
Using Reinforcement Learning for Per-Instance
Algorithm Configuration on the TSP

1st Moritz Vinzent Seiler
Data Science: Statistics and Optimization

University of Münster
Münster, Germany

moritz.seiler@uni-muenster.de

2nd Jeroen Rook
Data Management and Biometrics

University of Twente
Enschede, Netherlands

j.g.rook@utwente.nl

3rd Jonathan Heins
Big Data Analytics in Transportation

TU Dresden
Dresden, Germany

jonathan.heins@tu-dresden.de

4th Oliver Ludger Preuß
Data Science: Statistics and Optimization

University of Münster
Münster, Germany

oliver.preuss@uni-muenster.de

5th Jakob Bossek
Chair for AI Methodology
RWTH Aachen University

Aachen, Germany
bossek@aim.rwth-aachen.de

6th Heike Trautmann
Data Science: Statistics and Optimization

Universities of Münster/Twente
Münster/Enschede, Germany/Netherlands

trautmann@wi.uni-muenster.de

Abstract—Automated Algorithm Configuration (AAC) usually
takes a global perspective: it identifies a parameter config-
uration for an (optimization) algorithm that maximizes a
performance metric over a set of instances. However, the optimal
choice of parameters strongly depends on the instance at
hand and should thus be calculated on a per-instance basis.
We explore the potential of Per-Instance Algorithm Configu-
ration (PIAC) by using Reinforcement Learning (RL). To this
end, we propose a novel PIAC approach that is based on deep
neural networks. We apply it to predict configurations for the
Lin–Kernighan heuristic (LKH) for the Traveling Salesperson
Problem (TSP) individually for every single instance.

To train our PIAC approach, we create a large set of 100 000
TSP instances with 2 000 nodes each — currently the largest
benchmark set to the best of our knowledge. We compare our
approach to the state-of-the-art AAC method Sequential Model-
based Algorithm Configuration (SMAC). The results show that
our PIAC approach outperforms this baseline on both the newly
created instance set and established instance sets.

Index Terms—Per-Instance Algorithm Configuration, Travel-
ing Salesperson Problem, Deep Reinforcement Learning

I. INTRODUCTION AND RELATED WORK

A Euclidean Traveling Salesperson Problem (TSP) in-
stance consists of a set of nodes/cities and pairwise distances
between these nodes. The optimization problem then is to
find the shortest route through all cities such that every city is
visited exactly once. The TSP is one of the classical NP-hard
combinatorial optimization problems and is highly relevant
in transportation logistics, circuit board design, and many
other disciplines. A plethora of algorithmic approaches have
been developed for the TSP. One can differentiate between
exact solvers that guarantee to find a globally optimal so-
lution, e.g. Concorde [1], Branch & Bound approaches [2],
or naive exhaustive enumeration, and inexact solvers, e.g.
Edge-Assembly-Crossover (EAX) [3] and the Lin–Kernighan
Heuristic (LKH) [4].

LKH defined the state-of-the-art in inexact TSP solving for
a long period of time. It employs a variable-depth approach

Fig. 1. Visualization of the World TSP Instance with 1 904 711 cities.
The best-known tour so far has length 7 515 755 956 and was found by
LKH (see https://www.math.uwaterloo.ca/tsp/world/ for more details). The
100 000 centroids for generating the instances are highlighted in orange
while all other cities are shown in blue. The generated instances may overlap
but differ in the local features. Please see Section II for more details.

to generate intricate local search moves by constructing a
sequence of edge exchanges based on heuristics. In 2015,
Dubois et al. [5] introduced an enhancement incorporating
restarts. More recently, EAX as an evolutionary algorithm
utilizing improved versions of both local and global variants
of the edge assembly crossover operator turned out to be
highly competitive, specifically in its restart variant.

The complementarity of both solvers and their restart
variants on well-known and commonly used benchmark data
sets such as Random Uniform Euclidean (RUE), clustered
instances (Netgen) [6], Morphed [6], TSPLib, National,
and VLSI, was shown in [7] and exploited for building
a high-performing per-instance Automated Algorithm Se-
lection (AAS, [8]) model to automatically decide on the
best-suited solver for a given TSP instance. This trained
selector significantly outperformed the Single Best Solver
EAX(+restart). For AAS model training numerical, resp.
tabular, features characterizing instance properties are com-
monly used stemming from the feature sets TSPMeta [9],
UBC [10] and Pihera [11], e.g. based on statistics of the

1

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 361

distance matrix or properties of minimum spanning trees or
k-nearest neighbor graphs.

While, commonly, AAS on TSP focuses on minimizing
computational runtime until the instance is solved to opti-
mality, Bossek et al. [12] also considered anytime behavior
of inexact TSP solvers based on the concept of empirical
runtime distributions. As the main outcome, the performance
ranking of solvers is heavily influenced by the specific
level of approximation quality that is prioritized. The best-
suited inexact TSP solver is highly dependent on the de-
sired approximation level with LKH and its variants being
highly competitive at the early and medium stages of the
optimization phase, giving rise to a huge potential for solver
hybridization and, in particular, algorithm configuration to
improve convergence to optimality.

