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Abstract—Controller Area Network bus systems within ve-
hicular networks are not equipped with the tools necessary to
ward off and protect themselves from modern cyber-security
threats. Work has been done on using machine learning methods
to detect and report these attacks, but common methods are
not robust towards unknown attacks. These methods usually
rely on there being a sufficient representation of attack data,
which may not be available due to there either not being
enough data present to adequately represent its distribution
or the distribution itself is too diverse in nature for there
to be a sufficient representation of it. With the use of one-
class classification methods, this issue can be mitigated as only
normal data is required to train a model for the detection of
anomalous instances. Research has been done on the efficacy
of these methods, most notably One-Class Support Vector
Machine and Support Vector Data Description, but many new
extensions of these works have been proposed and have yet
to be tested for injection attacks in vehicular networks. In
this paper, we investigate the performance of various state-of-
the-art one-class classification methods for detecting injection
attacks on Controller Area Network bus traffic. We investigate
the effectiveness of these techniques on attacks launched on
Controller Area Network buses from two different vehicles
during normal operation and while being attacked. We observe
that the Subspace Support Vector Data Description method
outperformed all other tested methods with a Gmean of about
85%.

Index Terms—Cyber Security, Vehicular Security, One-Class
Classification

I. INTRODUCTION

Different kinds of cyber-security vulnerabilities can po-
tentially render vehicles prone to several types of attacks,
such as taking control of the vehicle, Denial of Service
(DOS) attacks, and spoofing attacks [1]. As emerging tech-
nologies push devices across all domains to become more
connected than ever before, the internal infrastructure of
modern vehicles is still based upon antiquated standards and
regulations from a time long before this interconnectivity
was thought possible. Within the core of all vehicles lies the
same internal communication protocol, the Controller Area
Network (CAN) protocol, which was designed before the
advent of WiFi and Bluetooth-enabled vehicles. The vehi-
cles’ CAN networks were designed for quick and efficient
transmission of messages with no cyber-security features
because they were not necessary for the time. But in a
modern vehicle, this same protocol is used when it is exposed

to external networks such as the Internet. These modern
features open vehicles’ networks to new vectors of attack
that they were never designed for. This openness leaves
vehicles as prime targets for well-known and widely used
cyber-security attacks [2]–[4]. The gravity of these threats
is exhibited by researchers who performed hacks on Tesla
vehicles that disabled critical safety features [5]. As these
threats become more apparent, automobile manufacturers are
implementing countermeasures such as data encryption and
message authentication in order to mitigate the likelihood of a
successful attack. These additions would make newer models
of vehicles more resilient to these attacks, but vehicles that
were manufactured before these changes would still have no
protection against these threats.

Traditional machine learning techniques have been em-
ployed for the purpose of detecting injection-based cyber-
security attacks. These techniques read the traffic of CAN
messages on the vehicle’s CAN bus in order to make a
decision about whether the traffic is normal or anomalous.
Often, several different characteristics of the bus’s traffic are
extracted, such as the inter-signal arrival time, the frequency
of messages on the bus, and appearances of message se-
quences [6]–[8]. However, these techniques rely on training
data containing samples of both normal and anomalous data,
meaning that prior knowledge of the specific type of attack
is required in order to detect it in the future. These models
and techniques perform well in scenarios where the models
were given sufficient training data of the type of attack
used, but their performance is affected when the models
are tasked with detecting attacks for which they were given
little to no training data. This poses an issue where in
order for these models to remain updated and secure against
new and emerging threats, they must be retrained with new
data of these attacks. Research has been done on trying
to mitigate this issue of detecting anomalies consisting of
”unknown” attacks. In 2016, researchers Bezemskij et al.
proposed a knowledge-based approach to detect anomalies on
a robotic vehicle [9]. The researchers attempted to improve
the detection of unknown attacks by adjusting weights that
were trained on known attacks to accentuate the features of
the data that indicated anomalous activity. The researchers
reported that this technique proved effective in detecting
unknown attacks within their experimental setup, but this
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technique may prove ineffective against unknown attacks
whose features do not follow the trend of features of known
attacks. Researchers in [10] proposed another self-supervised
technique to detect unknown attacks. The researchers create
a pseudo-normal data generator to generate data that mimics
normal operating data on a CAN network but lies just outside
of the normal data within a given feature space. A binary clas-
sification model is then trained with the noised data labeled
as anomalous data to make a decision boundary between
the normal data and noised data. For these techniques to be
useful, either data of these attacks must be available, or a
method for generating data that mimics attack data must be
available.

