.

The paper is structured as follows: Section II provides a
brief overview of the DE algorithm and the concept of OBL. In
section III, the proposed approach of customized opposition-
based crossover for the DE algorithm is discussed in detail. In
section IV, the experiments on the test functions, parameter
settings, and the comparison of the proposed method with the
classical DE algorithm (DE/rand/1/bin) are explained. Finally,
the paper is summarized and concluded in section V.

II. A BRIEF REVIEW OF DIFFERENTIAL
EVOLUTION AND OPPOSITION-BASED LEARNING

In this section, DE and opposition-based optimization are
explained in detail as the background review section.

A. Differential Evolution Algorithm (DE)

DE is a popular optimization method which is simple,
effective and has been successfully applied to many optimiza-
tion problems. Complex problems which include linear and
nonlinear, unimodal and multimodal solution landscapes can
be successfully solved by applying this algorithm. In DE, when
no prior information or solution is available, the process of
searching for optimal solution, starts with initializing random
vectors as individuals of the population. Then, the algorithm
tries to improve the quality of candidate solutions in the
population, generation by generation, to reach an optimal
solution. The algorithm is able to search for a better candidate
solution by applying the specific operations including muta-
tion, crossover, and selection. These three operations are the
major building blocks of the DE algorithm.

Suppose that the population P(G) = {X1,G, ...,XNp,G}
consists of Np vectors in generation G, where Xi,G(i =
1, 2, ..., Np) is the ith individual in population P(G). Each Xi

is a D-dimensional vector defined as Xi = {Xi,1, ..., Xi,D}.
A simple DE algorithm includes three major operations:
mutation, crossover, and selection. Mutation and crossover are
responsible for generating mutant and trial vectors respectively
and selection operation determines which individual must be
selected into the next generation.

Mutation–In this step for each vector Xi,G in generation
G, three vectors are uniform randomly selected from the

population such that i1 ̸= i2 ̸= i3 ̸= i where i ∈ {1, ..., Np}.
For each vector Xi, the mutant vector is generated as follow
[3]:

Vi,G = Xi1,G + F (Xi2,G −Xi3,G), (1)

The population size Np should fulfill the condition of Np ≥ 4
since i, i1, i2, and i3 are different. F ∈ [0, 2] is a real
constant number defined as mutation factor, scaling factor
or differential weight that controls the amplification of the
differential variation of (Xi2,G −Xi3,G).

Crossover-In DE, crossover operation is responsible for
creating trial vectors by shuffling the parent vector and mutant
vector. The trial vector is calculated as follows [3]:

Ui,j,G =

{
Vi,j,G, randj(0, 1) ≤ Cr or jrand = j,
Xi,j,G, otherwise. (2)

where j ∈ {1, 2, ..., Np}, Cr ∈ [0,1] is the crossover rate,
and randj(0, 1) is a random number in interval [0,1] for jth
dimension. Finally, the trial vector is defined as follow [3]:

Ui,G = (Ui,1,G, Ui,2,G, ..., Ui,D,G), (3)

where i ∈ {1, 2, ..., Np}.
Selection-This operation evaluates the Ui,G and Xi,G,

and compares them with respect to their fitness values. The
selection mechanism is defined as follows [3]:

Xi,G =

{
Ui,G, f(Ui,G) ≤ f(Xi,G),
Xi,G, otherwise. (4)

where f(X) is an objective function to be minimized or
maximized based on the optimization problem definition.
Considering the minimization problems in this paper and in
the selection mechanism defined in “(9)”, if the fitness value
of the trial vector Ui,G is equal to or lower than the parent
vector Xi,G, then the Xi,G will be set as the Ui,G, otherwise
the Xi,G will remain unchanged.