Since TSP solvers, like LKH and EAX, have performance-
affecting parameters, multiple (potentially infinite) distinct
variants of each solver exist, with each variant considered as
a separate solver in the domain of AAS. Yet, in the context
of Automated Algorithm Configuration (AAC), these variants
are referred to as configurations. Therefore and orthogonal
to AAS, AAC aims to find the one static configuration
that yields the overall best average performance over all
instances it is expected to solve, efficiently. Styles and
Hoos [13] showed that applying AAC to LKH considerably
improved performance compared to LKH with the default
configuration on TSPLib as well as the potential for scaling
performance. Their analysis did not focus on the actual found
configurations, which prevents us from including them in
our analysis. More recently, Rasku et al. [14] conducted an
extensive empirical study on the effectiveness of different
AAC methods to configure solvers for the Vehicle Routing
Problem, a generalization of TSP. They showed that AAC
in the VRP domain yields significant improvements and
they recommended using Sequential Model-Based Algorithm
Configuration (SMAC) [15] in this domain.

Based on the successes of AAS and AAC, we bridge the
two domains by proposing two novel Per-Instance Algorithm
Configuration (PIAC) [16] approaches for LKH where both
approaches learn a model that determines the best config-
uration for every instance individually out of the infinitely
large pool of variants. The latter property prevents us from
using supervised learning. Instead, we utilize Reinforcement
Learning to accomplish this task. Other existing PIACs are,
to our knowledge, limited. Popular approaches [17], [18]
build a portfolio of complementary configurations which is
then deployed as an AAS framework. These portfolios are
usually limited to only a few configurations of the complete
configuration space and are therefore not considered as
complete PIAC approaches.

Both our PIAC approaches utilize deep learning, where
one is a Multi-Layer Perceptron (MLP), which relies on
numerical instance features, and the other approach is a
Transformer model that directly takes the Euclidean city
coordinates as input [19]. A detailed description of both
approaches and how they are fitted is given in Section III.

PC
 3

 (8
.3

%
)

PC
 4

 (5
.6

%
)

−20 −10 0 10 20 30
PC

 5
 (4

.1
%

)
Fig. 2. Distribution of the different instance classes in the feature space
represented by the first five PCs with the percentage of explained variance
given in brackets. The first two PCs cover a combined variance of 36.5%
while the first seven cover a large fraction of 54.5% of the variance in total.

Since training deep learning models requires large training
sets and most TSP benchmark sets are of limited size, we also
introduce a new diverse benchmark set in Section II, which
is based on subsets of the World TSP instance. In Section IV
we conduct an empirical study on the effectiveness of our
PIAC approaches and compare their performance against
static configurations. Finally, in Section VI, we discuss the
results and set directions for future work.

II. INSTANCE DATASET

One important premise for deep learning but especially
when used in combination with reinforcement learning is
having a large set of training- and validation data. Recent
papers on AAS or AAC for the TSP domain usually consid-
ered rather small instance sets — between several hundred to
a few thousand cities [7], [20], [21]. We found this to be far
too small for our research task and, therefore, opted for a
sophisticated approach to create a large and representative set
of TSP instances. Several works have proposed approaches
to generate diverse instances such as RUE, Netgen [6],
Morphed [6], and Evolved [22]. Evolved, for example, uses
an evolutionary algorithm that maximizes the performance
ratio of two competitive solvers while yielding feature-
diverse instances. Yet, we found that these generators are
either quite costly (e.g. Evolved) or not really diverse (e.g.
RUE or Netgen). Thus, we aimed for a different approach by
sampling from a large, complex TSP instance as a donator.

2362

To sub-sample a large instance into many smaller ones,
we first defined a set of m starting points and then sampled
for every starting point its k − 1 nearest cities. This would
result in m instances with k cities, each. However, there is a
chance (even if the donator instance is sufficiently large) that
the instances would overlap at their boundaries.To avoid these
overlapping instances being too similar, one can increase the
number of nearest cities (e.g. 2× k − 1) and then randomly
sample k cities. This way, instances would still overlap but
they would differ in the local structure. We aimed for m =
100 000 instances in total, giving us a large set of instances
for training (75 000) and validation (25 000). In addition, we
prefer larger instances of 2 000 cities to increase difficulty.
Example instances can be found in Figure 2.1

We took one of the largest available TSP instances as the
donator instance: the World TSP. It consists of 1 904 711
cities around the world, and the current best found optimal
tour has length 7 515 755 956 using LKH2. The coordinates
of the cities are given in degrees of longitude and latitude.
We used 100 000-means clustering algorithm in combination
with the haversine distance [23], the angular distance of
two points on a sphere, to evenly spread the centroids
around the TSP World instance. Afterward, the centroids
were used as starting points for the subsampling procedure.
To avoid overlapping, we considered the 4 999 closest points
of every starting point and uniformly at random sampled
k = 2000 cities from these 5 000 (the starting point plus
its 4 999 nearest neighbors), randomly. These 2 000 cities
were then merged into one new TSP instance. Further, we
mapped the cities into a Cartesian space with a size of
1 000 000× 1 000 000.

Next, we executed Concorde on every instance to find
the optimal tour with a cutoff time of one day. For 99 998
instances, Concorde returned the optimal tour within one day.
However for two instances, subset_world_29974.tsp
and subset_world_60919.tsp, Concorde was unable
to find an optimal tour even within an increased cutoff time
of seven days. Hence, we approximated the optimal tour
by executing EAX with default settings 100 times on both
instances and considering the respective best-found tour as
optimal.

