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Abstract— Data mining techniques, prominently 

clustering, assume a pivotal role in fortifying precision 

medicine by facilitating the revelation of patient 

subgroups that share common attributes. By harnessing 

clustering for the analysis of data behavior within the 

realm of precision medicine, distinctive disease patterns, 

and progression dynamics are unveiled, thereby 

contributing to the formulation of precisely tailored 

treatment strategies. This paper aims to present the 

outcomes derived from a clustering analysis applied to 

diverse clinical datasets encompassing critical facets such 

as vital signs, laboratory exams, medications, sepsis, 

Glasgow Coma Scale, procedures, interventions, 

diagnostics, and admission/discharge records. This 

compilation of datasets pertains to a cohort of seventy 

patients. The resultant analysis uncovers intrinsic 

patterns and relationships residing within intricate 

datasets. Executed following the rigorous CRISP-DM 

methodology, this discovery study identified three distinct 

clusters that group similar data characteristics, 

encompassing both categorical and numerical clinical 

data, and resulted in three major groups: patients with 

stable health conditions, recovery stage, and at risk. This 

pivotal outcome catalyzes future endeavors, including 

classification tasks aimed at identifying new patients 

within specific classes, thereby advancing the horizons of 

precision medicine. 
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I. INTRODUCTION  

In the era of advanced healthcare technologies and 
personalized treatment strategies, the intersection of data 
mining and medicine has emerged as a transformative force. 
[1],[2].Data mining techniques, particularly clustering 
analysis, have taken center stage in revolutionizing the 
landscape of clinical research and practice. One of the most 
promising applications of data mining in healthcare is the 
pursuit of precision medicine, a paradigm that aims to tailor 
medical interventions to individual patient characteristics. 
This introduction delves into the pivotal role of data mining, 
with a specific focus on clustering analysis, in unlocking the 
potential of precision medicine [3],[4]. 

Data mining, often described as the process of extracting 
hidden knowledge and patterns from large datasets, has found 
extensive utility across diverse domains. In healthcare, it has 
transcended traditional boundaries to reshape the way medical 
information is harnessed and interpreted [5], [6]. 

Precision medicine, the embodiment of personalized 
healthcare, relies on the precise understanding of patient 
heterogeneity and the identification of patient subgroups 
sharing common attributes. This is precisely where the power 
of data mining, especially clustering analysis, comes to the 
forefront [7]–[11]. 

Clustering analysis is a data mining technique that 
involves the categorization of data points into distinct groups 
based on shared characteristics. It serves as a vital tool for 
partitioning complex datasets into meaningful segments, 
thereby unraveling intricate relationships and patterns that 
might otherwise remain hidden [12]. The application of 
clustering analysis in the realm of precision medicine holds 
immense promise, as it allows for the identification of patient 
subgroups that exhibit similar disease profiles, treatment 
responses, and outcomes. By uncovering these subgroups, 
clustering analysis facilitates the development of tailored 
treatment regimens, diagnostic approaches, and prognostic 
models [13]. 

The concept of precision medicine encompasses a 
departure from the traditional "one-size-fits-all" approach to 
healthcare. Instead, it embraces a patient-centric model that 
recognizes the unique genetic, physiological, and 
environmental factors contributing to an individual's health 
and disease. Clustering analysis serves as a cornerstone in this 
transformative shift, offering a data-driven means to stratify 
patients based on multifaceted attributes. This not only 
enhances the understanding of disease heterogeneity but also 
paves the way for targeted interventions that optimize 
therapeutic efficacy and minimize adverse effects[14], [15]. 

As we embark on this exploration of data mining's role in 
precision medicine, it becomes evident that the amalgamation 
of these two disciplines has the potential to reshape the 
landscape of healthcare delivery. The subsequent sections of 
this paper delve into the intricate interplay between data 
mining techniques, clustering analysis, and precision 
medicine. Through a comprehensive analysis of clinical 
datasets encompassing vital signs, laboratory exams, 
medications, disease severity indicators, and more, we unveil 
the dynamic patterns and patient subgroups that remain hidden 
within the vast expanse of medical data. This journey not only 
holds implications for our understanding of disease but also 
lays the foundation for the design of individualized treatment 
strategies that hold the promise of better patient outcomes and 
improved quality of care [16]. 