B. Opposition-Based Learning (OBL)

In this section, the concept of OBL is briefly discussed
from Type-I and min-max-based opposition viewpoints [18],
[23]. These two main schemes of OBL concept have been
utilized in development of proposed novel OBL scheme which
is an opposition-based crossover operation in DE. Whilst
evolutionary processes in EAs, the main purpose of OBL is
to help these algorithms explore the search space in a better
way by integrating the diversity to possible candidate solutions
and inclusive exploration and selection. Consequently, this
approach can increase convergence rate of the optimizer.
Opposite number and opposite point are defined as follows.
Opposite number-Let x ∈ [a, b] be a real number. The
opposite of x is defined by [4]:

x̆ = b+ a− x (5)

Opposite point in the n-dimensional space-Let us assume
P (x1, x2, ..., xn) is a candidate solution in an n-dimensional

966

space with xi ∈ [ai, bi], ∀i ∈ {1, 2, ..., n}. Based on op-
posite point definition, P̆ (x̆1, x̆2, ..., x̆n) is the opposite of
P (x1, x2, ..., xn) such that [4]:

x̆i = bi + ai − xi (6)

where ai and bi are lower boundary and upper boundary for the
ith dimension respectively. Different variants of OBL schemes
exist in the literature, however the proposed scheme in this
study inspired by min-max-based opposition and other variants
are somehow out of scope of this study.

III. THE PROPOSED ALGORITHM

In this section, OBL scheme in DE algorithm is introduced
in a way that employs OBL concept in operation-level of
the algorithm, resulting a novel crossover scheme for DE.
Most approaches introduced in the literature typically focus
on population-level scheme of the opposition concept to en-
hance the performance of an evolutionary algorithm. However,
our proposed method indicates that OBL when integrated in
crossover operation, significantly improves the algorithm with
minimal algorithm modification and without additional control
parameter.

In conventional DE algorithm a trial vector is generated by
applying crossover operator to parent and mutant vectors. The
generated trial vector is then compared with parent vector and
then the fittest among trial and parent will participate in new
generation. This study, introduces opposite of trial vector to
the algorithm that can be generated by crossover operator at
the same time as generating trial vector. The primary idea is
to keep the valuable information that Cr discards in classic
DE when trial vector is being generated. Proposed crossover
operator calculates trial vector in “(2)” and opposite of trial
vector (opposite-trial vector) as follows:

Ŭi,j,G =

{
Xi,j,G, randj(0, 1) ≤ Cr or jrand = j,
Vi,j,G, otherwise. (7)

Finally, the opposite-trial vector is defined as:

Ŭi,G = (Ŭi,1,G, Ŭi,2,G, ..., Ŭi,D,G) (8)

where same as “(3)” i ∈ {1, 2, ..., Np} and, G is the gen-
eration index. The way that opposite-trial vector is generated
is quite simple and the impact that it has on enhancement
of the algorithm is significant. For each gene, there are two
options to take the value from the parent or mutant vector.
So, depending on the selection of the gene values from the
parent or mutant vectors, the opposition can be defined. This
scheme generates extra point or vector in the search space
by making use of a hyper-rectangle. This hyper-rectangle is
made using parent and mutant vectors. Fig. 1 illustrates the
cuboid generated using a sample parent vector x, and a sample
mutant vector v for three-dimensional search space. In Fig. 1,
After performing the proposed crossover operation, trial vector
u will be generated referring to one of these vertices in the
cuboid. It is worth mentioning that, based on the value that
Cr takes in the algorithm, trial vector will be closer to, or

Fig. 1: The visual illustration of sample parent (x), trial (u), opposite-trial
vectors (ŭ) in a cuboid generated by parent and mutant vector (v) in three-
dimensional search space. Trial vector and its opposite always refer to opposite
vertices in the generated hyper-rectangle.