We analyzed the generated instances from a qualitative and
quantitative standpoint. Visualizing the instances yields many
complex structures: e.g. uniformly distributed, grid-like dis-
tributed, and clusters of cities (see Figure 3). To quantify the
diversity captured by our instances, we compare their distri-
bution in feature space with instances used in previous stud-
ies, namely RUE, Netgen, Morphed, and Evolved instances.
To this end, using the R package salesperson [24] we
compute all TSPMeta [9] and Pihera [11] features as well as
most UBC [10] features (excluding the cost-intensive local
search probing features and branch & bound features as
these are not implemented in salesperson), for all of our

1Upon acceptance, we will publish the dataset for open use.
2See https://www.math.uwaterloo.ca/tsp/world/ for more information on

the World TSP instance.

instances and all other instances with a node size of 2 000.
These features are numeric values with supposedly describe
the characteristics of a TSP instance and are determined
for each TSP instance individually. Note that there are
approaches to normalize TSP instance features [21], [25]
with regard to the node and bounding box size which would
allow a comparison with different instances. However, many
features are still only available in their unnormalized ver-
sions until now. This results in potentially missing important
instance information. Consequently, we use unnormalized
versions of all features in this study. The instances of the
same group were found to be very similar with regard to
their normalized feature distribution disregarding the size in
both normalization studies. Thus, comparing our instances
in the unnormalized feature space with instances of the same
size is representative.

Assessing the distribution of instances regarding individual
dimensions of the complete feature space with the dashboard
provided in [21], we found that our instances exhibit di-
versity, capturing the main properties of all other instance
groups. To visually represent these findings, we performed
a Principal Component Analysis (PCA) with all instances
and depict the results in Figure 2. The distribution of our in-
stances across the most important principal components (PC)
covers those of all other instance groups. An exception to
this are a few Netgen and Morphed instances in PC 4 which
however accounts only for 5.4% of the total variance. This
shows that our instances are diverse, representative and
cover a larger area of the feature space than previous classes
of instances.

III. METHODOLOGY

LKH exhibits a large set of parameters that influence its
performance. In this setting, we define performance as the
computational runtime, measured in CPU time, to find the op-
timal tour. If LKH fails to find the optimal tour within a given
time limit (cutoff time), it will receive a penalty. We choose
the Penalized Quantile Runtime 10 (PQR10) score [26] to
measure the performance of LKH. The PQR10 score is
defined as the median runtime over multiple runs if more
than 50% of the runs were successful. Otherwise, the PQR10
score is 10-times the cutoff time. We choose the PQR10
score over the Penalized Average Runtime 10 (PAR10) score
as we found it to be more robust against timeouts, which
is supported by the results in [27]. Usually, ten solver runs
are considered as a standard to compute PQR10 and also
PAR10 scores. Yet, we found that during training it is often
more advantageous to execute less than ten runs and spend
the spared time on evaluating more configurations without
increasing the total number of LKH runs. Note that for
validation we always consider the PQR10 score with exactly
ten runs and seeds ∈ [1, 10] to yield comparable results.

In the following, we differentiate between Full-set Algo-
rithm Configuration and Per-instance Algorithm Configura-
tion. Thereafter, we will compare both approaches against

3363

Fig. 3. Selected examples of the generated instances. From left to right: similar to a RUE instance, RUE-like with grid-like structures, more structured
but without strong clusters and with strong clusters.

TABLE I
WE CONSIDERED THE FOLLOWING PARAMETER SPACE FOR LKH.

EXCESS IS A CONTINUOUS PARAMETER THAT LIES WITHIN 0 AND 1 AND
DEFAULTS TO 1

n
WITH n BEING THE NUMBER OF CITIES. YET, EXCESS

IS USUALLY VERY BENEFICIAL CLOSE TO 0. THE OTHER SEVEN
PARAMETERS ARE DISCRETE. NONSEQUENTIAL MOVE TYPE IS THE

ONLY CONSTRAINED PARAMETERS. IT MUST BE SET LARGER OR EQUAL
TO THE MOVE TYPE .

Parameter Specification Default

Excess]0, 1] 1
n

Gain23 {Yes, No} Yes

Max Candidates
{1, . . . , 10,

5
1 Symmetric, . . . , 10 Symmetric}

Move Type
{2, . . . , 5, 5

3 Special, 5 Special}

Nonsequential {Default, 4, . . . , 10} Move Type + Patching A
Move Type +Patching B − 1

Patching A
{1, 2,

11 Restricted, 2 Restricted,
1 Extended, 2 Extended}

Patching C
{0, . . . , 2,

00 Restricted, . . . , 2 Restricted,
0 Extended, . . . , 2 Extended}

Population Size {0, . . . , 10} 0

one another on the novel dataset as well as standard test sets
from the literature.

A. Full-set Algorithm Configuration

The parameter space Λ of LKH holds all possible param-
eter configurations λ, which is the Cartesian product over all
the individual parameters – described in Table I, excluding
possible constraints on different parameter combinations.
Given a set I of n instances with |I| = n the goal of full-set
AAC [28] is to find one optimal configuration λ∗ ∈ Λ that
minimizes the aggregated PQR10 score, i.e. formally

λ∗ = arg minλ∈Λ

1

n

∑
i∈I

PQR10 (LKHλ, i).

The notation PQR10 (LKHλ, i) means that the PQR10
score is measured over multiple runs of LKH with j random
seeds and configuration λ on instance i ∈ I . In this work, the
goal is to minimize the mean PQR10 score over all instances.
We use SMAC [15] as state-of-the-art in this domain to find
the best global configuration. SMAC alternates between two
phases; intensification and Bayesian optimization (BO).

