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Abstract—The hand has excellent functional, aesthetic and
social importance. However, Parkinson’s disease, stroke, and
other myopathies can cause motor impairments. Patients require
a rehabilitation program to follow their progress, and one of
the tools used to do that is the electromyographic (EMG)
signals. This article proposes using algorithms to characterize
and classify EMG signals during force exercises for the wrist
and forearm. Eight healthy subjects participated in this study.
They performed seven exercises, making five trials for each
one. Signal features were analyzed in different time windows
using a genetic algorithm and machine learning techniques to
select the window that maximizes the classification. Combining
four electrodes, seven exercises, and 14 algorithms achieved a
classification accuracy of 92.41% using the Multilayer Perceptron
classifier. The study demonstrates a highly reliable method for
classifying forearm and wrist exercises based on EMG signals,
useful for exoskeletons or rehabilitation platforms. Future work
will focus on implementing EMG signals to enhance motor
rehabilitation therapy and provide findings that will help the
scientific community investigate the combination of EEG signals
for rehabilitation purposes.

Index Terms—Multiclass, electromyographic signals, force
tasks, wrist and forearm.

I. INTRODUCTION

The hand allows us to execute daily activities, communi-
cating and interacting with the environment. However, it can
suffer various structural, mobility and sensitivity impairments
due to trauma, disease or stroke. Hand motor recovery aims
to improve hand function and mobility, prevent secondary
complications, and favour the patient’s social and occupa-
tional integration. Treatment may include various modali-
ties, such as physiotherapy, occupational therapy, functional
electrical stimulation, orthoses, exoskeletons, botulinum toxin

and surgery, [1]–[3]. The use of EMG signals for measuring
and evaluating rehabilitation therapy has increased [4]. An
example that can be found in this type of therapy is the
control of the position of a computer cursor through EMG
signals, gradually rehabilitating the patient with support from
a physical therapist [5]. The type of signal acquisition device in
EMG is determinant since obtaining readings with an adequate
resolution for its application in rehabilitation is necessary,
[6]. The quality and resolution of the EMG signals can be
improved considering the type of electrodes, invasive (needle)
and noninvasive (surface), and the number of electrodes (high-
resolution and low-resolution). However, surface and low-
resolution electrodes are the most used due to the lower
cost and practical implementation at the expense of low
resolution. To tackle this, artificial intelligence algorithms are
applied. The challenge is to increase the number of tasks
commonly used for rehabilitation sessions and classify them
with high accuracy. Different approaches have been focused
on classifying EMG signals. Fang et al. used 16 electrodes and
a bio-inspired Neural Networks to classify six hand gestures
of wrist and forearm, obtaining 82% accuracy, [7]. Leone and
their collaborators used six electrodes and Non-Linear Logistic
Regression algorithm for seven classes for wrist and forearm,
reaching 98% of accuracy [8]

In this article, we propose using algorithms based on fractal
and typical statistical features to characterize the EMG signal
during different exercises performed with the wrist and fore-
arm and classify the movements according to their strength.
Applications of this processing could benefit rehabilitation
therapy from good classification, as sEMG signals can be used
as sensors in systems such as exoskeletons.
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II. METHODOLOGY

A. Subjects

Eight healthy, right-handed subjects, consisting of four
women and four men between the ages of 20 and 25, par-
ticipated in the experiment. They were asked to sleep at least
7 hours the night before the experiment and were suggested
to avoid consuming coffee, alcohol and drugs. The study
complied with the Declaration of Helsinki, [9]. All subjects
were provided information about the experiment and signed an
informed consent form. Subjects were seated in a comfortable
chair, and their right arm was wiped. Four superficial elec-
trodes were placed on the skin near the following muscles:
supinator, flexor carpi ulnaris, pronator teres, and extensor
carpi ulnaris as shown in Figure 1.

Fig. 1. Electrode placement used for the experiment.