In this experimental endeavor, we adhered to the esteemed 
standard of knowledge discovery by meticulously following 
the CRISP-DM methodology. CRISP-DM, which stands for 
Cross-Industry Standard Process for Data Mining, is a widely 
recognized and comprehensive methodology for guiding data 
mining and knowledge discovery projects. It provides a 
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structured framework that assists in efficiently and effectively 
managing the various stages of a data-mining project. CRISP-
DM is widely adopted due to its flexibility and applicability 
across diverse industries and problem domains. The 
methodology consists of six main phases (business 
understanding, data understanding, data preparation, 
modeling, evaluation, and deployment), each serving a 
specific purpose and contributing to the overall success of the 
data-mining project. 

This insight is invaluable as it provides a clear and concise 
differentiation among the clusters based on a specific medical 
parameter, allowing for targeted analysis and potentially 
guiding further investigation into the underlying health 
conditions or anomalies associated with each cluster. It 
underlines the potential of clustering techniques to uncover 
meaningful and clinically relevant patterns in the data, which 
could have implications for medical diagnosis, treatment 
planning, and patient care [17]. 

While the fundamental concept of defining the Temporal 
Framework for Interrelating Clinical Events (TS) has been 
previously discussed in our publications, it's important to note 
that this latest version represents a substantial improvement 
and optimization. In this iteration, our integrated platform 
continues to employ the same data structure as detailed in our 
two papers, namely "Data Engineering to Support Intelligence 
for Precision Medicine in Intensive Care" and "Intelligent 
Decision Support System for Precision Medicine: Time Series 
Multi-variable Approach for Data Processing." This 
consistent data structure allows us to leverage the capabilities 
of descriptive analytics effectively, revealing intricate patterns 
and providing invaluable insights. 

Our paper is thoughtfully structured to provide a coherent 
and logical presentation of our research journey. We have 
meticulously organized our content to align with our 
application and objectives, which are elaborated upon in 
Section II. In Section III, we delve into a detailed exploration 
of each dataset, unraveling the intricate variables associated 
with patients' clinical backgrounds. Subsequently, we offer a 
comprehensive overview of the pivotal data preparation steps 
in the following section.  

As we progress, our paper navigates through the 
experimental trajectory with careful consideration. We engage 
in the application of advanced modeling techniques, 
unraveling insightful patterns and relationships embedded 
within the data. The fruits of our modeling endeavors undergo 
a stringent evaluation process, which we meticulously 
elucidate and discuss in the ensuing section. This thorough 
evaluation allows us to discerningly interpret the results, 
shedding light on their implications and significance in the 
context of precision medicine. 

Our deliberate organizational approach ensures a seamless 
and logical flow that guides readers through essential stages 
of our research journey. By methodically traversing the 
application, objectives, experimental process, data 
preparation, modeling, evaluation, and discussion phases, we 
present a comprehensive narrative that facilitates a profound 
understanding of our data mining methodology and its far-
reaching implications within the realm of precision medicine. 

II. PPLICATION|BUSINESS UNDERSTANDING 

The primary business objective of this endeavor is to 
harness the power of data mining, specifically clustering 
analysis, to unearth hidden relationships and patterns within 
clinical datasets. By doing so, we aim to identify distinct 
patient subgroups characterized by shared attributes. 

This clustering of patients into meaningful groups serves 

as a crucial foundation for the broader goal of precision 

medicine – tailoring medical interventions to the unique 

characteristics of individual patients. The ultimate objective 

is to enhance clinical decision-making, optimize treatment 

regimens, and improve patient outcomes through 

personalized healthcare strategies.  
From a data mining perspective, our objective revolves 

around applying clustering analysis to diverse clinical datasets 
encompassing a wide array of critical facets such as vital 
signs, laboratory exams, medications, disease severity 
indicators, and more. The aim is to partition this complex and 
 multidimensional data into coherent clusters, each 
representing a distinct patient subgroup with similar attributes.  

III. DATA UNDERSTANDING 

As depicted in Table 1, the dataset comprises 10 distinct 

categories, each offering valuable insights into different 

aspects of patient health and medical interactions. 

