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Abstract—The inverse problem in electrocardiography is an ill-
posed problem where the objective is to reconstruct the electrical
activity of the epicardial surface of the heart, given the electrical
activity on the thorax’ surface. In the forward problem, the
electrical propagation from heart to thorax is modeled by the
volume conductor equation with Dirichlet boundary conditions
in the heart’s surface, and null flux coming from the thorax.
The inverse problem, however, does not have a unique solution.
In order to find solutions for the inverse problem, techniques
such as Tikhonov regularization are classically used, but they
often deliver unrealistic solutions. As an alternative, we propose
a novel approach, where a fixed solution of the volume conductor
model with a source in a forward scheme is used to solve the
inverse problem. The unknown values for parameters of the fixed
solution can be found using optimization techniques. Due to the
characteristics of the problem, where each single evaluation of the
cost function is expensive, we use a specialized CMA-ES-based
Bayesian optimization technique, that can deliver good results
even with a reduced number of function evaluations. Experiments
show that the proposed approach can deliver improved results
for in-silico simulations.

Index Terms—inverse problems, bayesian optimization, ECGI

I. INTRODUCTION

The main cause of more than 17 million deaths annually
in the world are heart-related diseases1. Understanding the
electrical activity of the heart to provide accurate and timely
diagnosis is an important key to decrease the risk of death from

1https://www.who.int/health-topics/cardiovascular-diseases#tab=tab 1

these diseases. To this aim, different signal analysis techniques
such as electrocardiography (ECG), phonocardiography (PCG)
and photoplethysmography (PPG) are commonly used [1].

Non-invasive electrocardiographic imaging (ECGI) is an
increasingly used imaging modality that is based on the
numerical reconstruction of cardiac electrical activity using
body surface potential measurements and patient-specific heart
and torso geometries [2]. ECGI is also known as the inverse
problem of electrocardiography: since the problem is ill-posed,
it does not have a unique solution, making each proposed
solution unstable. Solutions to the problem can vastly differ
with even the slightest noise or disturbance in the electrical
and/or geometric input data [2]–[6]. Several solutions have
been proposed for the inverse problem of electrocardiography,
for example using ECG signal processing methods [4], [7],
single/multi-layer approaches [2], [8], and machine learn-
ing [9]–[11]. One of the most common techniques used in
practice, however, is still Tikhonov regularization [5], [6], [12],
[13]. Despite the great number of approaches proposed, finding
stable solutions for the inverse problem of electrocardiography
remains, at the time of writing, an open problem.

In this work we propose a novel approach to tackling this
problem, where a fixed solution of the volume conductor
model with a source in a forward scheme is used to solve
the inverse problem of electrocardiography. The unknown
values for the parameters of the fixed solution are found
using optimization techniques. Due to the characteristics of
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the problem, where each single evaluation of the cost function
is computationally expensive, we use a specialized CMA-ES-
based Bayesian optimization technique, that can deliver good
results even with a reduced number of function evaluations.
Bayesian optimization already has a considerable number
of success stories, when applied to medical issues such as
assigning personalized dose to patients [14], individualized
treatment rules [15], regenerative medicine [16], and deep
brain stimulation [17], [18], among many others. The results
obtained using Bayesian optimization were the motivation
to use it as an alternative solution in the inverse problem
of electrocardiography. An experimental evaluation shows
that the proposed approach can deliver excellent results for
benchmarks where traditional approaches fail.

II. BACKGROUND

In the following, we provide the reader with the minimal
notions related to the inverse problem in electrocardiography
and Bayesian optimization that are necessary to introduce the
scope of the work.

A. Inverse problem in electrocardiography

Electrocardiography (ECG) is defined as the interpretation
of the potentials recorded at the body’s surface, typically using
AgCl electrodes: the objective is to obtain a qualitative and
quantitative representation of the electrical activity of the heart.

To achieve this objective, solutions to the so-called for-
ward and inverse problems in ECG must be sought. The
forward problem in ECG consists of calculating the potential
distribution at the surface of the thorax (∂T ) due to the
electrical activity on the heart’s surface (∂H) [3], whereas
the inverse problem is to reconstruct the electrical activity in
the epicardium ∂H from the measured electrical activity at
the thorax ∂T [2], [4].