We propose the use of one-class classification methods
for the purpose of detecting anomalous data on a vehicle’s
CAN bus. One-class classification methods have been used
successfully for identifying data that falls outside the bounds
of normal or expected behavior across multiple domains,
such as the medical field with detecting myocardial in-
fractions [11] and taxa identification with identifying rare
benthic macroinvertebrates [12]. These approaches use one-
class classification for identifying data outside the norm
using features from their respective datasets. Our proposed
approach follows this paradigm, where we only train the
model on data collected from the CAN bus under normal
behavior. This methodology differs from already established
techniques of intrusion detection on CAN buses by only
requiring normal data rather than training a model on both
normal and anomalous data. The main contribution of this
work is that because the model will be trained without
anomalous data from any specific type of cyber-attack, we
claim that this approach will be more suited to detecting
unknown attacks within a vehicular network.

The structure of this paper is as follows: Section II pro-
vides an overview of work associated with intrusion detection
in the context of cyber-security on CAN buses as well
as the application of one-class classification techniques for
the purpose of intrusion detection. Section III provides the
methodologies used for the various one-class classification
techniques that were applied to our dataset. Section IV
shows our experimental setup, which includes the physical
layout of our data collection apparatus, the feature generation,
and the methods used for generating anomalous data for
testing purposes. Section VI then presents the conclusions
that were made from our experiments as well as potential
improvements and future work.

II. RELATED WORK

The vulnerability of the CAN bus system has been dis-
cussed extensively in the literature. Researchers Koscher et
al. provide a good overview of the vulnerabilities associated
with the CAN bus system [13]. Researchers describe several
key pitfalls with the system’s security, such as the broadcast
nature of the system, the vulnerability of the system to DoS
attacks, the system’s lack of authentication, and weak pro-
tection against gaining access to ECU’s control mechanisms.
The paper presents a multitude of various actions that they

were able to exploit on the vehicle. In 2015, researchers
Miller and Valasek exploited the vulnerabilities of the CAN
bus system on a Jeep Cherokee and were able remotely to
execute these attacks through the vehicles’ cellular interfaces.
The researchers were able to perform actions such as dis-
abling critical systems, such as the vehicle’s braking system,
and manipulating the steering wheel.

Intrusion detection systems (IDS) are software packages
or hardware devices that monitor the flow of information
across a CAN bus and identify if the CAN bus is secure
or compromised. These IDSs can be broadly categorized
into four categories with a few exceptions that do not
fit these descriptions: fingerprint-based methods, parame-
ters monitoring-based methods, information-theoretic-based
methods, and machine learning-based methods [14]. Our
methods fall into the category of machine learning-based, so
this section will discuss the work done within this domain.

Different types of machine learning approaches have been
used to detect intrusions. Most of these techniques utilize
models that rely on data from both normal and anomalous
data. These methods include LSTM neural networks, deep
neural networks, and hidden Markov models. [15]–[17].
These approaches yield good results, typically higher than
90% accuracy for intrusion detection, but they rely on a good
description of anomalous data. Another issue with some of
these approaches is the computational complexity, especially
with the deep learning options. For our proposed intrusion
detection framework, the intrusion detection model needs to
have a low enough computational complexity to be real-time,
but for some of these deep learning methods, a high amount
of computation is necessary for the level of performance
required to be effective. The drawbacks of these established
approaches are the requirement of sufficient anomalous data
for training the models, the lack of effectiveness against
unknown attacks, and the potential computational cost.

Techniques have been developed for the purpose of reme-
dying similar challenges. One-class classification techniques
are useful for scenarios where classification is required, but
there is a severe under-representation of one of the classes,
referred to as the non-target class [18]. These techniques
train their models exclusively on a single class, the target
class, in order to provide a classification of whether a sample
is part of the target class or not part of the target class.
Various one-class methods have been used across multiple
domains for detecting faults or anomalies with regard to
the normal behavior of an operation. In 2005, researchers
Shin et al. applied OC-SVMs for machine fault detection
based on vibration measurements [19]. The researchers claim
that the application of an OC-SVM can reduce the cost of
maintenance and operation by more accurately detecting sys-
tem faults. A paper by Sanchez-Hernandez et al. reports that
with the use of Support Vector Data Description (SVDD), a
one-class classification technique, they were able to achieve
accuracies higher than conventional multi-class techniques
when classifying a single target class [20].