During intensification, new configurations are iteratively
evaluated on instances and compared against the incumbent,

i.e. the best configuration at that time. A new configuration is
rejected when it yields a worse PQR10 score on the instances
it ran on than the incumbent. When the new configuration is
evaluated on all the same instances as the incumbent and
yields a lower PQR10 score, it becomes the new incumbent.

In the BO phase, promising new configurations are dis-
covered. Here, a surrogate model, fitted on the performed
evaluations during intensification, is used to predict the mean
PQR10 score of a configuration over all the instances. The
surrogate model uses tabular instance features as described in
Section II and a configuration as input. By using local- and
random search techniques, new configurations are discovered
and ranked based on their Expected Improvement (EI). To
favor exploration, this ranked list of configurations is inter-
leaved with randomly sampled configurations. For a more
detailed description of SMAC, we refer to [15].

B. Per-Instance Algorithm Configuration

Contrary to the full-set algorithm configuration, PIAC aims
to find an optimal policy π∗

θ ∈ Π with learnable weights θ
that outputs for every instance i ∈ I an optimal configuration
λ∗
i ∈ Λ, individually. Formally, one can define the policy as

πθ : I → Λ. Hence, the overall goal can be defined as finding

π∗
θ = arg minπθ∈Π

1

n

∑
i∈I

PQR10 (LKHπθ(i), i).

In our case, πθ is learned by a deep learning model.
Therefore, we train a policy model with learnable weights
θ that – in its ideal case – predicts π∗

θ : i → λ∗
i given any

instance i. Further, we consider two different scenarios: (1)
the policy model takes tabular TSP-features as input (same
features as for SMAC) (feature-based), and (2) the policy
model takes the raw instance as input (feature-free) (see
Figure 4). More on this will be discussed in Chapter III-B.

In total, we consider 1 140 480 possible different dis-
crete configurations, and one additional parameter, Excess,
which is continuous (see Table I). Therefore, it is impossible
to test every single feasible configuration on every instance
to create a reliable training dataset but instead, we rely on
reinforcement learning (see Figure 4). We tested different
strategies and we found that Proximal Policy Optimiza-
tion (PPO) [29] works best for our setting. We use the loss
function L as defined by the authors. In most reinforcement
settings, a roll-out or run consists of multiple time-steps. In

4364

GPU Node:

xor

TSP-Features

Raw Coords.

DL Model

Config:
Excess: 0.1973
GAIN23: YES
MOVE_TYPE: 4 SP.
POP_SIZE: 7

Worker:

Execute LKH
Compute

PQR10 Score

Repeat with j random seeds

Update model Use predicted config

Fig. 4. The reinforcement learning process with distributed workers.
First, the GPU node takes one training instance and predicts the “best”
configuration. Afterward, the configuration and instance are sent to one free
worker, where the instance is solved j times with j different seeds by LKH.
Last, the PQR10-score is computed to update the model. Note: the DL model
can be feature-free or feature-based.

our scenario, we do not have any time-steps as we consider
the optimization process of LKH as a single time-step. Hence,
we can simplify the loss function to

L(θ) = −1 ·min
(
r(θ) · Âi, clip (r(θ), 0.8, 1.2) · Âi

)
(1)

r(θ) =
πθ(λ

∗
i | i)

πold(λ∗
i | i)

. (2)

Here, r is the ratio between the current policy πθ and the
old policy πold. The clipping function prevents from moving
too quickly toward a promising policy. We used the default
clipping parameters (0.8 as lower and 1.2 as upper boundary)
as proposed in [29]. Next, Â is the advantage defined as

Âi = Bi −Rπi,i

where Rπi,i = PQR10 (LKHπθ(i), i) and Bi =
PQR10 (LKH, i) with the default configuration. In other
words, the advantage measures the absolute benefit of the
current policy πθ compared to the default configuration. πold
is the old policy that was used previously to determine
PQR10 (LKHπ(i), i). Note, that sampling a new configura-

tion from πθ and updating the parameters θ are two different
processes.

In most Actor-Critics-based [30] reinforcement learning
approaches, the baseline (usually referred to as V) is learned
and predicted by the model. In our scenario, however, Bi is
the PQR10 score of the default configuration on instance i
which is stable and does not need to be learned by the model.
Hence, we only consider an Actor in our setting.

IV. EXPERIMENTS

A. Experimental set-up for SMAC

For the full-set configuration, we performed 15 indepen-
dent, randomly seeded runs of SMAC3 [31], with each a
wall time budget of 24h and 8 parallel workers. We used the
AlgorithmConfigurationFacade in SMAC3, which
closely follows the described procedure in [15]. Only the
proportion of wall time budget for finding new configurations
was set to 30% instead of 50%. We uniformly at random

sampled 5 000 instances — which are 6.67% of all training
instances — without replacement from the training set to
reduce the computational load for predicting the PQR10 over
all instances in the BO phase of SMAC. The surrogate model
uses pre-computed tabular instance features to improve its
predictive performance. From the 15 resulting incumbent
configurations, we selected the configuration with the lowest
PQR10 score after evaluating them on all 5 000 instances.

In total, 6 906 different configurations were considered
and 150 202 times a configuration was evaluated. The final
incumbents were on average evaluated on 191 instances.