The inverse problem of electrocardiography is considered
an ill-posed problem [3], with no unique solution [19]. In
the inverse problem of electrocardiography, elements such as
perturbation in the electrical and/or geometrical input data,
even in small amounts, can lead to errors that negatively affect
the accuracy of the reconstructed cardiac activity, making
it unstable and highly oscillatory [2]–[4]. To solve this ill-
posed problem, it is necessary to regularize the procedure to
obtain physical and physiological results. These regulariza-
tions techniques could facilitate the inversion by restricting the
possible types of solutions using implicit constraints, such as
electrical activity of the heart and/or body-surface potentials,
which cause the model parameters to be uniquely computed
from surface potentials [3], [20]. Some examples of the
mentioned models are a multipolar array, one or two moving
dipoles, multiple fixed location dipoles, the epicardial potential
distribution, and isochrones of activation at the surface of the
heart [3]. The most common regularization technique used
in the inverse problem of electrocardiography is Tikhonov
regularization: this technique seeks to achieve a good balance
between the adjustment to the measures and a priori informa-
tion about the solution [5], [13], [20]. Previous works focused

on using two-step algorithms with genetic programming [21]
and particle swarm optimization [22], but these approaches
require a considerable amount of function evaluations, which
explode in number as the geometry becomes more dense.
While effective on benchmarks, such approaches cannot be
applied to real cases, where the number of evaluations they
require would be impractical to perform, given the timeliness
required by the application. Techniques that use a smaller
amount of function evaluations, such as Bayesian optimization,
could thus be more suitable for real-world applications.

B. Inverse Problem Formulation

From the geometry of the model, and the boundary con-
ditions of null flux and measured potential at the thorax’s
surface, we construct an operator considering the following
model, using the Finite Element Method (FEM) [23]:

−∇ · (c∇u) = 0 x ∈ H ,
u = ut x on ∂T ,
∂u
∂n = 0 x on ∂T .

(1)

This formulation translates to a set of equations, where h, v
and t denote nodes in the heart, volume (between heart and
thorax), and thorax, respectively:Ahh Ahv Aht

Avh Avv Avt

Ath Atv Att

uh

uv

ut

 =

00
0

 . (2)

Considering no overlapping nodes between the heart and the
thorax, we can simplify the system to:

[
Avh Avv Avt

0 Atv Att

]uh

uv

ut

 =

00
0

 . (3)

If we solve for uh, then we can create operator O:

O = (Att −AtvA
−1
vv Avt)

−1AtvA
−1
vv Avh, (4)

Ouh = ut. (5)

As mentioned, a classical approach to the solution of the
inverse problem is to use Tikhonov regularization. Tikhonov
regularization, considers the following functional:

min(||Ouh − ut||2 + λ||C(uh − u′
h)||2) (6)

λ > 0

We applied the functional in the following form [24]:

uh = [OTO + λCTC]−1[OTuT + λCTCu′
h], (7)

where C is a constrained matrix. In our case we use the
identity matrix (C = I) and set λ = 0.001.
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C. Bayesian optimization
Machine learning algorithms often have several hyper-

parameters that directly influence performance [25]. Hence,
in recent years, different optimization algorithms have been
proposed to automate parameter tuning, such as grid search,
random search [26] or evolutionary algorithms [27], [28]. Al-
though capable of achieving excellent results, these techniques
typically require considerable computational effort to achieve
such results, in particular due to the necessity of performing
many function evaluations [29].

An alternative to these algorithms are optimization tech-
niques that are designed to get high-quality results using only
few function evaluations [25], [30]–[32]. Such algorithms are
well-suited for problems where using only few evaluations is
critical, for example robotics and machine learning [33]–[36].
A type of expensive optimization is Bayesian optimization.
Bayesian optimization has two components: First, apply a
Gaussian Process (GP) to the data as a prior probability
distribution to infer values. This is known as Gaussian Process
Regression. Next, use an acquisition function to evaluate those
values and select the next point to evaluate [37], [38]. In
this context, each time we modify a hyper-parameter in the
algorithm, we consider the result as a sample from the GP.
Using the GP as a surrogate model allows us to evaluate a
simplified function in comparison to the original.

The acquisition function is described by a covariance matrix
(or kernel), a mean, a variance, and the information already
gathered on the model. To optimize the acquisition function,
either a gradient-based algorithm technique like DIRECT in
the BayesOpt library [39], or a global non-linear optimizer
such as the evolution strategy with covariance matrix adapta-
tion (CMA-ES) [40], [41] in the Limbo library [42] may be
used.