B. Materiales

The electromyography (EMG) signal acquisition system
consisted of an electronic card manufactured in the laboratory
with a sampling frequency of 2000 Hz.

In addition, an experimental platform consisting of a desk-
top PC running Windows 10 64-bit, i7 processor, 16 GB RAM
and an Nvidia GTX 750ti GPU, together with a monitor and
speakers, was used.

Subsequently, the data obtained were processed through
Matlab R2020b and WEKA 3.8.5 software.

Fig. 2. Devices used in the experiment.

C. Task and procedure

Experiments were designed for 7 exercises: Abduction,
Adduction, Pronation, Supination, Flexion, Extension and Cir-
cumduction. Each consisted of 11 steps, of which 6 were rest
steps and 5 were test steps. The duration of each test step
was 10 seconds, while each test step was 5 seconds. During
rest, subjects were instructed to remain motionless and during
the test steps were instructed to perform a repetition of the
corresponding exercise. Each subject performed a total of 5
trials for each exercise. The sequence of the rest and test steps
can be seen in Figure 3.

Fig. 3. Timeline of the experiment showing where users started. R stands for
rest and T stands for test.

D. sEMG signal analysis

Once the raw sEMG signal was obtained from each subject,
the data analysis stages were carried out, which included signal
preprocessing, extraction of relevant features, and classifica-
tion of the signals. These stages are described below in Figure
4.

Fig. 4. Procedure: 1) Acquisition of raw sEMG signal: Measured with
sEMG-based medical equipment; 2) Windowing: Extraction of data recorded
during exercise (without rest); 3) Preprocessing: Filtering, normalization and
wavelets; 4) Feature extraction: 14 algorithms for feature extraction; and 5)
Classification: Selection of 10 classifiers in WEKA.

E. Pre-processing

An initial trimming of the intervals for each exercise was
performed. Each initial time window consisted of 10 seconds
of rest, followed by 5 seconds of exercise and then another
10 seconds of rest, resulting in 25-second windows, separating
the measurement of each exercise and rest. See Figure 3.

Measurements were grouped according to the type of
exercise, i.e., measurements of the same exercise for each
electrode, person and repetition were grouped in the same
class.
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It was considered that, the exact instant of start and end of
each exercise is unknown, which implies a tolerance of 1 sec-
ond that for a 2000Hz sampling would represent considerably
different results if not considered. To address this issue, it was
decided to perform the processing in different time windows
and compare the results according to the type of exercise to
find the most appropriate time window.

A total of 23 time windows were determined, resulting from
combinations of different time starts from 0.5 seconds before
to 0.5 seconds after, with 0.1 second intervals, and exercise
durations from 4.4 seconds to 6 seconds, with 0.2 second
intervals.

Each measurement was processed at these 23 time intervals.
First, a filter was applied and relevant features were amplified
to remove noise present in the signals. Then, the signals
were normalized to ensure a proper comparison between them.
Finally, a frequency domain analysis was performed using the
Wavelet transform. Details of the steps are given below:

1) Filtering: A sixth-order infinite impulse response (IIR)
filter was applied to remove noise from the signals.

2) Normalization: All sEMG signals were normalized and
rectified to ensure that the data were within a range
greater than 0 and comparable between subjects.

3) Wavelets: Multiresolution wavelet analysis was used to
obtain a time domain map and extract sEMG frequency
components using the following equation:

Wf (a, b) = ⟨f, ψa,b⟩ =
1√
a

∫ ∞

−∞
f(t)ψ

(
t− b

a

)
dt.

(1)
where a and b are dilation and translation parameters,
respectively, f(t) is the independent time variable. Four
multiresolution levels with four coefficients were calcu-
lated. These provided the decomposition of the EMG
signal at (20,150) Hz, although the ideal range is
(150,350) Hz [10]. The output was ω =Wf (a, b).

F. Feature extraction

At each trimmed time window, it was proposed to perform
the extraction of 14 features, of which 11 were provided by
Standard Algorithms and 3 by Fractal Algorithms.

