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Abstract—Mathematical models are used to represent a vast
array of complex processes in engineering, physics, biology,
social science, and economics. Model parameters with signifi-
cant impacts on identification outcomes are ascertained through
parametric sensitivity analysis. Authors previously considered an
approximation models for systems with uncertain dynamics using
a dynamic neural network. The results obtained from studying
the problem of predicting the response variable, indicated that
this model has a structural flaw. This flaw manifests as an
insensitivity of the weight coefficients to external influences,
leading to inaccurate predictions. This insensitivity is marked
by the minimal contribution of weight coefficient components
in the identification process. This paper discusses modifying
learning laws to enhance the sensitivity of the weight coefficients
to external signals. Through Lyapunov stability analysis, stable
algorithms for weight component evolution that minimize iden-
tification error were derived.

Index Terms—Neural Networks, Differential Neural Networks,
Non-parametric Identifiers, Guaranteed Sensitivity.

I. INTRODUCTION

Over the past decades, control theory has undergone sig-
nificant evolution through the incorporation of system iden-
tification methodologies. One such identification method is
the application of differential neural networks (DNNs). DNNs
have shown considerable potential in approximating trajecto-
ries inherent in dynamical systems with uncertain mathemat-
ical models [1]. Despite their ability to blend existing data,
typical differential neural networks show limited capacity for
extrapolation beyond their training range. A persistent issue is
their observed insensitivity to input after identification.

Parameter sensitivity is essential when building a mathe-
matical model, even based on DNN. Modern mathematical
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models approximate complex and intricate engineering, phys-
ical, biological, social, and economic processes. Therefore,
by highlighting the parameters that make the most significant
contribution to the approximation process, or conversely, by
highlighting those parameters that practically do not affect
the identification quality, it is possible to reduce the system’s
dimensionality, which will positively affect the computational
power of the model.

Analyzing sensitivity within the realm of control theory
provides valuable perspectives on how the input impact the
overall approximation performance of the system [2], [3].
Crucial elements of this analysis are sensitivity derivatives,
also known as sensitivity functions. The computations of these
derivatives in state-space models have been explored and
presented in several studies [4], [5].

The book [6] states the necessity of carrying out identifi-
cation experiments under output feedback or in closed-loop
situations. It clarifies the logic behind prerequisites, such as
system instability or continuous supervision necessities for
safety, productivity, or economic reasons. It also provides a
profound understanding of complex problems related to the
closed-loop operation of the nonlinear system approximated
by DNN.

Various system parameter sensitivity analysis approaches,
from statistical to differential, are considered in [7]. Var-
ious optimizations for calculating parameter sensitivity to
accelerate models that require high computational power are
discussed in [8]. In recent research, sensitivity analysis has
been widely broadened to encompass optimal control issues
using the approximated model based on DNN [9]–[11].

The primary focus of this study is the relative sensitivity of
DNN components. This research introduces a new architecture
for a non-parametric adaptive approximation model based on
DNNs, suitable for systems with uncertain dynamics. The
approximation model combines the dynamics of the DNN
and the projector of the system’s weight coefficients, using
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an extended form of weights [12]. Implementation of the non-
differentiable projection operator ensures guaranteed sensitiv-
ity of the model’s weight coefficients to external influences.
The learning laws for tuning the weights of the continuous
projection DNN were developed using a controlled function,
similar to the Lyapunov function [13]. Using the Attractive
Ellipsoid Method (AEM) [14] allows us to analyze the con-
vergence quality of the developed approximation model.

The influence of uncertainty on the performance of dy-
namic systems has attracted much attention over the past few
decades. Robust control, which means control that remains
stable amidst external disturbances, offers a practical and
systematic method to design control systems affected by
uncertainties. However, it still necessitates an approximate
representation of the system.

The aforementioned AEM [14], [15] initially developed for
nonlinear systems and subsequently adapted for linear ones,
employs asymptotically attracting (invariant) ellipsoids. The
main goal of this method is to define robust control and
the corresponding attracting ellipsoid such that the system’s
trajectories converge within a small neighborhood of zero.
Applying AEM to linear systems with constant bounded
disturbances is considered in [16].