In Bayesian optimization, we will have a set of observed
samples (x0, y0), (x1, y1), ... , (xn, yn) where yi = f(xi),
X is the vector of inputs, and y the vector of outputs. The
objective will be to predict the next point x∗ that maximizes
the acquisition function,

x∗ = argmax f(x). (8)

Using a GP the predicted mean µ(x∗) and predicted variance
σ(x∗) of the point x∗ are given by ( [38], [43]):

µ(x∗) = kT∗ (K + σ2
noiseI)

−1y (9)
σ2(x∗) = k(x∗, x∗)− kT∗ (K + σ2

noiseI)
−1k∗, (10)

where K = K(X,X) denotes the covariance matrix computed
for each pair of observed inputs, σ2

noise is the noise level, I
the identity matrix, k∗ is the vector of covariances between the
test point x∗ and each of the n observed inputs. Examples of
covariance functions include the exponential kernel (Eq. 11)
and the Matérn 5/2 (Eq. 12) [37]:

Ksq−exp(x, x
′) = θ20exp(−

1

2
r2) (11)

KM52(x, x
′) = θ20exp(−

√
5r)(1 +

√
5r +

5

3
r2) (12)

with r given by:

r2 =

D∑
d=1

θ2d(xd − x′
d)

2 (13)

with θd ∈ [0,1] (parameterized) [31]. The values of θi are
estimated by the log marginal likelihood,

logP (y|x, θ) = −1

2
log |K| − 1

2
yTK−1y − N

2
log 2π. (14)

which gives a measure of how well the model adjusts to the
data [38]. The log marginal likelihood is usually calculated
using gradient methods [43], such as the LBFGS-B [44].

With a given covariance function k, a set of inputs X , a
set of outputs y, and a σ2

noise noise level, we can optimize
an acquisition function, such as an upper confidence bound
(UCB) [31], [45]:

UCB(x) = µ(x∗) + κσ(x∗), (15)

where κ is a parameter to tune the exploration-exploitation
trade-off. The overall algorithm is summarized in Alg. 1.

Algorithm 1: Bayesian optimization algorithm.
Create n random initial points ;
for Number of Evaluations do

Optimize logP (y|x, θ);
Optimize acquisition function ;
Evaluate selected point x∗ in the original function
;

Update sets X, y ;

III. PROPOSED APPROACH

In the inverse problem in electrocardiography, we consid-
ered the system in a quasi-static approach, thus each time
step is solved independently [23]. We propose to tackle the
IPE by applying Bayesian optimization, and speed up the
computation by selecting only a subset of points of fixed
size, including the ones with the best values obtained up to
that moment. From Eq. 7, we have u′

h, that is considered as
a priori information. Using the model for Multiple Dipole
Source Position from [46], we modified to use it as a basis
for cardiac sources.

u′
hi =

1

4πζ

[
s0 s1

] [Nx−u0x
r03

Ny−u0y
r03

Nz−u0z
r03

Nx−u1x
r13

Ny−u1y
r13

Nz−u1z
r13

]vxvy
vz


(16)

Thus, this would translate to identifying the values of 12
parameters (ζ, s0, s1, u0x, u0y, u0z, u1x, u1y, u1z, vx, vy, vz),
where ζ is the conductivity, s0 is the dipole signal strength
of dipole 0, s1 is the dipole signal strength of dipole 1,
u0x, u0y, u0z is the dipole 0 position, u1x, u1y, u1z is the
dipole 1 position, vx, vy, vz is the unit vector denoting the
orientation of the dipole, and Nx, Ny, Nz are the position on
the heart’s surface at each point.
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Then, having calculated u′
h as a priori information, we

will solve the original functional in Eq. 7 for each time step
(Alg. 2).

Algorithm 2: Bayesian optimization algorithm for
the inverse problem in electrocardiography.

for Each Time Step do
Create n random initial points to evaluate a source

model equation;
Generate n initial uh and ut;
for Number of Evaluations do

Optimize logP (y|x, θ);
Optimize acquisition function ;
Evaluate selected point x∗ in the source model equation

;
Generate uh and ut ;
Update sets X, y ;

Solve Functional
min(||Ouh − ut||2 + λ||C(uh − u′

h)||2);

IV. RESULTS

We performed two experiments: one using simulated data
with geometries from [47] and a monodomain model [23],
[48] with a one-point source (Experiment 1), and a sec-
ond one using real-world data from a Langendorf-perfused
canine heart [49], [50] (Experiment 2). For Experiment 2,
we modified the torso geometry to make it a close surface
using Laplacian interpolation, as the provided geometry was
non-compliant with the volume conductor model. Then, for
both experiments, we generated the transfer matrix using
the Garlekin boundary element method [51]. The coupled
geometries of heart and torso are displayed in Fig. 1.