1) Standard algorithms: These algorithms are based on
common statistical tools. The equation for each of them is
shown below, where ωi represents the partitioning of the EMG
signal.

1) Standard deviation (SD): Let L be the length of ω and
µ be the mean of the signal; then one obtains

σ =

√√√√ 1

L

L∑
i=1

(ωi − µ)2 (2)

for sample ωi at sampling time i.
2) Root Mean Square (RMS): Let L be the length of ω,

then

RMS =

√√√√ 1

L

L∑
i=1

(ωi)2 (3)

3) Coefficient of Variation (COV): This dimensionless
quantity defines the ratio of standard deviation to mean
of the signal, then

COV =
σ

µ
(4)

4) Variance (VAR): Let L be the length of ω and µ the
mean of the signal, then

V AR =
1

L

L∑
i=1

(ωi − µ)2 (5)

5) Mean Absolute Value (MAV): This quantifies the average
of the norm induced by L1, then

MAV =
1

L

L∑
i=1

|ωi| (6)

6) Modified Mean Absolute Value (MMAV): A w-weighted
extension of the MAV function:

MMAV =
1

L

L∑
i=1

wi |ωi| (7)

where wi = 1 if i = [0.25L, 0.75L] else wi = 0.5.
7) Modified Mean Absolute Value 2 (MMAV2): A useful

extension of MAV, given by:

MMAV 2 =
1

L

L∑
i=1

wi|ωi| (8)

where wi = 1 if i = [0.25L, 0.75L] else wi = 0.5 else
i < 0.25L then wi = 4i/L else if wi > 0.75L then
wi = 4(i− L)/L.

8) Variance of EMG (VAREMG): It measures the averaged
EMG spectral power, quantified by:

V AREMG =
1

L

L∑
i=1

(ωi)
2 (9)

9) Simple Square Integral (SSI): The EMG spectral power

SSI =

L∑
i=1

(ωi)
2 (10)

10) Integrated EMG (IEMG): is the sum of absolute values
of the amplitude of the EMG signal; its equation is as
follows:

IEMG =

N∑
i=1

|ωi| (11)

11) Enhanced Wavelength (EWL): A modification of wave-
length given by:

EWL =

L∑
i=2

|(ωi − ωi−1)|p (12)

where p = 0.75L if i = [0.2L, 0.8L] else p = 0.5.
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2) Fractal Algorithms: To complement the information
with features that indicate the dynamics and variability of the
data, fractal geometry analysis of the signals was employed
using the following techniques.

1) Hurst exponent (Hrs): Using the Reescaled Range (RS)
method, the mean Mi of subgroups Sgi of the to-
tal signal wi was calculated first, then the difference
Di = Li −Mi, i = 1, 2, · · · ,m is calculated and the

deviations Vi =
i∑

j=1

Gj , i = 1, 2, · · · ,m, for range

Ri:
Rn = max

i=1:m
(Vi)− min

i=1:m
(Vi) (13)

Finally, the range Rn was normalized by Sn (standard
deviation of Li) and calculated for each length subgroup
m, 〈

R

S

〉
m

=
1

d

d∑
n=1

Rn

Sn
≈ cmH (14)

where c is a positive constant and H stands for the
Hurst exponent, which can also be interpreted as the
persistence of the signal between 0 and 1, the closer to
1 the more persistent the signal is in this length of the
data m, [11].

2) Hurst Exponent with Variogram:

γ(h) =
1

2n(h)

n(h)∑
i=1

(Xt+h − xt)
2 (15)

The variogram Y(h) is a spatial adjustment or modeling
considered as an estimator of population variance and
structural analysis, where the population must have a
trend of stationarity and is used to describe the relation-
ship of paired observations separated by a distance h
and, in other cases, with a direction, [12].

