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Abstract—The surge of interest in artificial intelligence systems
has sparked new directions of research in the realm of music data
analysis. At the same time, the exploration and exploitation of
intrinsic musical structures and sequences, a timeless endeavor,
continue to captivate scholars and practitioners alike.

In this context, the fusion of computational techniques with
music analysis emerges as a natural progression. One of the
pivotal crossroads in this convergence is the identification of
musical phrase boundaries, pivotal demarcations that underpin
the organizational fabric of a musical composition.

This article pioneers an inventive approach to address the
challenge of detecting these musical phrase boundaries, har-
nessing the power of artificial neural networks. However, the
innovation does not stop there; the pinpointed phrase boundaries
undergo a comprehensive dissection utilizing pattern mining
techniques. The focus of this analysis is on unveiling recurrent
motifs and classifying phrases into coherent clusters, predicated
on the repetitions and similarities exposed through these neural
network-driven techniques.

This exploration was conducted using an extensive repository
of folk songs, a treasure trove of foundational musical expressions
that indelibly shape the stylistic contours of musical compositions.
We claim that the presented approach not only opens avenues
for penetrating and nuanced analysis, but also enriches our
comprehension of the intricate interplay of musical components
and their manifestations inspired by neural networks.

Index Terms—data mining, neural networks, computational
intelligence, music analysis, musical phrases detection.

I. INTRODUCTION

Music, as an expressive art form, has captivated humanity
for centuries. It serves as a universal language that communi-
cates emotions, stories, and cultural identities. Understanding
the structure and organization of music is vital for musicians,
musicologists, and music enthusiasts alike, as it provides
insight into the creative choices made by composers and helps
unravel the intricate layers of meaning embedded within a
composition.

In recent years, computational music analysis has gained
significant attention in the field of Music Information Retrieval

(MIR), propelled by remarkable advances in deep learning
techniques [1]–[8]. However, while these techniques have
shown promise, the potential of integrating neural network
approaches for musical phrase boundary detection remains
relatively underexplored. To the best of our knowledge, there
is only a single paper [9] that presents the usage of pro-
cess mining methods for music analysis; however, it relies
on bar-level segmentation. However, this perspective poses
a limitation since musical compositions often transcend strict
adherence to repeated bars, encompassing broader and more
intricate musical ideas.

This paper seeks to bridge this gap by proposing an in-
novative approach that synergizes neural network techniques
with the principles of music theory. Specifically, we introduce
a novel methodology for segmenting musical compositions
into phrases, leveraging the capabilities of artificial neural
networks. These phrases can then be subjected to various
analyses, such as discovering similarities between phrases
with pattern mining. In this context, a phrase is defined as a
substantial musical thought created through an interaction of
melody, harmony, and rhythm and ended with a cadence [10].
In Fig. 1, number 1 is used to signify the beginning of a
musical phrase, while number 2 denotes its end. Number 3
represents a musical measure or bar, and number 4 indicates
its conclusion. Number 5 refers to the entire musical phrase,
while number 6 represents a single musical note.

Fig. 1. Example of the phrased song ”Mości gospodarzu” (polish), i.e. ”Lord,
my host” (in translation)”.

Accurate identification of musical phrase boundaries bears
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significance for various music-related applications, including
transcription, analysis, and automated composition. However,
the process of partitioning a musical piece into phrases
using neural network-driven techniques remains relatively
nascent [11]. Moreover, the subjective nature of phrase bound-
aries, where two humans rarely annotate the boundaries at ex-
actly the same positions, adds complexity to the problem [12].

In this paper, we propose an innovative approach that not
only advances the detection of musical phrase boundaries, but
also enriches the landscape of computational music analysis.
By harnessing the power of artificial neural networks, we en-
deavor to provide a more nuanced and insightful understanding
of the intricate dynamics that shape musical compositions.

II. RELATED WORKS

Various methods have been developed to tackle the task
of music segmentation; however, they introduced different
definitions of a phrase than in this paper. An effective approach
involves using convolutional neural networks (CNNs) to iden-
tify distinct sections in music compositions. An example of
this approach is the use of CNNs in the SALAMI dataset,
which contains a large collection of annotated songs in audio
format (SALAMI dataset1). While SALAMI is renowned for
its comprehensive annotations and focus on popular music, its
segmentation process is primarily influenced by shifts in tonal-
ity, timbre, coloration, and instrumentation. Consequently, this
segmentation method does not identify musical phrases, but
instead delineates segments of a musical composition charac-
terized by similar sonic attributes.