“Vital Signs” (43,9025 records and 108 biological variables), 

focusing on vital signs that play a crucial role in assessing a 

patient's overall condition.“Lab Results” (11,3320 records 

and 9 variables) provides information about various 

laboratory exams. “Procedures” (911 records and 6 variables) 

sheds light on the medical actions recommended and 

prescribed by healthcare professionals. In addition, “Sepsis 

(Gravity Score)” capturing data from 176 records and 6 

variables, this category gauges the severity of patients' 

conditions. “Glasgow Coma Scale”: containing 861 records 

and 6 variables, evaluates patients' consciousness levels, and 

“Diagnosis”: ( 124 records and 9 variables) focuses on 

recording signs, symptoms, and potential medical conditions. 

“Medication Prescriptions”: This category provides data on 

medications prescribed by clinicians, helping track patient 

treatment plans. “Intervention Actions”: Capturing 

information about various interventions, this category 

showcases actions taken to manage patients' health. 

ICU Admission and Discharge (“Admin-Discharge”) houses 

data about patients' admissions and discharges from the 

Intensive Care Unit (ICU), facilitating comprehensive patient 

care management. Reference Dataset: Serving as a point of 

reference, this dataset includes episode and process numbers, 

wherein the episode number represents clinical events, while 

the process number signifies patient identity. In Table 1, 

datasets marked by: “|”have the time or date of the clinical 

event, and others with ||, include both (time and date). In 

addition, the symbol: “*” shows that data is associated with 

ICU. In this table “R” shows the number of records and “V” 

means the number of variables. Moreover, two variables 

include distinct values whether “Process Number” (DP) or 

“Episode Number” (DE).  
TABLE1. DATA COLLECTION 

 

 

 

 

 
Patient Data

# *| vital sign 70DE, 439025R, 108V

|| lab result 69DE,113320R, 9V 

*| procedure 63DP,911R, 6V

*|| sepsis 17DE,176R,6V

*|| galgw 49DE, 861R,6V

*| diagnosis 67DE,124R,9V 

|| med  prescription 70DE,35422R, 39V

*|| intervention 70DE,18674R, 4V

*admin-discharge -ICU 70DE, R,2V

process-episod number 70DEP,70R, 2V

1305



IV. DATA PREPARATION  

This phase encompasses a series of pivotal data processing 
tasks, aimed at enhancing the quality and applicability of the 
collected information. These tasks revolve around critical 
aspects such as aggregating time-series data for vital 
indicators, thus addressing sporadic data registration issues 
encountered with biological sensors in the ICU. By adopting 
an hourly aggregation approach, we effectively mitigated the 
challenge of infrequent data updates. Furthermore, to glean 
meaningful insights from laboratory results, we engineered 
novel features to detect and analyse abnormal findings. In 
addressing gaps within the vital sign dataset, a meticulous 
strategy was employed: we judiciously populated missing 
cells by computing the average value from neighbouring cells 
preceding and following the voids. Similarly, within another 
dataset, a pragmatic approach was taken by eliminating 
missing cells.  

As an integral part of our preparations, we meticulously 
fine-tuned all datasets to ensure they boasted fitting data types 
and pertinent features. To fulfill the core objective of our 
experiment—identifying akin data clusters—we conducted an 
array of data engineering tasks. This transformational process 
facilitated the independent alignment of records, divorcing 
them from the constraints of the date and time of clinical 
events [18], [19]. 

This strategic transformation yielded a unified timeline of 
clinical events, where each event is uniquely identifiable 
through a meaningful key. Notably, this achievement was 
twofold in significance. Firstly, it equipped us to seamlessly 
apply two distinct forms of analysis—clustering and temporal 
clustering. In the realm of conventional clustering, our focus 
was on comprehending the distinctive attributes 
characterizing each cluster. On the other hand, the temporal 
clustering (as future work) avenue empowered us to delve into 
the nuanced behavior of data throughout a patient's treatment 
day. By combining these methodologies, we stand poised to 
unravel profound insights into the multifaceted landscape of 
patient health trajectories. This integrated approach holds 
immense promise, not only in delineating data patterns and 
trends but also in nurturing a more comprehensive 
understanding of patients' medical journeys and treatment 
outcomes. 