Fig. 2: The visual illustration of generated trial vector and its opposite by
shuffling the mutant and parent vector.

far from the mutant vector. At the same time, opposite-trial
vector ŭ will be generated referring to the opposite vertex
of which trial vector is referring to. Finally, after performing
crossover and in selection step, the fittest among x, u, ŭ will be
chosen to be present in the next generation. We have called this
algorithm Opposition-based Crossover Differential Evolution
(Op-DE) algorithm. Fig. 2 shows the trial vector U and its
opposite Ŭ for better illustration of the reverse selection.
Thus, for Op-DE algorithm, beside calculating primary trial
vector U , simultaneously, the crossover operation calculates
the opposite of the primary trial vector Ŭ . The opposite trial
vector is generated just by reversely selecting the genes that are
discarded for selection in generating the trial vector. This can
increase the chance of finding better candidate solutions and
consequently exploring the search space by evaluating both
vectors.

During the selection process, the Ui,G, Ŭi,G and Xi,G vec-
tors are evaluated and the vector with the superior fitness value
is chosen as the parent vector for the subsequent generation.
Given a minimization problem, the selection procedure in
determining the fittest vector is formulated as follows:

Xi,G =

 Ui,G, f(Ui,G) ≤ f(Xi,G) ∧ f(Ui,G) ≤ f(Ŭi,G),

Ŭi,G, f(Ŭi,G) < f(Ui,G) ∧ f(Ŭi,G) < f(Xi,G),
Xi,G, otherwise.

(9)

967

where f(X) indicates the fitness value of vector X. Algorithm
1 demonstrates the way that OBL is applied to the crossover
operation of classical DE algorithm. The mutation and selec-
tion are same as original DE.

In the following section, experimental results also validate
that the proposed method in this paper improves DE algorithm.
Experiments indicate that opposite trial vector, which has been
disregarded prior to this study, has valuable information that
can assist the algorithm towards achieving an optimal solution.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, in order to investigate the effect of
the proposed Op-DE algorithm, the algorithm is evaluated
with limited computational budget and in comparison with
DE/rand/1/bin variant of classic DE algorithm. To this end,
the CEC-2017 is selected as the set of benchmark functions.
Experiments on CEC-2017 benchmark functions, have been
conducted on two different dimensions, 30 and 50, to evaluate
the performance of the proposed method. In the next sub-
section, the parameter setting, and the benchmark functions
set are defined. Then, the comparison strategies and metrics
for evaluating performance of the proposed algorithm are
explained.

A. Benchmark functions and parameters setting

The set of benchmark functions used to evaluate and com-
pare the performance of DE algorithm and proposed Op-
DE algorithm, consist of 29 minimization problems. The
benchmark functions include 2 unimodal functions (f1 − f2),
7 simple multimodal functions (f3 − f9), 10 hybrid functions
(f10 − f19), and 10 composition functions (f20 − f29). The
parameter settings are described in Table I. Parameters are
identical for both DE and Op-DE algorithms. The maximum
number of function evaluations has been set to 3000*D for
both algorithms and the dimension of the problems in these
experiments has been set to 30 and 50. Due to the stochasticity
of evolutionary algorithms, we run each algorithm 31 times.
T-statistic test with the significance level of α = 0.05 is also
performed and applied to the results to confirm any significant
differences between the results of the two algorithms.

B. Results Analysis

To compare the performance of the DE and Op-DE algo-
rithms, the mean value of the fitness functions and the standard
deviation (Std) of the fitness function values over 31 runs are
compared. Table II presents the results for D=30 and Table III
presents the results for D=50. In Table II and Table III, the
results of the algorithm with the better fitness value are shown
in bold.

1) Comparison of DE and proposed Op-DE on D=30: In
Table II, the results regarding the mean values, Std values,
the rejection or acceptance of null hypothesis (H0) and the
p-value show that the DE and the proposed Op-DE have
different performance on 16 functions of the benchmark and
for the rest of 13 functions, both algorithms present similar
performance and there is no significant difference between

Algorithm 1 Opposition-based Crossover DE
1: Parameter setting (F,Cr,D,NFCMax, NP)

2: Initialize individuals in the population P(G) randomly
3: Compute the fitness value for each Xi,G