There has also been an application of these models specif-
ically geared toward cyber-security intrusion detection. In
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Fig. 1. Workflow for intrusion detection process

[21], researchers tested one-class models on a dataset that
simulated TCP/IP traffic over a local-area network. This
paper claimed that the one-class-based SVM outperformed
other standard classification techniques such as clustering,
K-Nearest Neighbors, Naı̈ve Bayes, and standard SVM.
Researchers from the Georgia Institute of Technology also
combined OC-SVMs with other one-class classifiers for
ensemble intrusion detection systems monitoring HTTP (Hy-
pertext Transfer Protocol) requests [22]. Along with these
applications toward more internet-structured networks, work
has been done within the domain of vehicular networks
specifically. In [23], OC-SVM and SVDD methods are used
to detect anomalies on vehicular networks. This paper focuses
on detecting faults within the vehicle’s infrastructure rather
than cyber-security attacks but still uses one-class models
for intrusion detection based on data extracted from CAN
messages. Although, these methods are also being used
as intrusion detection systems on CAN networks, as seen
in papers by Maglaras and Taylor et al., where OC-SVM
techniques are used to detect intrusions on vehicular networks
[7], [24].

III. METHODOLOGY

Our approach is meant to fit into a multi-layered process
where our methods act on a security module that monitors
the CAN bus traffic on a vehicle and reports to a centralized
authority or management system. We are presenting a poten-
tial workflow on which our methods can be implemented for
the purpose of intrusion detection on a vehicle’s CAN bus.
Fig. 1 shows the process that our implementation will fit into.

A. Vehicle Operation

The process begins with the normal use of a vehicle.
While a vehicle is being used, there will be CAN bus traffic
being transmitted from one electronic control unit (ECU)
to another. These ECUs require messages to be transmitted
and received very quickly and efficiently, which is the main
criterion that the CAN protocol was built for. Within any
given second, the can bus can be populated with dozens of
CAN messages, each with its own CAN ID and data payload.

B. Data Collection

During vehicle operation, traffic will be monitored and
recorded by some security module that has access to the CAN
bus of the vehicle. Once this data has been collected for a
certain timeframe, feature extraction will be performed on
the raw CAN messages that were collected during the said
timeframe. These messages contain the timestamp, ID, and
data payload of each message. The process in which the data
is collected and the hardware and software used are explained
in more detail in section IV.

C. Feature Extraction

Once the raw CAN messages were recorded, three different
features were constructed from each unique CAN ID, each
of which is shown below.

• Average Frequency of Appearance of a CAN ID: How
frequently and given CAN ID appears on the CAN bus

f =

j∑
k=2

j − 1

ti,k+1 − ti,k
(1)

• Average Time Interval Between Consecutive Ap-
pearance of a CAN ID: Time delta change between
an appearance of any given CAN ID and its next
appearance on the bus

∆t =

j∑
k=2

ti,k+1 − ti,k
j − 1

(2)

• Standard Deviation of Transmission Times of CAN
IDs: Standard Deviation of a selected CAN ID’s trans-
mission times across a set period of time.

s =

√√√√1

j

j∑
k=2

(ti,k − ti)2 (3)

where f is the frequency, ∆t is the average time interval,
s is the standard deviation, i is the index of the CAN ID, j
is the number of CAN messages associated with a specific
ID, and t is the timestamp of an ID’s appearance.

This produced 3*i number features where i is the number
of unique IDs present in normal CAN bus traffic. The
number of IDs present will change between vehicles and
manufacturers, but the process used for feature extraction is
the same for any given CAN bus. These features were chosen
as they do not rely on the data itself within each message but
rather on the characteristics of how these messages appear.
This was chosen so that these methods can be applied to any
vehicular can bus. Each ECU within a vehicle is expected to
transmit messages at expected intervals, so these features are
very consistent under normal conditions [25].

D. One-Class Classification

The next step involves feeding these features into a one-
class classification model. Following is a list of the tested
models and a brief description of them.