The data engineering phase harnessed a formula to craft a 
distinct key, uniquely pointing to each clinical event for 
individual patients. Illustrated in Figure 1, this key exhibits a 
structured composition: the initial number designates the 
event's day, followed by an abbreviation denoting the data 
type. Additionally, the third and fourth components 
encompass the patient's process number and episode number, 
respectively. The sequential order of events during a specific 
period is encapsulated within the event sequence, an 
ascending value ranging from one to n, culminating in the 
count of parallel events transpiring on the same day. 

Figure 1 serves as an illustrative example, underscoring an 
event linked to an episode number (20016701) attributed to a 
patient identified by process number 859785. This informative 
data point delineates the event's occurrence on the fifth day 
within the ICU context, constituting the eleventh clinical 
transaction. 

The ramifications of these transformative endeavors 
reverberate across each dataset, engendering a newly 
introduced variable denoting the Time Series (TS). This 
pivotal inclusion of the Time Series facet endows medical 
practitioners with a versatile toolset, replete with filters 
facilitating a comprehensive review of diverse clinical events, 

along with their associated details, confined within a unified 
temporal framework. This innovative approach equips 
medical professionals with a holistic lens through which to 
navigate and discern intricate patient trajectories, auguring 
well for informed decision-making and enhanced patient care.  

 
 

 

 

 

 

Figure 1.  Pointer to the clinical event (Time Slot) 

To create a unique table for clustering, the following steps 
were performed on each dataset: 

• Extracted the day of the clinical event. 

• Grouped the rows by taking the mean of numerical 
variables and the mode of categorical variables. 

• selected the top 20 most frequent categorical variables 
to overcome memory limitations. 

•     Applied the merge function based on the common 
columns 'Process number' and 'TS'. 

• Eliminated columns with more than 50% missing cells 
and deleted rows containing NaN values. 

        As a result of these data processing steps, a 
consolidated dataset was created with 147,100 rows 
and 17 columns. The table below provides a list of the 
categorical and numerical columns, along with a 
description of each variable. 

• BLD_PULS_RATE_ART_ABP: The pulse rate of the 

arterial blood pressure, which measures the number of 

heart beats per minute while considering the arterial 

blood pressure. 

• PRESS_BLD_ART_ABP_SYS: This variable refers 

to the systolic arterial blood pressure, which is the 

higher value measured during a heartbeat and 

represents the pressure in the arteries when the heart 

contracts. 

• PRESS_BLD_ART_ABP_MEAN: This variable 

represents the mean arterial blood pressure, which is 

the average pressure in the arteries over a cardiac 

cycle. 

• PRESS_BLD_ART_ABP_DIA: This refers to 

diastolic arterial blood pressure, which is the lower 

value measured during a heartbeat and represents the 

pressure in the arteries when the heart is at rest. 

• Temperature: This represents the body temperature in 

degrees Celsius. 

• PULS_OXIM_SAT_O2:  the pulse oximetry oxygen 

saturation level, which measures the percentage of 

oxygen-saturated hemoglobin in the blood. 

• ECG_HEART_RATE: This represents the heart rate 

measured using electrocardiography (ECG) in beats per 

minute. 

• lab_Result: This variable could represent a laboratory 

test result, but without more context, referring to the Lab 

Exam Code. 

• Glasgow Coma Scale (GCS): This might represent a 

numerical value associated with the Glasgow Coma 

Scale (GCS), which assesses a patient's level of 

5. vts.859785, 20016701.3.11 
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consciousness. A higher value could indicate a better 

level of consciousness. 

In addition, categorical variables include 

Intervention_code, Medication_code, Diognostic_code, 

Lab_condition, Local_code (procedure), 

Zona_code(procedure), Lenght_of_stay(day) and 

Lab_exam_code. 