3) Higuchi (HFD): This algorithm it used to calculate the
Higuchi Fractal Dimension (HFD) of a time series and
is used to analyze the complexity and irregularity of data
[13]. Where the length of Lm(k) is defined by:

Lm(k) =

⟨N−m
k ⟩∑

i=1

|XN (m+ ik)−XN (m+ (i− 1)k)|〈
N−m

k

〉
k2

N − 1
(16)

G. Classification

To develop an efficient Machine Learning model, it is
essential to have data diversity. This implies that the data of
the same class should be balanced and as different as possible
from another class [14].

In order to maximize the classification of exercises, the
results were regrouped by the type of algorithm applied, as
shown in Figure 5. Within each group, the windows with the
most different results between exercises were searched. To
calculate the separation of the data, the Manhattan Distance

was used, which is the sum of the absolute differences in the
coordinates between all the points.

Fig. 5. Feature table in different time windows.

Due to the large number of possible combinations that re-
quire a great amount of time and computational resources, the
implementation of the Genetic Algorithm was proposed. This
programming technique is oriented to the optimization of the
search for the best solution. The algorithm starts with an initial
random population of combinations, the population evolves
and improves according to the most suitable combination until
it converges to an optimal solution or close to the global
optimum [15].

Fig. 6. The results of multiple exercises are compared to find the greatest
possible separation.

With the most separate results found for each exercise and
algorithm, the most appropriate time windows for processing
each exercise performed by the subjects were obtained. A
complete reprocessing was performed using the individual
time windows obtained using the genetic algorithm.

Finally, a table was constructed with the results of the 14
algorithms, for all subjects, electrodes and repetitions. Each
column represented a type of algorithm and each row was
labeled with the corresponding exercise. This feature table was
used as input for the WEKA software during the classification
process.

H. Metrics

The objective is to evaluate the exercise classification per-
formance based on the features extracted from the EMG
signals. For this, it is necessary to identify the most appropriate
classifier by using measures that indicate the performance of
each one, thus allowing their comparison. Within the WEKA
software, 10 classifiers were selected covering a variety of
approaches and properties: NaiveBayes, Multilayer Percep-
tron, SMO, IBk, Hoeffding Tree, J48, LMT, Random Forest,
Random Tree and REP Tree.
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1) Correct Instances (CI): This metric represents the clas-
sifier’s accuracy by the percentage of correctly classified
instances. It is calculated by dividing the number of
correct predictions by the total number of predictions
and multiplying by 100. The higher this value, the higher
the classification accuracy.

2) Confusion Matrix: It is a table that shows the classifica-
tion performance in terms of prediction results for each
class. The number of classes determines the number of
rows and columns of the matrix, where correctly and
incorrectly classified instances are broken down for each
class. This allows for the identification of false positives,
false negatives, true positives, and true negatives.

III. RESULTS

The results obtained from the analysis performed with
WEKA software using ten different classifiers are presented
below. These results are grouped in different categories that
allowed us to evaluate the performance of each classifier
in different scenarios. The tables contain the classification
accuracy in percentage, as well as the average and standard
deviation.

TABLE I
RESULTS SEPARATED BY ELECTRODES (FIRST FIVE CLASSIFIERS, %)

Electrodes NB MP SMO IBk HT
E1 42.85 83.57 53.92 68.21 41.07
E2 42.5 86.07 60.35 70.35 44.64
E3 56.78 92.5 67.85 67.5 52.85
E4 46.78 90.35 50.71 63.92 33.92
SD 6.66 4.04 7.58 2.67 7.87
Average 47.23 88.12 58.21 67.50 43.12

TABLE II
RESULTS SEPARATED BY ELECTRODES (LAST 5 CLASSIFIERS, %)

Electrodes J48 LMT RF RT REP
E1 68.57 92.14 80.35 64.28 71.42
E2 67.85 85 79.28 62.85 63.57
E3 70 91.78 80.35 64.28 65.71
E4 70.71 90.35 79.28 58.92 60
SD 1.31 3.30 0.62 2.53 4.78
Average 69.28 89.82 79.82 62.58 65.18