B. Experimental set-up for Reinforcement Learning

For the two per-instance configuration approaches (feature-
based and feature-free), we used 500 distributed workers
with a maximum wall time of 24h each (see Figure 4 for a
visualization of the distributed training process). The model
and its learnable weights θ are located on a single server
called the GPU Node. During training and also validation,
the GPU Node takes a random instance i from the training or
validation set and applies the model with the current policy
πθ to receive a configuration λ∗

i . The tuple (i, λ∗
i) is sent

to a free worker which then applies LKH with j random
seeds (j sampled from {1, . . . , 10}) and configuration λ∗

i on
instance i. The worker then may need up to 20 minutes to
determine Rπi,i — in the case of j = 10 and ten timeouts.
πold are stored at the GPU Node for later use. Afterwards,
the worker will send Rπi,i to the GPU node were the set
Bi := {i, πold, (Rπi,i)} is stored in a replay buffer. For
training, a batch is sampled from the replay buffer to update
the current policy πθ using the process described in Chapter
III-B.

We used a Multi-Layer Perceptron (MLP) with a ResNet-
like [32] structure for the feature-based model (see Figure 5,
a). The model receives all 167 standard TSP features (z-
standardized based on the training set) as input [9]–[11].
As 21 features contain missing values, we performed mean
imputation for these features and added 21 additional features
that indicate whether a missing value was imputed. In total,
the MLP model received 188 input features. Further, the MLP
model consists of twelve ResNet layers with 576 hidden
features. Two fully-connected layers with also 576 hidden
features are used as the model’s stem. Last, we used the
Gated Linear Unit (GLU) [33] as the activation function
throughout the model. As the GLU activation requires two
neurons per output feature, we doubled the number of hidden
neurons to 1 152 which is then reduced to 576 by the GLU
activation.

For the feature-free model, we used a Transformer-based
architecture very similar to [19] but with additional Feed-
Forward layers after the Multi-Head Attentions (see Figure 5
b). Further, we pre-trained the model on the training instances
by masking randomly some of the k-Nearest-Neighbor clus-
ters of the embedding layer. The pre-training helps the model
to pre-learn some important characteristics of TSP instances.

5365

x
L

in
ea

r
+

G
L

U

L
in

ea
r

+
G

L
U

L
ay

er
N

or
m

L
in

ea
r

+
G

L
U

L
in

ea
r

+
D

ro
po

ut

+

L
ay

er
N

or
m

L
in

ea
r

+
G

L
U Linear

Linear

Linear

Excess

Gain23

Move_Type

×9

a)

x

k
N

N
E

m
be

dd
in

g

L
in

ea
r

+
G

L
U

L
in

ea
r

+
G

L
U

L
ay

er
N

or
m

M
H

A

+

L
ay

er
N

or
m

L
in

ea
r

+
G

L
U

L
in

ea
r

+
D

ro
po

ut

+

A
vg

.P
oo

lin
g

L
ay

er
N

or
m

L
in

ea
r

+
G

L
U Linear

Linear

Linear

Excess

Gain23

Move_Type

×6

b)
Fig. 5. This Figure illustrates the two used deep learning topologies: a) shows the feature-based approach, that takes the numerical TSP-features as input,
with nine ResNet-blocks. b) is a feature-free approach, that only takes raw coordinates as input, with six Multi-head Attention and Feed-Forward blocks.

The last layer consists of multiple fully-connected layers
— one for every parameter. If the parameter is categorical,
the corresponding layer has one neuron per category and
a LogSoftmax as the activation function. The outputs are
the log probabilities which can be used directly in Equa-
tion (2) to compute the ratio. For continuous parameters,
the corresponding layer contains two output neurons with
Softplus activation — one for the alpha and one for the
beta of a Beta distribution as it is proposed in [34]. The
Beta distribution has two nice properties: 1) it is bounded to
[0, 1] and can, hence, be scaled to any other range with a
finite upper and lower bound, and 2) the probability function
of a beta distribution can have a variety of different shapes
— ranging from bathtub-like shapes to normal-like or log-
like shapes. The log probabilities for continuous parameters
are calculated as outlined in [34]. Further, we used linear
scaling of the search space with a lower bound of 1

10 000
and upper bound of 1 — exactly the same upper and lower
bound as it was used for SMAC. Yet, we did not log10-scale
the search space as we found that this decreases the training
performance of the deep learning models.

During training, the algorithm samples from the output
distributions. This guarantees the exploration of different
policies. However, during evaluation, the maximum of the
log probability for categorical parameters is used, and the
mean of the Beta-distribution for continuous parameters.
This ensures a deterministic behavior of the model during
validation.

Last, we used Adam with Weight Decay (AdamW) [35]
with a learning rate of 1e−4, a batch size of 64, and a replay
buffer size of 8 192 as it is commonly done. We found that
two LKH runs in the first epoch are sufficient to train the
model as the model predicts mostly random configurations.
Yet, when the model becomes more sophisticated in its
decisions, one has to increase the number of LKH runs to
perform more accurate updates. We found that training with
more than five runs does not yield any benefits. Therefore,
the sweat-spot between training speed and accurate updates
are j = 2 in the first epoch and j = 5 for all others.

V. RESULTS & DISCUSSION

Table II presents the mean PQR10 scores and timeout per-
centage of the default configuration, the static configuration
obtained with SMAC, and our two RL-based PIAC methods;
MLP (feature-based) and Transformers (feature-free). For

each dataset, all approaches are robustly ranked, i.e., ranked
with statistical guarantees [36]. The robust ranking works
as follows; For each instance set, multiple replicas (10 000)
are created using resampling. Over these resulting bootstrap
samples the average PQR10 scores are computed and the
approach which scored best in most of the bootstrap samples
is ranked first. Then, all approaches that are not significantly
worse (with α = 0.05) are also ranked first. The procedure
continues with the remaining approaches until all approaches
are assigned a rank.