V. MODELING 

In the modeling phase, we employed the K-Prototypes 
algorithm to identify homogeneous data segments. K-
Prototypes combine the strengths of both K-Means and K-
Modes, making them well suited for effectively handling 
datasets with mixed data types. This hybrid approach is 
particularly valuable in scenarios like healthcare, where the 
data often comprises a blend of continuous and categorical 
variables. To fine-tune the number of clusters, we utilized the 
Elbow Method, a common technique to pinpoint the "elbow 
point" in the within-cluster sum of squares plot [20]. By 
analysing the plot shown in Figure 2 we identified the most 
suitable number of clusters, which in this case was found to 
be n=3 clusters. 

 

 

 

 

 

 

 

 
 

Figure 2.  Elbow technique 

This process helps in obtaining meaningful and interpretable 

clustering results that can assist in uncovering patterns and 

insights within complex datasets. The KPrototype algorithm 

was employed to discern and categorize patients into three 

distinct clusters, each sharing similar characteristics. These 

clusters were formed based on an analysis of various medical 

attributes, allowing us to group patients with comparable 

health profiles into coherent categories. 

VI. EVALUATION AND DISCUSSION 

Assessing the results of K-Prototypes clustering involves a 

combination of quantitative metrics and visualizations In this 

phase we used Silhouette Score, PCA visualization, cluster 

characteristics, and domain knowledge, and also analyzed the 

business impact. 

A. Silhouette score  

The Silhouette score serves as a metric to gauge the degree of 

cohesion within a cluster and the separation from other 

clusters. Ranging from -1 to 1, a higher Silhouette score, such 

as our achieved value of 0.3450, signifies well-defined 

clusters, where instances within a cluster are more similar to 

each other than to those in neighboring 

 B. clusters Visualizations- PCA 

Visualizations Principal Component Analysis (PCA) 

visualization is a technique used to reduce the dimensionality 

of data while retaining as much variance as possible. It 

understands the patterns and relationships between data 

points in a lower-dimensional space. This allows us to 

explore the distribution of data points, identify clusters, and 

understand the relationships between them in a more compact 

and interpretable manner. Each data point in the scatter plot 

represents a row from the original dataset. The position of the 

point on the plot corresponds to its values along the first and 

second principal components. While PCA doesn't capture 

categorical relationships, it can still provide a sense of how 

well-separated the clusters are based on numerical variables. 

often used as an exploratory technique to guide further 

analysis and interpretation [21]. 

Figure 3 depicts the PCA visualization, highlighting key 

aspects of cluster separation and distribution. Notably, the 

clusters exhibit distinct boundaries with no observable 

overlap, ensuring a certain level of separation. However, it is 

worth noting that some data points from cluster 0 and cluster 

2 appear closely situated, implying a potential resemblance 

between these clusters. Additionally, the demarcation 

between clusters 1 and 2 seems less defined, suggesting the 

likelihood of instances where these clusters share proximity. 

In terms of cluster distribution, a significant majority of 

data points tend to concentrate within a specific range 

spanning from -120 to 40. Interestingly, cluster 1 and Cluster 

0 demonstrate a more compact grouping, whereas Cluster 2 

showcases a comparatively broader spread across the 

visualization space. These observations collectively 

underline the need for further exploration and fine-tuning of 

cluster boundaries to achieve a comprehensive understanding 

of the underlying patterns and relationships within the data. 

 

 

Figure 3.  PCA visualization 

C. Cluster Characteristics  

The general purpose of cluster characteristics is to provide 

a clear and concise summary of the key attributes or features 

that define each cluster formed through clustering analysis. 

Cluster characteristics help in understanding the distinct 

patterns, trends, and behaviors exhibited by different groups 

of data points within the dataset. They play a crucial role in 

interpreting and explaining the results of clustering and can 

serve several purposes such as insight generation (offering 

insights into the average or typical values of variables for 

each cluster), helping to identify the inherent patterns and 

differences among the clusters. Moreover, Profile 

Identification: ( identify the unique profiles or attributes of 

data points within each cluster, which can lead to meaningful 

interpretations of the data). In addition, Comparison and 

Contrast: help in understanding the similarities and 

differences in terms of numeric and categorical variables, 

aiding in hypothesis generation and further analysis. Finally,  

insights from cluster characteristics can inform decision-

making processes, such as identifying target segments for 
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personalized marketing, tailoring healthcare interventions, or 

optimizing resource allocation. 