• Support Vector Data Description (SVDD) [26]: This
method takes training data from the target class only
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to fit a spherically shaped boundary between normal
data and outliers (anomalous data). To account for
the possibility of outliers within the training set, slack
variables are introduced to allow data samples of the
target class to extend beyond the defined boundary of
the discriminatory hyper-sphere while penalizing large
distances between the sample and the boundary. This
results in the following equation being minimized:

F (R, a) = R2 + C
∑
i

ξi (4)

with the constraints that most samples are within the
hyper-sphere:

||xi − a||2 ≤ R2 + ξi, ξi ≥ 0 ∀i (5)

where F is the function to minimize, R is the radius
of the hyper-sphere, a is the center of the hyper-
sphere, C is a hyperparameter used to control the trade-
off between the hypersphere’s volume and the errors,
and ξ is the slack variable for each sample. Applying
Lagrangian optimization yields the following equation
to optimize:

L(R, a, αi, γi, ξi) =

R2 + C
∑
i

ξi −
∑
i

γiξi

−
∑
i

αi

{
R2 + ξi − (x⊺i xi − 2a⊺xi + a⊺a)

} (6)

with the Lagrange multipliers αi ≥ 0 and γi ≥ 0.
• Subspace Support Vector Data Description (S-

SVDD) [27]: This method builds upon SVDD by trans-
forming the data from the given feature space to an
optimized lower-dimensional feature space. Along with
training a model to fit a hyper-sphere to the data, the
model is iteratively trained to determine a transformation
matrix Q to optimally reduce the dimension of the
feature space from D to d where Q ∈ Rd×D such that

yi = Qxi, i = 1, ..., N (7)

where {xi} , i = 1, ..., N is the original training
set in dimension D and {yi} , i = 1, ..., N is the
transformed training set in dimension d. Applying La-
grangian optimization to this new method yields the
following equation to optimize:

L(R, a, αi, γi, ξi,Q) =

R2 + C
∑
i

ξi −
∑
i

γiξi

−
∑
i

αi(R
2 + ξi − x⊺i Q⊺

i Qxi + 2a⊺Qxi − a⊺a)

(8)

• Ellipsoidal Support Vector Data Description (E-
SVDD): This method builds upon the SVDD by fit-
ting an ellipsoidal boundary to the data rather than a
spherical boundary. Fitting a hyperellipsoid to the data

rather than a hypersphere provides a greater level of
generalizability by allowing the discriminate boundary
more degrees of freedom. In [28], finding an optimized
subspace for ellipsoidal data description has been pro-
posed.

• Graph-Embedded Support Vector Data Description
(GE-SVDD): This method continues the work of SVDD
by implementing graph embedding. This technique is
suitable for datasets where the data can be represented in
a graph structure. This is most applicable for problems
where each sample contains data as well as information
representing a relationship between the data.

• One-Class Support Vector Machine (OC-SVM) [29]:
This technique closely resembles that of a regular sup-
port vector machine but is altered to fit the paradigm
of a one-class model. Rather than circumscribing a
hypersphere about the target class, this method discrim-
inates the data by means of a hyperplane, as is also
the case with a typical SVM model. Rather than using
this hyperplane to discriminate between two different
classes, this model fits the hyperplane to a single target
class while maximizing the distance from the hyperplane
to the origin of the feature space. In other words, the
model is fit to discriminate the target class from the
origin while fitting the hyperplane as far from the origin
as possible.

• One-Class Graph-Embedded Support Vector Ma-
chine (OC-GE-SVM) [30]: This method follows the
same motivation as GE-SVDD where graph embedding
is implemented into OC-SVM.

E. Reporting

Once a decision is made during the intrusion detection
phase, the resulting information is relayed wirelessly from
the security module on the vehicle to some central authority
regarding the status of the vehicle. This central authority
could be some building or energy management system that
has the ability to authenticate or block a vehicle’s access to
some vehicle-to-vehicle network. This management system
would have the power and responsibility to respond to a
cyber-security threat by denying network access to infected
vehicles and quarantining them off from other non-infected
vehicles in an effort to impede the propagation of malware.

IV. EXPERIMENTAL SETUP

The used data set consisted of regular and anomalous intra-
vehicular communications on two different electric vehicles:
a 2011 Nissan Leaf and Chevy Volt. The data collection
process was identical for both vehicles, but the set of IDs be-
tween the vehicles is different because they are manufacturer-
specific. Data was collected from the Primary and Electric
Vehicle(EV) CAN buses on the vehicles, but the methods
used for feature extraction and intrusion detection are not
specific to any CAN bus. In order to access the CAN bus
of these vehicles, an On-board Diagnostic (OBD) breakout
box was connected to the OBD-II port located underneath
the steering wheel of the vehicles. This enabled easy access
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to each of the individual pins on the OBD-II port. A CAN
interface device was then used to exchange data between
the vehicle’s CAN bus and our computer’s USB interface.
Using the python-can python library on a Linux machine
with socketCAN, a python script was created to collect and
record all CAN traffic on a vehicle’s CAN bus. Fig. 2 shows
the setup and connections between components.