In the contribution [13], a sequence-to-sequence autoen-
coder is introduced, harnessing acoustic features such as Mel-
Frequency Cepstral Coefficients to represent variable-length
audio segments with fixed-length vectors. This approach ef-
fectively captures the phonetic nuances of sound and finds
applications in speech-processing domains, facilitating tasks
such as speaker identification, emotion recognition, and phrase
retrieval. The autoencoder excels in distinguishing segments
marked by minimal phonetic differentiations. Similarly, this
solution is not designed to identify musical phrases.

McFee and Lanckriet [14] propose a novel approach called
Tree Measures (T-measures) inspired by Schenkerian analy-
sis [15]. Unlike previous music segmentation methods, which
often focus on shallow divisions, T-measures embrace the
intricate hierarchical structure present in music. While highly
effective for hierarchical musical contexts, this method faces
difficulties with under- or over-segmentation in different sce-
narios. Likewise, this methodology is not specifically devised
for the identification of musical phrases.

Nieto [16] proposed a unique approach to identify recurring
themes in polyphonic music using the JKU Pattern Devel-
opment Dataset. They employed computational methods to
analyze music by creating multi-dimensional representations
and transposition-invariant self-similarity matrices. Although
these efforts showcased computational potential, they often

1https://ddmal.music.mcgill.ca/research/salami/

dealt with less structured audio data and varied interpretations
of musical phrases.

In contrast, our approach emphasizes symbolic music nota-
tion, which is more suitable for processing and analysis. We
use carefully curated professional data, aligned with music
theory principles. This ensures well-defined phrase boundaries,
enriching compositions with clarity and coherence.

III. EXPLORING THE FOLK SONGS DATASET

Music’s essence resonates uniquely across diverse cultures,
with an array of styles and genres evolving over centuries, each
painting a distinct auditory tapestry. In our pursuit, we direct
our attention to the realm of Polish traditional folk music,
a vibrant heritage nurtured over generations. In particular,
our focus is on the invaluable collection curated by Oskar
Kolberg (1814-1890), a Polish ethnographer, folklorist, and
composer [17].

This treasure trove of folk melodies, meticulously amassed
by Kolberg, has been transcribed into the Essener Assoziativ
Code (EsAC) format [18], [19] by the Institute of Art of the
Polish Academy of Sciences. The ingeniously conceived EsAC
format stands as a concise and machine-readable representa-
tion of musical scores, encompassing crucial information about
the boundaries of musical phrases. Given that the EsAC format
is not readily compatible with standard libraries, our efforts
have been directed toward a transformative process aimed at
facilitating the integration of this valuable musical heritage
into our analysis. This endeavor involves allowing the use of
the music21 library for this purpose. First, the EsAC files
gracefully transitioned into Humdrum format [20], a crucial
intermediary in our quest. From there, a final metamorphosis
led us to the Music Encoding Initiative (MEI) format [21],
ultimately facilitating the engagement with the music21 li-
brary [22].

The employment of the music21 library enabled the trans-
formation of musical notation into numeric vector representa-
tions, a pivotal step elaborated upon in the following section,
with a focus on machine learning applications.

IV. DATA PREPARATION FOR TRAINING

A. Musical Sequences Vectorization

Within the scope of this paper, our attention is moved to the
core of our method, located at the intersection of music and
neural networks. After parsing each musical piece into objects
that encapsulate abstract classes from the music21 library,
we arrive at the pivotal juncture of data transformation. This
transformation endsows musical narratives with vectorized
form, a prerequisite for deep learning. In this transformation,
every musical piece undergoes a transmutation into a quartet of
vectors, each housing distinct strands of musical information:

• Notes: Encoding the pitches of consecutive notes ac-
cording to the MIDI scale (ranging from 0 to 127),
augmented by special markers – 128 denoting rests and
129 signifying the song’s inception.

• Durations: Capturing the durations of successive notes,
adhering to the conventions of the music21 library.
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• Bars: A rhythmic heartbeat, resonating 1 when the note
at the corresponding position in the vector concludes a
musical measure and 0 otherwise.

• Phrases: This vector serves as a representation of the
musical structure, with a value of 1 at the positions where
a note signifies the culmination of a musical phrase, and
0 elsewhere.

The transformation process for this data set was exhaus-
tively documented and resides in our GitHub repository2.

B. Data Cleaning

In the context of machine learning, the step of data pro-
cessing must be performed meticulously, with data cleaning,
standing as a pivotal prelude. In the domain of music recog-
nition, this process takes on a cadence, where the removal of
outliers and the meticulous selection of a representative subset
converge to improve the quality and reliability of our machine
learning model.

In our melodic odyssey, drawn from a rich set of more
than 19 thousand songs, we embark on a quest to distil
the essence. This entails selecting compositions that resonate
with the common patterns enshrined within our dataset, thus
cultivating a representative ensemble. The criteria guiding this
selection encompass:

• the length of a piece should be such that more than k%
of all pieces from the dataset have the same length,

• the piece has only phrases that length is such that more
than p% of all phrases have the same length (from the
pieces with the right length),

• the piece has only phrases that end regularly with the end
of a measure.