The clustering results based on the mean values of the 

numerical data variables reveal distinct health patterns and 

conditions among the identified clusters.  

• Cluster 0 

BLD_PULS_RATE_ART_ABP: 90.35 

BLD_ART_ABP_SYS: 105.22 

BLD_ART_ABP_MEAN: 73.59 

BLD_ART_ABP_DIA: 58.59 

PULS_OXIM_SAT_O2: 91.59 

ECG_HEART_RATE: 91.60 

Temperature:e 33.49, and lab_Result: 86.62, 

Glasgow Coma Scale: 12.51 

Cluster 0 exhibits moderate values across various vital 

signs, such as blood pressure, temperature, and heart rate, 

which are generally within a healthy range. The Glasgow 

Coma Scale suggests a reasonable level of consciousness. The 

relatively higher laboratory result may indicate the presence 

of specific health conditions but not at a critical level. Overall, 

this cluster could represent patients with stable and relatively 

normal health conditions. 

• Cluster 1: 

BLD_PULS_RATE_ART_ABP: 92.11 

BLD_ART_ABP_SYS: 106.93 

BLD_ART_ABP_MEAN: 74.57 

BLD_ART_ABP_DIA: 59.36 

PULS_OXIM_SAT_O2: 92.21 

ECG_HEART_RATE: 93.31 

Temperature: 33.87, and lab_Result: 5.98 

Glasgow_Coma Scale: 12.72 

Cluster 1 is characterized by slightly elevated vital sign 

values, including blood pressure, heart rate, and oxygen 

saturation, compared to Cluster 0. However, the laboratory 

result indicates a relatively low value, suggesting that these 

patients may have healthier laboratory values. The Glasgow 

Coma Scale remains consistent with a normal consciousness 

level. This cluster might represent patients with well-

controlled health conditions or those in a stable state of 

recovery. 

• Cluster 2: 

BLD_PULS_RATE_ART_ABP: 93.03 

BLD_ART_ABP_SYS: 106.20 

BLD_ART_ABP_MEAN: 74.16 

BLD_ART_ABP_DIA: 58.97 

PULS_OXIM_SAT_O2: 92.27 

ECG_HEART_RATE: 94.80 

Temperature: 33.81, and lab_Result: 146.12 

Glasgow_Coma Scale: 12.74 

Cluster 2 stands out with elevated vital signs, particularly 

in blood pressure and heart rate. The lab_Result value is 

significantly higher, indicating potential health concerns or 

abnormalities in laboratory results. Despite the higher 

laboratory result, the Glasgow Coma Scale suggests a normal 

level of consciousness. This cluster might represent patients 

with more acute or severe health conditions requiring closer 

medical attention or intervention. 

The bar chart in Figure 4 shows a distinct trend among the 

clusters, highlighting a significant pattern in the laboratory 

status of the data points 
.  

Figure 4.  Laboratory conditions 

• Cluster 0:Lab Condition: Normal 

Cluster 0 is characterized by moderate vital signs and 
normal laboratory conditions. This cluster represents patients 
with relatively stable and typical health conditions. The 
combination of normal lab conditions and vital signs suggests 
that patients in this cluster are generally healthy and not 
currently experiencing any significant health issues. 

• Cluster 1:Lab Condition: Normal 

Similar to Cluster 0, Cluster 1 exhibits slightly elevated 
vital signs but with normal lab conditions. Patients in this 
cluster might have certain health factors that lead to slightly 
elevated vital signs, but their laboratory results are within a 
normal range. This suggests that patients in Cluster 1 are likely 
in a stable condition and may be in the process of recovery or 
managing their health conditions effectively. 

• Cluster 2:Lab Condition: More than Maximum 

Cluster 2 stands out with elevated vital signs and abnormal 
lab conditions that are categorized as "more than maximum." 
Patients in this cluster are experiencing significantly elevated 
laboratory values, which could indicate potential health 
complications or acute issues. The elevated vital signs further 
emphasize the severity of their health conditions. Patients in 
Cluster 2 may require immediate medical attention and 
intervention to address abnormal lab conditions and stabilize 
their health. 