The main contributions of this study include:
• New learning laws keeping weight inside or outside

predefined ellipsoids are derived, and a theorem on the
practical stability of the identification error is formulated
and proven considering the secured sensitiveness of the
identifier response to the external input.

• The implementation of these learning laws demonstrated
the feasibility of maintaining desired sensitivity in the
vestibulo-ocular reflex data when using controlled mo-
tions as inputs.

The text of the work is organized as follows. Section II
describes the results obtained during the preceding research.
In section III-A, the concept of relative sensitivity and the
ideological approach to its implementation are introduced.
In section III-B, the main results of the present work are
given. Section IV describes the method of obtaining data on
which numerical testing of the built identifier was performed.
Conclusions and final remarks are given in sections V and VI.

II. DIFFERENTIAL NEURAL NETWORK WITH SECURE
SENSITIVITY TO EXTERNAL INFLUENCES

The system with uncertain dynamics was considered, rep-
resented by the following differential equation:

d

dt
x = f(x(t), u(t)) + η(t). (1)

The state of system (1) x = x(t) ∈ Rn is a function of
time. The vector-function f : Rn × Rm → Rn describes
uncertain dynamics, is Lipschitz with respect to the first
argument with a positive constant Lf > 0, and continuously
and linearly depends on the vector-function of external in-
fluences u = u(t) ∈ Rm. The vector-function of external
influences u(t) is integrable over the entire time interval of

the system’s consideration and ∥u∥2 ≤ u+, u+ > 0. The
permissible class of disturbances, represented by the vector-
function η = η(t) ∈ Rn, belongs to the following set Σ

Σ =
{
η | ∥η∥2 ≤ η0 > 0

}
. (2)

Such a class of disturbances is permissible, considering the
origin of signals influencing the dynamics of the visual-
orientation reflex.

The identifier corresponding to this system is:

d

dt
x̂(t) = Ax̂+W1(t)σ1(x̂(t)) +W2(t)σ2(x̂(t))u,

x̂(0) = x̂0 ∈ Rn. (3)

Here: x̂(t) ∈ Rn – identifier state; A ∈ Rn×n – Hurwitz
matrix, responsible for the linear part of the identifier’s dy-
namics; W1(t) ∈ Rn×p and W2(t) ∈ Rn×p – weight matrices;
σ1 : Rn → Rp, σ2 : Rn → Rp×m – activation function
matrices.

Numerical testing was carried out on data obtained as a
result of experiments on a platform with four degrees of
freedom, where a virtual reality helmet was attached to the
test subject, from which data on gaze direction and head tilt
angles were read. The rotation angles of the eyes around
the vertical axis, as well as the angular velocities obtained
by numerical differentiation, were used as the state vector.
The head angular velocities, which were also obtained by
numerically differentiating angles taken from the sensors on
the virtual reality helmet, served as the external influence u.

III. BUILDING AN IDENTIFIER WITH GUARANTEED
SENSITIVITY TO EXTERNAL INFLUENCES

A. Relative Sensitivity

Let’s consider a similar system with uncertain dynamics (1)
with similar assumptions and limitations. The corresponding
model of the non-parametric identifier is:

d

dt
x = Ax+W ∗

1 σ1(x) +W ∗
2 σ2(x)u+ f̃e(x(t), t) + η(t),

x(0) = x0 ∈ Rn. (4)

Here: x ∈ Rn – identifier state; A ∈ Rn×n – a Hurwitz
matrix, responsible for the linear portion of the identifier’s
dynamics; W ∗

1 ∈ Rn×p and W ∗
2 ∈ Rn×p – weight matrices;

σ1 : Rn → Rp, σ2 : Rn → Rp×m – activation function
matrices; the parameter p is chosen freely; f̃e = f̃e(x(t), t) :
Rn ×R → Rn – represents the approximation error produced
by a finite number of activation functions in the identifier.
It can be assumed that the modeling error belongs to the
following set Ω:

Ω =
{
f̃e | ∥f̃e∥2 ≤ f̃0 > 0

}
. (5)

The activation functions σ1(x̂) and σ2(x̂) should be sig-
moidals satisfying Cybenko’s Universal Approximation Theo-
rem described in [17].