This selection is attuned to parameters k and p, enabling
a balance that reverberates with optimal harmony. Our explo-
rations culminated with k set at 2% and p attuned to 3.5%.

As outliers are removed and our selected compositions align
with our framework, our dataset becomes more refined and
prepared for the effective operation of our machine learning
ensemble, akin to a well-tuned instrument ready for skilled
performance.

C. Network Input and Output

In the orchestration of our model, a sequential ensemble
takes center stage, imbuing the essence of sequential process-
ing within the realm of machine learning. Our architectural
framework processes notes, durations, bars, and phrases se-
quentially, integrating these elements into a cohesive neural
network for analysis and prediction.

For training choreography, our ensemble seamlessly con-
catenates the vectors representing notes, durations, bars, and
phrases from all compositions, converging them into four
contiguous sequences. This quartet of sequences is then par-
titioned into smaller parts of 36 elements each, a number that
emerged as harmonious through empirical experimentation. To

2https://github.com/Music-Miners

maintain the distinctiveness of each piece, we insert neutral
elements as separators.

In this orchestral symphony of neural harmony, the network
input unfurls as an intricate tapestry. Each element within the
vector unravels into dual sub-elements: a sequence of notes
and bars. Each of these sub-elements blossoms into a duet of
vectors, a musical conversation between the elements.

The climax of our neural ensemble is reached in the output
phase, where a single numerical value signifies the anticipation
of a phrase’s conclusion. As the neural conductor guides the
process, the output can surge to 1, indicating the end of a
phrase, or gracefully remain at 0, signaling the continuation
of our melodic journey.

[[sequence of notes], [sequence of bars]] → 0 or 1

V. THE ARCHITECTURE OF THE MODEL

Within our computational framework, the architecture of
our model emerges as a masterpiece. It intricately weaves
neural harmonies with a central attention mechanism. Drawing
inspiration from Foster’s work on music generation [23], our
journey is a testament to innovation and refinement.

Our initial steps involved the fusion of two vectors, uniting
notes and durations. Over time, simplicity emerged as a
compelling aspect. Through experimentation, we realized that
freeing durations from the training process led to superior
results. Merging notes with durations made things more com-
plicated, but when we introduced the essential concept of
”bars,” it brought clarity to our music’s rhythm and structure.
This led us to create a musical canvas with two separate input
layers for notes and bars.

Building upon these inputs, a sequence of transformations
unfolded. Discrete notes and bars embarked on a journey, pass-
ing through dedicated embedding layers. Here, computational
alchemy transformed discrete values into continuous, dense
vectors.

At the core of our model, the attention mechanism took
center stage. It was composed of two LSTM layers working
in tandem, enriched by a dense layer with tanh activation, fol-
lowed by a softmax layer. The flow of computation continued
through permutations, multiplications, and lambda layers as
our model surged forth.

As the music piece ended, we added a finishing touch with a
dense layer that uses a technique called softmax. Our GitHub
repository3 contains the score of our work.

The visual representation present in Figure 2, a testament to
the intricate architecture that underpins our melodic odyssey.

Within the intricate neural network architecture, layers
collaboratively unveil patterns and transform data:

Insightful Transformation: With embedding layers, the data
is transmuted into 100-dimensional vectors. With 4400 and
1900 parameters, they capture data nuances.

Embedding Fusion: The concatenate layer merges embed-
dings seamlessly, crafting a 200-dimensional unity without
new parameters.

3https://github.com/Music-Miners/Music-Analysis-with-Process-Mining

1312



Sequential data handling: LSTM layers manage time-related
patterns. Through 256 units, a (None, None, 256) journey
materializes, propelled by 467968 and 525312 parameters.

Expressive Culmination: The dense layer, supported by 257
parameters, its output unit distils profound insights in (None,
None, 1) dimensions.

The model is guided by the RMSprop optimizer with a
learning rate of 0.001. The binary cross-entropy loss function
conducts this journey of mastery in binary classification.

For further exploration, the Music Analysis with Process
Mining GitHub repository4 awaits.

VI. RESULTS

In the process of annotating boundaries in musical phrases,
there is often a lack of consensus among individuals, pri-
marily due to the inherent subjectivity of musical perception.
This intricate phenomenon has previously been observed and
documented, as indicated in [12]. It can be attributed to the
diverse musical sensibilities that each individual possesses.
Each person has their own set of expectations and preferences
that influence how they perceive the boundaries of musical
phrases.