Normal data was collected from the vehicles as the vehicles
were performing typical activities such as driving, parking,
etc. Anomalous data was collected during the CyberAuto
event, where various CAN bus injection attacks were con-
ducted on the vehicles. These attacks include Random ID
Attack, Zero ID Attack, and Replay Attack. These attacks
were conducted using the same hardware setup used to collect
the CAN data. While the data was collected, these attacks
were deployed on the vehicle’s primary and EV CAN buses.
Shown below is a list and a brief description of each of the
attacks launched on the vehicles.

• Random ID Attack: The Random ID Attack is a denial
of service attack that floods the CAN bus of the vehicle
with packets populated with random data that belong
to random CAN IDs. The IDs used can be known or
foreign.

• Zero ID Attack: The Zero ID Attack is a denial of
service attack that floods the CAN bus of the vehicle
with packets that belong to the CAN ID 0. The data
payload for these packets can be empty or populated
with data.

• Replay Attack: The Replay Attack is a denial of service
attack that captures CAN packets from the CAN bus and
replays them back onto the bus. This attack can replay
single CAN messages or a sequence of CAN messages.

For each of the data collection sessions, all of the CAN

Fig. 2. Wiring of CAN Bus Breakout Box to Nissan Leaf’s OBD-II Port
to computer

traffic on the CAN bus was captured and saved into CSV
files. The raw data saved into these CSV files contained each
CAN message transmitted on the CAN bus during the data
collection session. Each CAN message contained the CAN
ID, the data payload, and the timestep of the message. In
total, 1554 data samples were used to train each model, with
70% used for training and 30% used for testing.

V. RESULTS

We discuss the results of the study by presenting the
Gmean scores of each method described in section III, using
the dataset collected as discussed in section IV. We ran the
models on each dataset, where the target class was the normal
data. Consequently, each model was exclusively trained on
the normal data. Subsequently, we tested the models on the
entire test set, which includes both normal and anomalous
data.

The Gmean score is a valuable metric for evaluating a
model’s performance when dealing with significant class
imbalances, a common scenario in one-class classification
methods. The Gmean score can be computed as Gmean =√
TPR ∗ TNR, where TPR represents the true positive rate

and TNR represents the true negative rate. Our analysis
includes tables of results that present performance metrics
on the entire dataset, as well as augmented versions of the
dataset. In the augmented versions, only a subset of the
anomalous data was used to test the model. The purpose of
this augmentation was to assess how effectively the model
could detect individual types of attacks, particularly because
certain cyber-attacks can be relatively straightforward to
detect.

The reported results encompass all of the methods de-
scribed in section III-D, covering both their linear and
nonlinear variants, where applicable. Furthermore, the study
includes evaluations of four different variants of the S-SVDD
method, identified in the tables as ψ0, ψ1, ψ2, or ψ3. The
S-SVDD methodology employs regularization to determine
which samples of the data are utilized to describe the class
variance in the lower-dimensional optimized subspace.

TABLE I
LEAF ELECTRIC VEHICLE

Target Class Normal Random Replay Zero
Linear
SVDD 0.84 0.78 0.65 1.00
S-SVDD-ψ0 0.84 0.79 0.91 0.98
S-SVDD-ψ1 0.84 0.79 0.99 0.98
S-SVDD-ψ2 0.84 0.79 0.92 0.98
S-SVDD-ψ3 0.84 0.79 0.97 0.98
E-SVDD 0.83 0.70 0.58 0.96
GE-SVDD 0.84 0.82 0.94 0.86
OC-SVM 0.60 0.53 0.29 0.00
GE-OC-SVM 0.82 0.86 0.93 0.94
Non-Linear
SVDD 0.84 0.79 0.65 1.00
S-SVDD-ψ0 0.84 0.83 0.77 0.96
S-SVDD-ψ1 0.84 0.85 0.95 0.95
S-SVDD-ψ2 0.84 0.89 0.92 0.96
S-SVDD-ψ3 0.84 0.76 0.83 0.96
E-SVDD 0.84 0.80 0.67 0.89
OC-SVM 0.61 0.30 0.45 0.81
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TABLE II
LEAF PRIMARY