Considering the approximate dynamic model (4), the corre-
sponding identifier structure would be similar to described in
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(3) (here and below we use the notations x̂ = x̂(t), W1 =
W1(t), W2 = W2(t), assuming that the state and weights
implicitly depend on time).

We would like to be sure that the term W2σ2(x̂) will react
more to the external influence u, and also take into account
that the inner layer W1σ1(x̂) participates in how the state of
the identifier x̂ follows the real trajectory of the system (1) x.

Definition 1: Given a continuously differentiable function
y = h(z, θ), which constantly depends on the parameter θ.
Then the relative sensitivity of y with respect to θ can be
calculated:

Sy,θ =
∂y

∂θ

Let’s calculate the relative sensitivity of the norm of identi-
fication error time derivative in relation to the activation func-
tion outputs to estimate the contribution of each component:

S∆̇,Hi
=

∂∥∆̇∥
∂Hi

=
1

2∥∆̇∥

(
∂∆̇

∂Hi

)

=
1

2∥∆̇∥

(
∂(ẋ− ˙̂x)

∂Hi

)
=

1

2∥∆̇∥

(
− ∂ ˙̂x

∂Hi

)
. (6)

Here:
• ∆ = ∆(t) = x− x̂;
• H1 = H1(σ1(x̂)); H2 = H2(σ2(x̂)u);
• Hi(v) =

[
v v . . . v

]⊤ ∈ Rn×n·p; i = {1, 2}.
For convenience of derivative calculation in (6), let’s rewrite

the initial form of the identifier.

˙̂x =
d

dt
x̂ = Ax̂+H1(σ1(x̂))W1,v +H2(σ2(x̂)u)W2,v, (7)

where Wi,v = vec {Wi}. In (7), indices at H1 and H2 have a
purely cosmetic nature to distinguish components further.

We also add a regularization term L∆ for better identi-
fication error compensation during training. Such L should
be selected as Hurwitz matrix. Notice that even with this
correction term, the identifier will keep its serial configuration.

Thus, we have:
d

dt
x̂ = Ax̂+H1(σ1(x̂))W1,v +H2(σ2(x̂)u)W2,v +L∆. (8)

In terms of sensitivity indices (6), the desired result can be
formulated as follows:∥∥∥S∆̇,H2

∥∥∥≫
∥∥∥S∆̇,H1

∥∥∥ , (9)

or equivalently ∥∥∥S∆̇,H1

∥∥∥∥∥∥S∆̇,H2

∥∥∥ ≤ β. (10)

The relations given by (9) and (10) offer valuable insight
into the prevailing notion that external factors have a signifi-
cant impact on the weighting coefficients, profoundly influenc-
ing the entire identification process. Essentially, the sensitivity
of the identification error is expected to be considerably higher

Fig. 1. Illustration of the elliptical constraints concept

concerning the second component of the weighting coefficients
due to its susceptibility to external influences. By substituting
the values from (6) into (10), we get:

∥∥∥S∆̇,H1

∥∥∥∥∥∥S∆̇,H2

∥∥∥ =

∥∥∥∥∥ 1

2∥∆̇∥

(
− ∂ ˙̂x

∂H1

)∥∥∥∥∥∥∥∥∥∥ 1

2∥∆̇∥

(
− ∂ ˙̂x

∂H2

)∥∥∥∥∥
=

1

2∥∆̇∥

∥∥∥∥∥ ∂ ˙̂x

∂H1

∥∥∥∥∥
1

2∥∆̇∥

∥∥∥∥∥ ∂ ˙̂x

∂H2

∥∥∥∥∥
=

∥∥∥∥∥ ∂ ˙̂x

∂H1

∥∥∥∥∥∥∥∥∥∥ ∂ ˙̂x

∂H2

∥∥∥∥∥
=

∥W1,v∥
∥W2,v∥

≤ β

(11)

To achieve the required sensitivity, we can constrain the
norms of the weights to specific values. Specifically, W2,v

should have a lower boundary, ensuring that small variations
in H2 result in significant variations of x̂. In a similar vein,
W1,v should have an upper boundary.