Fig. 1. Geometries used for the experiments. (Left) geometry of human torso
and thorax for Experiment 1. (Right) Geometry of torso tank and heart cage
for Experiment 2.

A. Experiment 1
For this experiment, we used a geometry of the thorax

with 300 nodes, and 1,444 nodes on the heart’s surface.
First, using the Monodomain model we put an impulse in
the left ventricle. Next, we propagate the extracellular poten-
tial to the thorax (electrocardiography forward problem) for
200 time steps (Fig.2). Then, using Tikhonov regularization
(λ = 0.001), we reconstruct the extracellular potential in the
heart’s surface from the thorax’ potential (electrocardiography
inverse problem), using only the Tikhonov functional and the
Bayesian Optimization with a source model, as seen in Fig. 3.

Fig. 2. Thorax simulated potentials at time steps 13 and 111, using the
Monodomain Model with a laplace coupling with BEM.

Fig. 3. Measurements of electrical activity in the heart’s surface using
the Monodomain (Left), reconstruction with Tikhonov only (middle) and
reconstruction using Bayesian Optimization (right), for time steps 13 and
111.

B. Experiment 2

In this experiment we have the real-world recordings from a
Langendorf-perfused canine heart, for both the thorax’ surface
and the cardiac cage. Thus, for this case we will close the
geometry and interpolate the values in the thorax (Fig. 4)
with a Laplace interpolation (229 nodes), and then try to
reconstruct the activity measured by the cardiac cage (256
nodes). The activity in the heart is described by an anterior
ventricular paced beat (avp) for 220 time steps. First, we build
the transfer matrix, or operator using the Garlekin boundary
element method. Then, we apply the Tikhonov functional and
Bayesian Optimization with a source model and compare it to
the actual recordings, as summarized by Fig. 5.

Finally, from the final results and knowing the ground truth,
we can compute the error for the two approaches (Table I).
The error is defined as:
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Fig. 4. Interpolated activity of the thorax (torso tank) for time steps 39 and
167.

Fig. 5. Measurements of electrical activity in the cardiac cage (Left),
reconstruction with Tikhonov only (middle) and reconstruction using Bayesian
Optimization (right), for time step 39 and 167.

error =

∑nodes
i

∑ttotal

j (uh − usim)2i,j∑nodes
i

∑ttotal

j (uh)2i,j
, (17)

TABLE I
SUMMARY OF ERROR IN THE 2 DIFFERENT EXPERIMENTS.

Experiment 1 Experiment 2
Tikhonov 0.7157 0.3442
BO + Tikhonov 0.6881 0.3352

It is interesting to notice that the numerical value of the
error depends on the number of nodes in the geometry, so error
values reported for Experiment 1 (using a geometry with 1,444
nodes) and Experiment 2 (256 nodes) are not directly com-
parable. Still, the proposed approach outperforms the classic
Tikhonov method for both experimental configurations. As the
objective of solving the inverse problem is to find sources of

arrhythmia in the heart without invasive surgery, rule out acute
myocardial infarction, or the extent of cardiomyopathy, even
small gains in the error correspond to significant improvements
from the point of view of patients’ safety and comfort.

V. CONCLUSION

In this work, we presented a novel CMA-ES-based Bayesian
optimization approach for solving the inverse problem in
electrocardiography, a difficult ill-posed problem with unstable
solutions but invaluable practical applications for medicine.
Compared to previously proposed techniques, the presented
algorithm requires fewer function evaluations to achieve the
same quality of results, thus being more applicable to real-
world scenarios. In addition, the given approach makes it
possible to solve each time step independently, thus it can
be efficiently parallelized. Simulated and real world data
experiments show that the approach is not only faster, but
provides better results than established techniques such as
Tikhonov regularization.

Although further testing and validation are necessary, this
approach could represent a step in the right direction to solve
the inverse problem in electrocardiography in real time and
with a better precision than the classical Tikhonov regulariza-
tion. As of now, we have only used a source generation model,
but next experiments will focus on using different functions
that can approximate the electrical activity and the parameters
can be found via Bayesian optimization as shown and more
real data-based experiments. Finally, we expect to test further
our methodology with other datasets avaialble in the EDGAR
repository [49].
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