For the feature-based PIAC approach (MLP), we provide
the results including feature costs. The costs reflect the time
that is required to compute the TSP-features for an instance at
hand. Note, that we do not include the runtime of the deep
learning models themselves. We found it to be impossible
in the current state to compare deep learning models that
are optimized to be executed on GPUs with the runtime
of LKH that is optimized to be executed on a single CPU
core. However, there is a lot of research into reducing and
simplifying trained deep learning models such that these
complex models can be efficiently executed on small devices
like mobile phones or even micro-controllers. Yet, we argue
that these topics are out of scope for this paper and leave
that for feature work.

In Table II it becomes evident that all used approaches
clearly improve the baseline performance of LKH with
default configuration. This demonstrates that there is a huge
potential for optimizing the LKH and making it more com-
petitive to other optimizers. Next, our Transformer outper-
forms or, at least, achieves compatible performance to the
other approaches in all categories. Interestingly, all AAC
and PIAC approaches as well as the default configuration
are statistically tied to one another for RUE instances. We
assume that different configurations have little impact on the
performance as the random-uniform nature of these instances
does not provide any structures that can be exploited by
different configurations.

On one hand, this is surprising as SMAC achieves state-
of-the-art performance in most AAC settings. On the other
hand, it is expected for PIAC approaches to (theoretically)
achieve better performance in comparison to set-based AAC
as PIAC approaches can select from the whole configuration
space while SMAC only outputs a single configuration for
the whole set. However, PIAC training is especially difficult
when the configuration space is large or even infinite.

6366

10−1 100 101 102 103

Default (PQR10)
10−1

100

101

102

103
SM

AC
 (P

QR
10

)

a)

10−1 100 101 102 103

Default (PQR10)
10−1

100

101

102

103

M
LP

 w
/ C

os
ts

 (P
QR

10
)

b)

10−1 100 101 102 103

Default (PQR10)
10−1

100

101

102

103

Tr
an

sf
or

m
er

s (
PQ

R1
0)

c)

10−1 100 101 102 103

SMAC (PQR10)
10−1

100

101

102

103

Tr
an

sf
or

m
er

s (
PQ

R1
0)

Netgen
Morphed
RUE
National
TSPLib
VLSI

d)
Fig. 6. Runtime comparison between different AAC approaches and the default LKH configuration (a-c). d) Runtime comparison between SMAC and
the transformer approach. The equilibrium line (dotted in orange) symbolizes an equal performance between the two approaches while instances above
(below) the equilibrium line indicate a better (worse) performance of the approach plotted on the x-axis the one on the y-axis.

TABLE II
RESULTS SO FAR. MEAN PQR10 FOR DIFFERENT INSTANCE GROUPS AND RELATIVE TIMEOUT (T/O) SCORES. AS T/O ARE COUNTED PQR10 SCORES

THAT ARE 1 200. THE ROBUST RANK IS SHOWN IN BRACKETS. IF TWO ALGORITHMS ARE IN THE SAME RANK, THEY ARE STATISTICALLY TIED.

Instance Set Default Config SMAC MLP w/ Costs Transformer
#Cities #Instances PQR10 T/o PQR10 T/o PQR10 T/o PQR10 T/o

Validation 2 000 25 000 342.51 (4) 27.1% 257.44 (2) 19.9% 287.76 (3) 22.1% 228.74 (1) 17.5%

Netgen 500 150 77.49 (3) 6.0% 5.32 (2) 0.0% 143.53 (4) 11.3% 3.37 (1) 0.0%
Netgen 1 000 150 180.25 (2) 14.0% 41.85 (1) 2.7% 139.80 (2) 10.7% 31.40 (1) 2.0%
Netgen 1 500 150 283.89 (3) 22.0% 140.67 (1) 10.0% 193.49 (2) 14.7% 134.68 (1) 10.0%
Netgen 2 000 150 464.04 (3) 36.7% 235.85 (1) 17.3% 311.84 (2) 24.0% 215.51 (1) 16.0%

Netgen (All) 600 251.42 (3) 19.7% 105.92 (1) 7.5% 197.17 (2) 15.2% 96.24 (1) 7.0%

Morphed 500 150 37.20 (3) 2.7% 19.09 (2) 1.3% 205.70 (4) 16.7% 2.55 (1) 0.0%
Morphed 1 000 150 151.11 (2) 11.3% 139.98 (2) 10.7% 147.25 (2) 11.3% 82.62 (1) 6.0%
Morphed 1 500 150 347.82 (3) 27.3% 213.47 (2) 16.0% 172.56 (1) 12.7% 163.58 (1) 12.0%
Morphed 2 000 150 481.36 (2) 38.0% 331.04 (1) 25.3% 290.03 (1) 22.0% 308.29 (1) 24.0%

Morphed (All) 600 254.37 (3) 19.8% 175.89 (2) 13.3% 203.89 (2) 15.7% 139.26 (1) 10.5%

RUE 500 150 9.13 (2) 0.7% 0.68 (1) 0.0% 0.99 (2) 0.0% 0.63 (1) 0.0%
RUE 1 000 150 86.25 (2) 6.7% 22.55 (1) 1.3% 48.12 (1) 3.3% 36.98 (1) 2.7%
RUE 1 500 150 156.48 (1) 12.0% 141.27 (1) 10.7% 161.56 (1) 12.0% 132.95 (1) 10.0%
RUE 2 000 150 339.52 (1) 26.7% 337.18 (1) 26.7% 343.10 (1) 26.7% 345.60 (1) 27.3%