The idea of sensitivity indices and elliptical constraints can
be described as follows. Consider a vector space of dimension
np, where each coordinate corresponds to an element of
vectorized weight matrices. Then, the task of achieving the
ratio (10) reduces to the limitation of weight norms with the
help of two ellipsoids (Fig. 1), set by the matrices of quadratic
forms PE , PI ∈ Rnp×np for the external and internal ellipsoids
respectively.

B. Learning laws with predefined sensitivity

One way to represent the proposed constraints in new
learning laws, in order to enforce the desired sensitivity ratio,
will be to introduce a certain multiplier, which will account
for constraints in the evolution of weights dynamics.
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We have the identifier of the following form:

d

dt
x̂ = Ax̂+H1(σ1(x̂))W1,v +H2(σ(x̂)u)W2,v +L∆. (12)

Let us introduce learning laws in the following way:

d

dt
W1,v(t) =

1

2γ1(t)
W̃1,v

d

dt
γ1(t) +

1

k1γ1(t)
H1(σ1(x̂))

⊤P∆,

d

dt
W2,v(t) =

1

2γ2(t)
W̃2,v

d

dt
γ2(t) +

1

k2γ2(t)
H2(σ2(x̂)u)

⊤P∆.

(13)

W1,v(0) = W 0
1,v, W2,v(0) = W 0

2,v,

where k1 ∈ R+ and k2 ∈ R+ are two positive numbers
regulating the evolution of the weights; W̃j,v = W ∗

j,v −Wj,v ,
j = 1, 2; the functions γ1(t) and γ2(t) represent distances to
corresponding constraints (and therefore γ1, γ2 > 0):

γ1(t) = d1(1−∥W1,v∥2PI
), γ2(t) = d2(∥W2,v∥2PE

− 1). (14)

Here d1 and d2 should be continuous and differentiable with
respect to time; P ∈ Rn×n is a quadratic form of an attracting
ellipsoid, being the solution to the Riccati matrix inequality
[18]:

P (A+ L) + (A+ L)⊤P + PRP +Q < 0. (15)

The matrix Q ∈ Rn×n is positive definite, and R ∈ Rn×n

can be positive semi-definite. The properties that justify the
positive definite and bounded of the class of Riccati equations
in (15) have been discussed before in [1], which is a necessary
condition for the convergence of the learning laws of the
identifier. PI ∈ Rnp×np and PE ∈ Rnp×np are quadratic forms
of ellipsoids: inner and outer respectively.

The learning laws can be derived from stability analysis (in
the Lyapunov sense) of the identification error ∆. The appli-
cation of Lyapunov stability analysis confirms the existence
of an upper bound for the identification error [1] [19]. The
proposed Lyapunov candidate function uses a quadratic form,
depending on the identification error, time, and weights that
describe the identifier’s dynamics. These weights should be
calibrated in such a way that the identification error is bounded
eventually. The existence of such a boundary is described by
the following theorem.

Theorem 1: Consider a class of nonlinear systems with
uncertain dynamics (1), subjected to external disturbances
from the set (2). Assume that there exists an identifier model
(4) with bounded modeling error, determined by the set (5).
Suppose all the above assumptions are true. Then, if there
exists a positive definite matrix P = P⊤, P > 0, which
is a solution for the matrix inequality (15), the application
of the learning laws (13) leads to practical stability of the
identification error ∆ within a sphere centered at the origin:

lim sup
T→∞

{
sup

η∈Σ,;f̃e∈Ω

∥∆(T )∥2P

}
≤ λmax(Λ)(f0 + η0), (16)

Learning laws

Prediction

Fixing weights
state

Fig. 2. Identification (upper part) and prediction (lower part) workflows.

where Λ is positive definite matrix.
The identifier algorithm with new learning laws with guar-

anteed sensitivity to external disturbances is illustrated in
Fig. 2. As a rule, it can be divided into two parts: the training
cycle and the prediction process. The training cycle consists of
several subsections: the extraction of identifiable signals (black
rounded rectangle), learning laws (13) (blue solid rounded
rectangle), and calculation of an estimated approximation of
the target signal using (8) (red dashed rounded rectangle). The
prediction process uses fixed weight coefficients derived from
learning laws in the training cycle (blue zigzagged rounded
rectangle) passed into the estimation equation (yellow cross-
hatched rounded rectangle), the integration of which gives the
resulting predicted signal. External influences are denoted by
solid purple circles.