Furthermore, the absence of clear regulations governing the
placement of phrase endings contributes to this variability. This
issue heavily depends on the specific musical counterpoint
cultivated in various regions and historical periods. As a
result, the boundaries of musical phrases can be perceived and
interpreted in numerous ways.

What is particularly noteworthy is that our model has
demonstrated exceptional performance in this task. It achieved
an impressively high F1 score of 68% for both the training and
the test datasets. This underscores the resilience and reliability
of our approach, which allows for the accurate annotation of
musical phrase boundaries in an extremely precise and efficient
manner. Thus, our model makes a significant contribution to
the field of musical analysis.

VII. FURTHER ANALYSIS USING PATTERN MINING
TECHNIQUES

Having successfully divided the musical piece into distinct
phrases, the next step is to delve into the analysis of con-
nections and similarities between these phrases. Typically, it
may not be immediately apparent that some of these phrases
share similarities, as they often exhibit subtle differences, such
as a single-note variation. However, experienced musicians
can discern these similarities and may consider grouping such
phrases together. This grouping not only preserves the musical
integrity, but also allows for the exploration of more intricate
patterns and the derivation of deeper insights from the data.

To automate the process of identifying and grouping similar
phrases, we employ a pattern mining technique known as the
Apriori algorithm, implemented in the library5. This algorithm
is designed to identify frequent sets of items, in our case,

4https://github.com/Music-Miners/Music-Analysis-with-Process-Mining
5https://github.com/udayRage/PAMI

Fig. 2. The architecture of the model.

musical notes, across the database, which, in this context,
refers to the musical piece.

It is imperative to emphasize that this approach aligns
with established principles in music theory. Furthermore, it
is noteworthy that the algorithm is capable of identifying
similarities between phrases that adhere to different imitation
rules:
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• simple imitation (every note in a phrase is moved by the
same number of semitones) – Fig. 3 and 4,

Fig. 3. Base phrase

Fig. 4. Simple imitation

• inversion (reversing the direction of the interval; ascend-
ing to the corresponding falling interval and viceversa)6,

• augmentation (a phrase is presented in longer note-values
than were previously used)7 – Fig. 5 and 6,

Fig. 5. Base phrase

Fig. 6. Augmentation

• diminution (a phrase is presented in shorter note-values
than were previously used)8 – Fig. 7 and 8,

Fig. 7. Base phrase

Fig. 8. Diminution

• crab imitation / retrograde (walking backward, the pitches
and rhythms are in reverse)9,

• imitation with a variety of ornaments – Fig. 9 and 10.

6https://en.wikipedia.org/wiki/Inversion (music)
7https://en.wikipedia.org/wiki/Augmentation (music)
8https://en.wikipedia.org/wiki/Diminution
9https://en.wikipedia.org/wiki/Crab canon

Fig. 9. Base phrase

Fig. 10. Imitation with a variety of ornaments

These imitation techniques are particularly common in fugues,
so the algorithm could be very helpful in analyzing, first of
all, this musical form.

VIII. CONCLUSION

Music analysis has fascinated humanity for centuries. We
have explored various methods, each providing a partial view
of the rich musical landscape. However, these approaches
often failed to capture the deep essence of music itself —
the blend of melody, harmony, and rhythm that defies simple
computational frameworks.

Amidst this exploration, we have introduced an innovative
technique that marries technology and artistry to revolutionize
music analysis. Our method employs neural networks, acting
as conductors, to identify the core of musical compositions, the
boundaries between phrases. Our goal is to achieve a balance
between accuracy and authenticity, crafting a comprehensive
understanding of the structure and narrative of a piece.

As we conclude this work, we stand on the threshold
of a new era in music analysis. Neural networks emerge
as instruments that bridge human creativity with musical
comprehension. Our approach, the fusion of technology and
imagination, paves the way for more nuanced and insightful
analyses.

Our efforts mark a significant stride in unraveling music’s
complexities. This convergence of data and art pays homage to
timeless melodies while embracing the boundless possibilities
of the future.

IX. FUTURE WORK

In our ongoing journey, we see a future full of new ideas
and possibilities. Our model’s neural capabilities allow us to
explore a wide range of musical styles and genres. It can be
adapted to different types of music, making it a versatile tool
for analysis.

We are now delving into embeddings, where we are finding
patterns in melodies and identifying complex phrases. This
exploration helps us to understand music on a deeper level.

Looking ahead, we are focusing on transitions between
sounds and mapping melodies. By studying these aspects, we
aim to better understand the core of musical pieces, and even
turn dividing phrases into an art form itself. This will improve
the way we analyze and create music, fostering more creativity
and insight.
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As we continue, we are venturing into unexplored territory.
Our goal is to better grasp musical understanding and creativ-
ity. With innovation as our guide, we are ready to shape the
future of music analysis and composition, one note at a time.
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