RUE (All) 600 147.84 (1) 11.5% 125.42 (1) 9.7% 138.44 (1) 10.5% 129.04 (1) 10.0%

National 734-1 979 5 13.60 (2) 0.0% 6.17 (1) 0.0% 4.52 (1) 0.0% 8.85 (1) 0.0%
TSPLib 574-1 889 21 182.59 (3) 14.3% 66.44 (2) 4.8% 120.84 (2) 9.5% 62.80 (1) 4.8%
VLSI 662-1 973 17 216.35 (2) 17.6% 144.18 (2) 11.8% 214.27 (2) 17.6% 77.02 (1) 5.9%

Real World (All) 43 176.29 (3) 14.0% 90.16 (2) 7.0% 144.25 (2) 11.6% 62.15 (1) 4.7%

Test Set (All) 1843 216.91 (4) 16.9% 134.68 (2) 10.1% 179.00 (3) 13.7% 120.13 (1) 9.1%

Next, the MLP without including feature costs provides
comparable performance in most categories. However, when
including the feature costs in the runtime, the performance of
the same model becomes noticeably weaker — demonstrating
again the need to investigate the potential of feature-free AAS
and AAC also in other domains.

Last, we found that most of the performance gain is to
the reduced number of timeouts. This is especially true for
SMAC as the instances above and below the equilibrium
line in Figure 6 a) are similarly distributed. However, in
Figure 6 c-d) it becomes evident, that the PIAC approaches
not only decrease the number of timeouts but also predict
configurations that improve the runtime in comparison to the
default configuration and also SMAC as many instances are
below the equilibrium line.

VI. CONCLUSION & OUTLOOK

Our RL-based PIAC approaches have shown their ability
to improve the performance of LKH. Applying them to
other TSP solvers, such as EAX, would be an interesting

direction for future work. The same holds for applying our
approaches to other AI domains where AAC has an impact,
like SAT and MIP solving, in order to – ideally – advance
those fields further and to gain more insights into how RL-
based PIAC performance generalizes. One limitation of the
current implementation of our PIAC pipeline is that there is
a discrepancy between the hardware for the neural network
that infers the configuration (one GPU) and the LHK solver
(one CPU-core). Composing and evaluating a kindred PIAC
pipeline is possible, but requires a thorough analysis of how
the NNs should be efficiently transferred (using compilation,
pruning, and distillation), which we consider to be out of
scope for this paper. The value of the cutoff has a large
influence on the measured mean performance of solvers [12].
To overcome this, a multi-objective approach to configuration
can be explored where the expectancy to solve an instance
is set out against the actual running time.

Another contribution is the TSP World-based benchmark
set that we used to fit our policies. Besides making this
benchmark suite available to the community, we are also

7367

planning to provide an instance generator to produce arbitrar-
ily many different TSP instances that are measurably diverse,
but also of varying size. The latter is particularly of interest
when investigating how PIAC approaches are able to respond
to the scaling of instances.

To conclude, we created a novel and highly diverse dataset
for training and benchmarking TSP solvers. Further, we pro-
pose two novel deep reinforcement-based PIAC approaches,
feature- and feature-free, that can clearly outperform current
AAC approaches. The innovation of these approaches lies
especially within the fact that our proposed methods can
select from the full configuration space and are not limited
to a pre-defined set of configurations.

REFERENCES

[1] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The
Traveling Salesman Problem: A Computational Study, Princeton, NJ,
USA, 2007.

[2] R. Radharamanan and L. Choi, “A branch and bound algorithm
for the travelling salesman and the transportation routing problems,”
Computers & Industrial Engineering, vol. 11, no. 1, 1986.

[3] Y. Nagata and S. Kobayashi, “A Powerful Genetic Algorithm Using
Edge Assembly Crossover for the Traveling Salesman Problem,”
INFORMS Journal on Computing, vol. 25, no. 2, 2013.

[4] K. Helsgaun, “An effective implementation of the Lin–Kernighan trav-
eling salesman heuristic,” European Journal of Operational Research,
vol. 126, no. 1, 2000.

[5] J. Dubois-Lacoste, H. H. Hoos, and T. Stützle, “On the Empirical
Scaling Behaviour of State-of-the-art Local Search Algorithms for the
Euclidean TSP,” in Proc. of the Genetic and Evolutionary Computation
Conference, ser. GECCO’15, 2015.

[6] S. Meisel, C. Grimme, J. Bossek, M. Wölck, G. Rudolph, and H. Traut-
mann, “Evaluation of a multi-objective ea on benchmark instances for
dynamic routing of a vehicle,” in Proc. of the Genetic and Evolutionary
Computation Conference, ser. GECCO’15, 2015.

[7] P. Kerschke, L. Kotthoff, J. Bossek, H. H. Hoos, and H. Trautmann,
“Leveraging TSP Solver Complementarity through Machine Learning,”
Evolutionary Computation (ECJ), vol. 26, no. 4, 2018.

[8] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated
Algorithm Selection: Survey and Perspectives,” Evolutionary Compu-
tation (ECJ), vol. 27, no. 1, 2019.

[9] O. Mersmann, B. Bischl, J. Bossek, H. Trautmann, M. Wagner, and
F. Neumann, “Local Search and the Traveling Salesman Problem: A
Feature-Based Characterization of Problem Hardness,” in Proc. of the
6th International Conference on Learning and Intelligent Optimization
(LION), vol. 7219, January 2012.