In addition, considering the mode of categorical variables 
presented in Table 2, Cluster 0 is characterized by specific 
intervention codes, prc_LOCAL_code, prc_ZONA_code, 
lab_Exam_code, and medication . Patients in this cluster seem 
to have consistent patterns of medical interventions and 
procedures, as well as localized and zonal information. The 
diagnostic code U071 could suggest a specific condition or 
disease that is being managed.  

Cluster 1 shares similarities with Cluster 0 in terms of 
intervention code, prc_LOCAL_code, prc_ZONA_code, and 
medication usage. However, patients in this cluster have 
different lab_Exam_code and Diognostic_code, suggesting 
variations in the specific medical tests and diagnostic 
procedures performed.  

Cluster 2 shares similar patterns in terms of intervention 
code, prc_LOCAL_code, prc_ZONA_code, and medication 
usage. However, patients in this cluster have a different 
lab_Exam_code, lab condition, and Diognostic_code. The lab 
condition "mr" (more than maximum) could indicate a more 
complex or serious medical test result. The commonality in 
other features suggests that patients in this cluster might have 
a specific condition that is being addressed with various 
interventions and diagnostic procedures. 

 
TABLE2. BEHAVIOR OF CATEGORICALS 

Categorical  Closter 0 Cluster 1 Cluster 2 
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Lab Exam lab9 lab8 lab18 

Diagnostic U071 8271 8271 

Medication 997 997 997 

Procedure/Zon Prcz3 Prcz3 Prcz3 

Procedure/location prcl6 prcl6 prcl6 

Intervention int9 int9 int9 

Length of stay 8 8 8 

 

In summary, as depicted in Table 3, the clustering analysis 
unveils three distinctive health profiles within the patient 
population. This discovery establishes a cluster-based health 
profile, where Cluster 0 (highlighted in green) denotes 
individuals with generally stable and normal health 
conditions. Cluster 1 (depicted in blue) likely encompasses 
patients with controlled health conditions and a positive 
recovery trajectory. Cluster 2 (indicated in red) identifies 
patients with potentially more acute health issues, evident 
from elevated vital signs and abnormal laboratory results. 
These insights offer valuable guidance to healthcare 
professionals, empowering them to tailor interventions, 
treatment plans, and monitoring strategies according to the 
unique characteristics of each cluster. 

TABLE3. CLUSTER-BASED HEALTH PROFILE 

Cluster 0 Cluster 1 Cluster 2 

Stable  Recovery Attention 

 

CONCLUSION 

In conclusion, the seamless integration of data mining and 

clustering analysis within the realm of precision medicine has 

yielded a wealth of insights that hold the potential to 

revolutionize the landscape of healthcare. The revelations 

from this study serve as a cornerstone for the development of 

personalized treatment strategies, informed clinical decision-

making, and ultimately, enhanced patient outcomes. By 

harnessing the power of precision medicine, we are not only 

advancing the boundaries of medical science but also shaping 

the future trajectory of healthcare delivery. Furthermore, the 

meticulous analysis of clustered patient data has illuminated 

the distinct disparities in health status and condition among 

the identified clusters, providing a comprehensive overview 

of cluster-based health profiles. Clusters 0 and 1 exhibit 

patient instances with relatively stable and typical laboratory 

results, indicative of a standard health state. In contrast, cluster 

2 encapsulates instances where laboratory measurements 

surpass the established upper limits, suggesting potentially 

acute health issues. As we reflect on the outcomes of this 

study, we recognize the potential for future enhancements and 

refinements of the clustering experiment. Specifically, there is 

an opportunity to optimize the current clustering 

methodology, fine-tuning its parameters for even more 

accurate and insightful results. Moreover, the application of 

temporal clustering holds promise for monitoring and 

observing the dynamic health condition of patients during 

their stay in the intensive care unit (ICU). This avenue of 

exploration could unveil deeper insights into the progression 

of health status over time, enabling more precise interventions 

and tailored care strategies. In essence, this research not only 

underscores the transformative potential of data mining and 

clustering analysis in precision medicine but also emphasizes 

the ongoing pursuit of continuous refinement and innovation 

to shape the future of healthcare in a patient-centric and data-

driven manner. 
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