4: While (NFC ≤ NFCMax) do
/* Continue performing the classical DE */

5: for i = 1 to NP do
6: Select 3 random vectors like Xi1,G,Xi2,G,Xi3,G

from P(G) where (i1 ̸= i2 ̸= i3 ̸= i);
7: Vi,G = Xi1,G + F (Xi2,G −Xi3,G);

/* apply Opposition-based Crossover * /

9: for j = 1 to D do
10: if rand(0, 1) ≤ Cr then
11: Ui,j,G = Vi,j,G;
12: Ŭi,j,G = Xi,j,G;
13: else
14: Ui,j,G = Xi,j,G;
15: Ŭi,j,G = Vi,j,G;
16: end if
17: end for
18: Evaluate Ui,G and Ŭi,G as f(Ui,G) and f(Ŭi,G);
19: NFC=NFC+2;
20: Xi,G=Select the fittest individual from the set

{Xi,G,Ui,G, Ŭi,G}
21: end for
22: G=G+1;
23: end while if criterion meets

TABLE I
PARAMETER SETTING FOR ALL EXPERIMENTS, FOR BOTH DE AND

Op-DE ALGORITHMS.

Parameter Description Value
NP Population size 50
F Differential weight 0.5
Cr Crossover rate 0.9

NFCMax Maximum number of function call 3000*D
NRun Number of runs 31

these two algorithms. On 16 functions with significantly
different outcomes, proposed Op-DE algorithm outperforms
the DE algorithm on 12 functions and only on 4 functions,
DE shows a better performance. In addition, for these 13
functions the Std values are significantly lower in the proposed
Op-DE algorithm, which is an indicator for a robust behavior
of the proposed algorithm. In Fig. 3, performance plots for
functions 1, 16, and 21 are presented. In functions 1 and 21,
Op-DE has better performance than DE algorithm. However,
in function 16, DE algorithm outperforms Op-DE algorithm.
Fig. 4 shows the contribution rate of the parent, trial, and
opposite trial vectors in selection stage in each iteration of
the proposed algorithm. Graphs show that the trial vectors
have have valuable information and consequently contribution
in generating new offspring because they are selected as
parent for the new population in each iteration. It is clear
that with Cr of 0.9, the ratio of selected genes from mutant
vector in trial vector is higher than those from parent vector.
This is vice versa in the opposite vector and may result in
lower contribution of opposite vector compared to trial vector.
However, ignoring the opposite vector causes the loss of that

968

TABLE II
PERFORMANCE COMPARISON OF DE AND PROPOSED Op-DE FOR
D=30 ON CEC-2017 BENCHMARK FUNCTION. THE FITTEST VALUE

FOR EACH FUNCTION IS HIGHLITED IN BOLDFACE.