TABLE III
RESULTS SEPARATED BY SUBJECTS (FIRST 5 CLASSIFIERS, %)

Subjects NB MP SMO IBk HT
S1 60 97.85 59.25 77.14 57.14
S2 57.14 94.28 68.57 72.85 53.57
S3 69.28 94.28 79.28 87.85 55
S4 46.42 88.57 67.14 80.71 45
S5 61.42 93.57 67.14 64.28 55
S6 71.42 95.71 76.42 75.71 50
S7 61.42 91.42 67.85 72.14 50
S8 67.14 97.85 74.28 76.42 64.14
SD 7.92 3.13 6.37 6.83 5.70
Average 61.78 94.19 69.99 75.89 53.73

TABLE IV
RESULTS SEPARATED BY SUBJECTS (LAST 5 CLASSIFIERS, %)

Subjects J48 LMT RF RT REP
S1 77.14 94.28 86.42 77.85 73.57
S2 72.14 94.28 79.28 58.57 59.28
S3 83.57 95 86.42 75.71 77.14
S4 73.57 88.57 77.85 70.71 74.28
S5 64.28 97.14 77.14 70 59.28
S6 73.57 97.14 86.42 68.57 71.42
S7 68.57 91.42 74.28 64.28 65
S8 77.85 95.71 82.14 72.14 75
SD 5.90 2.92 4.81 6.14 7.18
Average 73.84 94.19 81.24 69.73 69.37

TABLE V
CLASSIFICATION RESULTS FOR ALL ELECTRODES, SUBJECTS, AND

ALGORITHMS (FIRST 5 CLASSIFIERS, %)

NB MP SMO IBk HT
43.57 90.89 67.58 72.14 40.98

TABLE VI
CLASSIFICATION RESULTS FOR ALL ELECTRODES, SUBJECTS, AND

ALGORITHMS (LAST FIVE CLASSIFIERS, %)

J48 LMT RF RT REP
71.96 92.41 85.89 67.94 69.37

IV. DISCUSSION

This work aims to demonstrate a high classification level for
seven forearm and wrist exercises. To achieve this, MATLAB
was used during the processing of the EMG signals, which
consisted of filtering, cropping, normalization, and wavelets.
Fourteen features based on basic statistics and fractal infor-
mation were extracted to perform the exercise classification
with the WEKA software. The hypothesis is that the sampling
frequency of the data acquisition device at 2000Hz provides
a level of detail in the signals that is precise enough for
classification, as the optimal range for EMG is 150-350 Hz.
Finally, the results indicated that the classification remains
favorable in cases where data from a single individual or
electrode is used.

V. CONCLUSION

This study provides a highly reliable and robust exercise
classification method. The use of four channels while the sub-
ject performs seven exercises for eight subjects was proposed,
along with pre-processing (windowing, filtering, normaliza-
tion, and wavelet application), followed by the use of 14
different algorithms to extract features (SD, RMS, COV, VAR,
MAV, MMAV, MMAV2, VAREMG, SSI, IEMG, EWL, Hurst,
HurstVar, Higuchi), and then finding the most suitable time
instant of EMG signals to finally calculate the classification
in WEKA.

It is reported that the most suitable classifier is Multilayer
Perceptron, achieving an accuracy of 92.41% when combining
the 14 features using the four electrodes. Future work will fo-
cus on the implementation of EEG to investigate the subjects’
ability to think about movement without actually performing
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it, and to understand the signals obtained when some of the
7 exercises are performed with the EMG processing already
done.

The focus of future research based on this article will be on
the integration of EMG signals in motor rehabilitation therapy,
with the aim of strengthening treatments and improving patient
recovery.

Additionally, the proposed signal processing steps may
support the search for new findings that contribute to the
clinical field during the combination of EMG and EEG signals.
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