[10] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm
Runtime Prediction: Methods & Evaluation,” Artificial Intelligence
Journal (AIJ), vol. 206, 2014.

[11] J. Pihera and N. Musliu, “Application of machine learning to algorithm
selection for TSP,” in 26th IEEE International Conference on Tools
with Artificial Intelligence, ICTAI 2014, 2014.

[12] J. Bossek, P. Kerschke, and H. Trautmann, “Anytime behavior of
inexact tsp solvers and perspectives for automated algorithm selection,”
in Proc. of the IEEE Congress on Evolutionary Computation (CEC),
Glasgow, UK, 2020.

[13] J. Styles and H. H. Hoos, “Using Racing to Automatically Configure
Algorithms for Scaling Performance,” in Learning and Intelligent
Optimization, G. Nicosia and P. Pardalos, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, vol. 7997.

[14] J. Rasku, N. Musliu, and T. Kärkkäinen, “On automatic algorithm
configuration of vehicle routing problem solvers,” Journal on Vehicle
Routing Algorithms, vol. 2, no. 1-4, Dec. 2019.

[15] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential Model-Based
Optimization for General Algorithm Configuration,” in Proc. of the
5th International Conference on Learning and Intelligent Optimization
(LION), 2011, vol. 6683.

[16] S. Adriaensen, A. Biedenkapp, G. Shala, N. Awad, T. Eimer, M. Lin-
dauer, and F. Hutter, “Automated Dynamic Algorithm Configuration,”
Journal of Artificial Intelligence Research, vol. 75, Dec. 2022.

[17] L. Xu, H. Hoos, and K. Leyton-Brown, “Hydra: Automatically Con-
figuring Algorithms for Portfolio-Based Selection,” Proc. of the AAAI
Conference on Artificial Intelligence, vol. 24, Jul. 2010.

[18] Y. Malitsky and M. Sellmann, “Instance-specific algorithm configura-
tion as a method for non-model-based portfolio generation,” in Proc.
of the 9th International Conference on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization
Problems, ser. CPAIOR’12, 2012.

[19] M. V. Seiler, R. P. Prager, P. Kerschke, and H. Trautmann, “A collec-
tion of deep learning-based feature-free approaches for characterizing
single-objective continuous fitness landscapes,” in Proc. of the Genetic
and Evolutionary Computation Conference, ser. GECCO’22, 2022.

[20] M. Seiler, J. Pohl, J. Bossek, P. Kerschke, and H. Trautmann, “Deep
learning as a competitive feature-free approach for automated algo-
rithm selection on the traveling salesperson problem,” in International
Conference on Parallel Problem Solving from Nature. Springer, 2020.

[21] J. Heins, J. Bossek, J. Pohl, M. Seiler, H. Trautmann, and P. Kerschke,
“A study on the effects of normalized tsp features for automated
algorithm selection,” Theoretical Computer Science, vol. 940, 2023.

[22] J. Bossek and H. Trautmann, “Evolving Instances for Maximizing
Performance Differences of State-of-the-Art Inexact TSP Solvers,” in
Proc. of the 10th International Conference on Learning and Intelligent
Optimization (LION), vol. 10079 LNCS, Ischia, Italy, 2016.

[23] R. Sinott, “Virtues of the haversine,” Sky and Telescope, vol. 68, 1984.
[24] J. Bossek, salesperson: Computation of Instance Features and R

Interface to the State-of-the-Art Exact and Inexact Solvers for the
Traveling Salesperson Problem, 2017, R package version 1.0.0.

[25] J. Heins, J. Bossek, J. Pohl, M. Seiler, H. Trautmann, and P. Kerschke,
“On the potential of normalized tsp features for automated algorithm
selection,” in Proc. of the 16th ACM/SIGEVO Conference on Founda-
tions of Genetic Algorithms (FOGA XVI), 2021.

[26] P. Kerschke, J. Bossek, and H. Trautmann, “Parameterization of state-
of-the-art performance indicators: A robustness study based on inexact
TSP solvers,” in Proc. of the Genetic and Evolutionary Computation
Conference Companion, Jul. 2018.

[27] J. Bossek and H. Trautmann, “Multi-Objective Performance Mea-
surement: Alternatives to PAR10 and Expected Running Time,” in
Proc. of the 12th International Conference on Learning and Intelligent
Optimization (LION), vol. 11353, Kalamata, Greece, 2019.

[28] H. H. Hoos, “Automated algorithm configuration and parameter tun-
ing,” in Autonomous Search, 2012.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[30] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE
transactions on systems, man, and cybernetics, no. 5, 1983.

[31] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, and
D. Deng, “SMAC3: A Versatile Bayesian Optimization Package for
Hyperparameter Optimization,” Journal of Machine Learning Re-
search, vol. 23, 2022.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE conference on computer vision and
pattern recognition, 2016.

[33] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling
with gated convolutional networks,” in International conference on
machine learning. PMLR, 2017.

[34] I. G. Petrazzini and E. A. Antonelo, “Proximal policy optimization
with continuous bounded action space via the beta distribution,” in
2021 IEEE Symposium Series on Computational Intelligence (SSCI).
IEEE, 2021.

[35] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[36] C. Fawcett, M. Vallati, H. H. Hoos, and A. E. Gerevini, “Competitions
in AI – Robustly Ranking Solvers Using Statistical Resampling,” Aug.
2023.

8368