F
DE Op-DE T-test

mean std mean std p-value H0

1 3462.17 21961457 101.37 58.67 0.0001 1

2 3673.93 8963294 17081.75 33682085 1.0e-16 1

3 485.59 327.33 487.31 19.26 0.609 0

4 680.85 202.37 611.82 114.67 5.6e-30 1

5 600.00 7.19e-08 600.00 8.02e-10 0.73 0

6 917.99 137.99 851.44 74.04 7.6e-34 1

7 972.29 792.02 916.28 67.81 1.9e-15 1

8 900.25 0.17 900.00 1.15e13 0.0009 1

9 7866.46 1000133 5789.08 74014 2.8e-16 1

10 1130.95 1037.03 1158.81 825.34 0.0006 1

11 42979 1355260700 53841 1827336455 0.28 0

12 4193.89 93882291 1942.60 3426757.38 0.208 0

13 1465.96 145.63 1452.35 56.16 1.5e-06 1

14 1544.62 1001.28 1533.00 109.45 0.056 0

15 2243.81 224476 2326.90 49411 0.38 0

16 1836.22 9266 1891.88 12280 0.03 1

17 7655.37 36635444 9072.40 57056980 0.41 0

18 1914.25 27.44 1925.36 25.03 5.8e-12 1

19 2072.17 10828 2105.11 5091 0.15 0

20 2472.54 105.08 2413.81 85.18 3.6e-32 1

21 6201.25 12994198 3125.69 3672684 9.1e-05 1

22 2797.55 3685.12 2760.98 54.96 0.001 1

23 2995.30 896.86 2940.74 92.09 7.8e-14 1

24 2886.95 1.05 2886.90 0.017 0.82 0

25 4699.80 569087 4755.35 12042 0.68 0

26 3204.26 90.52 3201.33 53.81 0.17 0

27 3191.92 1432 3201.13 1097 0.31 0

28 3400.50 21293 3565.06 7405 1.1e-06 1

29 5906.83 1876553 5640.87 281710 0.31 0

w/t/l 12/13/4

much contribution which is beneficial for reaching the better
candidate solutions.

2) Comparison of DE and proposed Op-DE on D=50: To
assess the performance of the proposed algorithm in higher
dimensions, the same experiment is conducted for D=50. Table
III presents the results of the experiment, including the mean,
Std, and t-statistical test p-value. Based on these metrics,
the DE and proposed Op-DE algorithms demonstrate similar
performance on 8 benchmark functions. Amongst other 21
functions of the benchmark, the proposed Op-DE algorithm
outperforms the DE algorithm on 17 functions, whereas DE
exhibits a superior fitness value on only 4 functions. Except
function number 27, the Std values are also significantly lower

Fig. 3: Mean value of best so far solution (over 31 runs) versus number of
function calls. Performance comparison between DE algorithm and proposed
Op-DE algorithm for D=30.

Fig. 4: Selection rate of parent, trial, and the opposite trial vector in each
iteration in proposed Op-DE algorithm for D=30.

969

TABLE III
PERFORMANCE COMPARISON OF DE AND PROPOSED Op-DE FOR
D=50 ON CEC-2017 BENCHMARK FUNCTION. THE FITTEST VALUE

FOR EACH FUNCTION IS HIGHLITED IN BOLDFACE.

F
DE Op-DE T-test

mean std mean std p-value H0

1 7294.62 70583385 5764.53 60393255 0.459 0

2 126272 571550647 173488 978416825 8.8e-09 1

3 514.53 3284 510.72 1107 0.75 0

4 835.80 4377 777.10 231 1.0e-05 1

5 600.01 0.00078 600.00 4.5e-09 0.001 1

6 1117.63 294 1043.69 178 5.1e-27 1

7 1152.56 828 1078.05 256 1.6e-18 1

8 943.46 10113 901.85 15.79 0.024 1

9 14041.50 2135443 10928.85 98129 5.8e-17 1

10 1169.31 1767 1201.89 512 0.0003 1

11 364974 96239305610 444278 119879230765 0.346 0

12 12013.19 71512350 6421.64 29719418 0.002 1

13 2733.77 3907766 2128.45 934963 0.130 0

14 3649.11 7525914 2176.05 1540661 0.008 1

15 3749.55 944580 3290.52 76923 0.014 1

16 2868.20 188284 2723.64 59085 0.110 0

17 46434.32 1286887953 34999.43 616883575 0.149 0

18 5432.68 53949715 2664.26 8279479 0.055 0

19 3100.80 111496 2946.08 35431 0.02 1

20 2643.17 3085 2585.92 172 6.0e-07 1

21 15654.78 267581 12648.23 136580 1.1e-34 1

22 2999.35 13847 3009.10 220 0.64 0

23 3258.83 835.18 3189.07 506.22 2.2e-15 1

24 3026.84 1663.52 3000.26 1224.92 0.007 1

25 5103.75 1496720 6468.20 29196 6.8e-08 1

26 3352.54 8034 3249.99 1506 2.2e-07 1

27 3301.23 397.13 3270.84 402.85 1.3e-07 1

28 3458.03 85405 3917.83 34670 5.4e-10 1

29 709846 15848330568 633805 2071056953 0.002 1

w/t/l 17/8/4

in these 17 functions where the proposed Op-DE algorithm
outperforms the DE algorithm. In Fig. 5, performance plots for
functions 9, 19, and 26 are presented for better investigation
of algorithms’ efficiency for D=50. Fig. 6 also represents the
contribution rate of the parent, trial, and opposite trial vectors
in selection stage for D=50.