Target Class Normal Random Replay Zero
Linear
SVDD 0.85 0.79 0.64 0.93
S-SVDD-ψ0 0.84 0.79 0.98 0.96
S-SVDD-ψ1 0.84 0.79 0.99 0.96
S-SVDD-ψ2 0.84 0.80 0.98 0.96
S-SVDD-ψ3 0.84 0.79 0.98 0.96
E-SVDD 0.83 0.76 0.58 0.93
GE-SVDD 0.83 0.81 0.92 0.90
OC-SVM 0.35 0.48 0.54 0.48
GE-OC-SVM 0.81 0.87 0.92 0.96
Non-Linear
SVDD 0.85 0.79 0.64 1.00
S-SVDD-ψ0 0.84 0.86 0.79 0.98
S-SVDD-ψ1 0.84 0.84 0.94 0.98
S-SVDD-ψ2 0.84 0.87 0.93 0.98
S-SVDD-ψ3 0.84 0.86 0.73 0.98
E-SVDD 0.85 0.85 0.65 0.93
OC-SVM 0.24 0.34 0.60 0.81

TABLE III
VOLT ELECTRIC VEHICLE

Target Class Normal Random Replay Zero
Linear
SVDD 0.82 0.78 0.73 0.92
S-SVDD-ψ0 0.83 0.80 0.95 0.93
S-SVDD-ψ1 0.83 0.79 0.99 0.93
S-SVDD-ψ2 0.83 0.80 0.98 0.93
S-SVDD-ψ3 0.83 0.79 0.98 0.93
E-SVDD 0.81 0.76 0.57 0.92
GE-SVDD 0.83 0.83 0.92 0.94
OC-SVM 0.26 0.44 0.26 0.00
GE-OC-SVM 0.80 0.84 0.93 0.95
Non-Linear
SVDD 0.82 0.78 0.65 0.96
S-SVDD-ψ0 0.84 0.86 0.83 0.95
S-SVDD-ψ1 0.70 0.82 0.91 0.98
S-SVDD-ψ2 0.82 0.79 0.93 0.98
S-SVDD-ψ3 0.69 0.77 0.82 0.94
E-SVDD 0.83 0.85 0.58 0.92
OC-SVM 0.64 0.30 0.60 0.80

TABLE IV
VOLT PRIMARY

Target Class Normal Random Replay Zero
Linear
SVDD 0.84 0.78 0.72 1.00
S-SVDD-ψ0 0.84 0.79 0.97 0.95
S-SVDD-ψ1 0.84 0.79 0.99 0.95
S-SVDD-ψ2 0.84 0.78 0.98 0.95
S-SVDD-ψ3 0.84 0.79 0.99 0.95
E-SVDD 0.82 0.74 0.58 1.00
GE-SVDD 0.84 0.81 0.88 0.94
OC-SVM 0.41 0.39 0.45 0.53
GE-OC-SVM 0.82 0.85 0.93 0.96
Non-Linear
SVDD 0.84 0.80 0.81 1.00
S-SVDD-ψ0 0.84 0.84 0.94 1.00
S-SVDD-ψ1 0.84 0.79 0.94 0.97
S-SVDD-ψ2 0.98 0.78 0.96 0.96
S-SVDD-ψ3 0.84 0.77 0.84 1.00
E-SVDD 0.84 0.81 0.65 0.97
OC-SVM 0.22 0.49 0.72 0.72

The models used were able to generate a decision in
real-time when using a window of one second to generate

features. Tables I-IV show that most of the tested models
were able to achieve a Gmean score of at least 80%. The
best-performing model for each category is highlighted in
the tables. In all of our observed cases, the worst-performing
method was OC-SVM, which is one of the most widely used
one-class methods used in anomaly and intrusion detection
systems. These experiments show that the newer adaptations
of SVDD, S-SVDD especially, outperform OC-SVM when
detecting anomalies in our dataset.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a simple framework for an
anomaly detection system for CAN bus systems. For all
four CAN buses, the one-class methods, especially S-SVDD,
perform well in detecting cyber-security attacks on the CAN
bus. We’ve shown that these techniques are suitable for
anomaly detection systems on vehicular networks by virtue
of the performance of these one-class models.

There is still room for improvement in regard to the appli-
cation of these techniques for anomaly detection on vehicular
networks. The features used in training the models were
simple and trivial and may not have given a good description
of the data to optimally train the models. A possible avenue
for this discussion is the use of deep features or multimodal
data for data description [31]. Also, because of how the pro-
posed method extraction is structured, a predefined timeframe
is required, which dictates the amount of time that CAN
messages are collected before feature extraction. Depending
on the timeframe used, this could lead to vulnerabilities with
low-frequency attacks. This could potentially be solved by,
instead of using a timeframe, considering the traffic of CAN
data as a data stream.
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