Almost in all plots for the selection rate of parent, trial, and
the opposite trial, it is seen: a) during the exploration, we ob-
serve a monotonically increasing trend for parent ratio plot and
monotonically decreasing behavior for both trial and opposite
trial, b) during the exploitation they stay with their almost flat
ratios (i.e., curves). As seen, even with a low contribution ratio
for trial and opposite trial vectors, utilizing them can improve

Fig. 5: Mean value of best so far solution (over 31 runs) versus number of
function calls. Performance comparison between DE algorithm and proposed
Op-DE algorithm for D=50.

Fig. 6: Selection rate of parent, trial, and the opposite trial vector in each
iteration in proposed Op-DE algorithm for D=50.

970

the convergence rate of the proposed algorithm significantly.

V. CONCLUSION REMARKS

This paper introduces the application of Opposition-based
Learning (OBL) to the DE algorithm at the operation level,
specifically within the crossover operation, with the aim of
improving its performance. By incorporating the OBL concept,
the DE algorithm benefits from enhanced exploration and
increased search capability. This is achieved by introducing
an opposite trial vector alongside the original trial vector after
the crossover operation is applied to the mutant and parent
vectors. By leveraging the valuable information present in the
opposite trial vector, the algorithm explores the search space
more effectively and efficiently. Including both possible trials
provide the optimizer with additional candidate solutions to
improve the population within the same iteration.

To evaluate and compare the performance of the proposed
Op-DE algorithm against the classic DE algorithm, the CEC-
2017 benchmark functions with varying dimensions were uti-
lized. The results demonstrate that the Op-DE algorithm out-
performs the classic DE algorithm for different dimensions (30
and 50). Specifically, the proposed algorithm exhibits accel-
erated convergence in reducing the fitness value compared to
the classical DE algorithm. Notably, the proposed opposition-
based crossover scheme is straightforward to implement and
can be applied to other variants of DE. It proves effective
in addressing the premature convergence issue in solving
deceptive and highly multi-modal optimization problems.

This paper presents a promising direction for defining
opposition-based operations without the need for additional
control parameters. As future research, the proposed method
will be further investigated in solving large-scale and many-
objective optimization problems.

REFERENCES

[1] J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” in Proceedings of the 2004 congress on
evolutionary computation (IEEE Cat. No. 04TH8753), vol. 2, pp. 1980–
1987, IEEE, 2004.

[2] D. Dasgupta and Z. Michalewicz, Evolutionary algorithms in engineer-
ing applications. Springer Science & Business Media, 2013.

[3] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, pp. 341–359, 1997.

[4] H. R. Tizhoosh, “Opposition-based learning: a new scheme for machine
intelligence,” in International conference on computational intelligence
for modelling, control and automation and international conference on
intelligent agents, web technologies and internet commerce (CIMCA-
IAWTIC’06), vol. 1, pp. 695–701, IEEE, 2005.

[5] H. R. Tizhoosh, “Opposition-based reinforcement learning,” Journal
of Advanced Computational Intelligence and Intelligent Informatics,
vol. 10, no. 3, 2006.

[6] M. Ventresca and H. R. Tizhoosh, “Improving the convergence of
backpropagation by opposite transfer functions,” in The 2006 IEEE In-
ternational Joint Conference on Neural Network Proceedings, pp. 4777–
4784, IEEE, 2006.

[7] H. R. Tizhoosh, “Opposite fuzzy sets with applications in image pro-
cessing.,” in IFSA/EUSFLAT Conf., pp. 36–41, Citeseer, 2009.

[8] J. J. Grefenstette, “Genetic algorithms and machine learning,” in Pro-
ceedings of the sixth annual conference on Computational learning
theory, pp. 3–4, 1993.

[9] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Opposition-based
differential evolution algorithms,” in 2006 IEEE international conference
on evolutionary computation, pp. 2010–2017, IEEE, 2006.

[10] D. Zhao, L. Liu, F. Yu, A. A. Heidari, M. Wang, H. Chen, and
K. Muhammad, “Opposition-based ant colony optimization with all-
dimension neighborhood search for engineering design,” Journal of
Computational Design and Engineering, vol. 9, no. 3, pp. 1007–1044,
2022.

[11] S.-L. Xu, Q.-W. Chai, W.-M. Zheng, J.-S. Pan, and P. Hu, “An
opposition-based beluga whale optimization,” in International Confer-
ence on Intelligent Information Hiding and Multimedia Signal Process-
ing, pp. 363–373, Springer, 2022.

[12] A. A. Alomoush, A. A. Alsewari, H. S. Alamri, K. Z. Zamli, W. Alo-
moush, and M. I. Younis, “Modified opposition based learning to
improve harmony search variants exploration,” in Emerging Trends
in Intelligent Computing and Informatics: Data Science, Intelligent
Information Systems and Smart Computing 4, pp. 279–287, Springer,
2020.

[13] M. Ventresca and H. R. Tizhoosh, “Simulated annealing with opposite
neighbors,” in 2007 IEEE Symposium on Foundations of Computational
Intelligence, pp. 186–192, IEEE, 2007.

[14] M. Agarwal and G. M. S. Srivastava, “Opposition-based learning in-
spired particle swarm optimization (opso) scheme for task scheduling
problem in cloud computing,” Journal of Ambient Intelligence and
Humanized Computing, vol. 12, no. 10, pp. 9855–9875, 2021.

[15] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Quasi-oppositional
differential evolution,” in 2007 IEEE congress on evolutionary compu-
tation, pp. 2229–2236, IEEE, 2007.

[16] H. Wang, S. Rahnamayan, and Z. Wu, “Parallel differential evolution
with self-adapting control parameters and generalized opposition-based
learning for solving high-dimensional optimization problems,” Journal
of Parallel and Distributed Computing, vol. 73, no. 1, pp. 62–73, 2013.

[17] J. Xie and J. Yang, “Improved differential evolution for global opti-
mization,” in 2010 2nd IEEE International Conference on Information
Management and Engineering, pp. 651–654, IEEE, 2010.

[18] S. Rahnamayan, J. Jesuthasan, F. Bourennani, H. Salehinejad, and G. F.
Naterer, “Computing opposition by involving entire population,” in 2014
IEEE congress on evolutionary computation (CEC), pp. 1800–1807,
IEEE, 2014.

[19] Y. Pei and H. Takagi, “Triple and quadruple comparison-based interac-
tive differential evolution and differential evolution,” in Proceedings of
the twelfth workshop on Foundations of genetic algorithms XII, pp. 173–
182, 2013.

[20] W. Wang, H. Wang, H. Sun, and S. Rahnamayan, “Using opposition-
based learning to enhance differential evolution: A comparative study,”
in 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 71–77,
IEEE, 2016.

[21] S. Mahdavi, S. Rahnamayan, and K. Deb, “Opposition based learning: A
literature review,” Swarm and evolutionary computation, vol. 39, pp. 1–
23, 2018.

[22] M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, et al., “Dif-
ferential evolution: A review of more than two decades of research,”
Engineering Applications of Artificial Intelligence, vol. 90, p. 103479,
2020.

[23] H. Salehinejad, S. Rahnamayan, and H. R. Tizhoosh, “Type-ii
opposition-based differential evolution,” in 2014 IEEE Congress on
Evolutionary Computation (CEC), pp. 1768–1775, IEEE, 2014.

971