IV. EXPERIMENTAL RESULTS

Numerical experiments were conducted on data obtained
from tests on a platform with four degrees of freedom (Fig. 3).

During the trials, 18 cycles of rotations around the vertical
axis were performed with an amplitude of up to 25◦ (Fig.
4). The data was collected using an HTC Vive Pro Eye
virtual reality headset. The headset’s position and orientation
were obtained through the SteamVR tracking system. The
SRanipal software collected data provided by the built-in eye-
tracking system, outputting gaze origin and direction vectors
for each eye at a maximum frequency of 120 Hz. The resulting
eye movements and head dynamics were recorded and later
processed for modeling using the proposed identifier.

The experiment was conducted as follows. First, the subject
would put on the headset and adjust the straps so that the
headset was firmly fixed on the head throughout the exper-
iment. Then the eye tracker was calibrated in accordance
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Fig. 3. Experimental platform

Fig. 4. Example of post-processed head angular velocities

with the SRanipal documentation and recommendations. After
the calibration procedure was completed, any adjustments to
the headset by the subject resulted in the experiment being
repeated in accordance with the SRanipal recommendations.
The subject was then seated directly on the dynamic platform.

The angular velocities of the subject’s head, obtained by
numerically differentiating the angles recorded by the tracker,
were used as external disturbances. The deviation angle of the
pupil from the frontal horizontal axis of rotation was used
as the state of the system to be identified. The presented
block diagram (Fig. 2) was implemented using the Python
programming language. Two simulations were conducted with
two types of data: integration over the entire period with a
step of 0.001 and integration only over a portion of the data
with the same step, using the remainder for prediction. The
identification results over the entire time span using post-
processed data are presented in section IV-A. The prediction
results on the same data can be found in section IV-B. The
post-processing consisted of passing the data through a direct
Fast Fourier Transform (FFT), removing frequencies above the
0.99 threshold, and returning to the original space through the
inverse FFT. Such processing was applied to both external
disturbances (Fig. 4) and pupil deviation angles to neutralize
the effect of high-frequency saccades [20] and improve the

operation of the identifier. As activation functions, sigmoidal
functions were used.

Fig. 5. The dynamics of weight’s Frobenius norm

Fig. 6. Identification result of the left eye’s yaw using post-processed data
and whole dataset

A. Numerical results
The Fig. 6 shows the identification results when trained over

the entire time interval. The graph shows the motion of a yaw
angle of the left eye.

In Fig. 5, the dynamics of the Frobenius norm of the weight
coefficients can be observed. It can be noticed that the norm of
W2 is always greater than the norm of W1, indicating higher
sensitivity to external influences and, consequently, a larger
contribution of the second weight matrix.

B. Forecasting results
The prediction was made by fixing the weight coefficients

W1 and W2 and removing regularization term L∆ from the
dynamics (12). Fig. 7 shows the identification result when all
weight coefficients was fixed at the same time t = 9. Given
that the identifier is unaware of past system states, it can only
generate predictions for a short time span in the future. That
said, the precision of these predictions is somewhat enhanced
by the elimination of high frequencies.
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Fig. 7. Identification result of the left eye yaw (in radians) using part of the
post-processed dataset in [0, 9] time span

V. GENERAL DISCUSSION

This paper introduces sensitivity in the form of weight
boundaries. They are defined inside the learning laws in order
to manage the importance of different terms of the DNN-
based model. Encapsulating the two weight matrices within
ellipsoidal bounds ensures that the selected matrix doesn’t
become negligible. In this study, constraints were added to the
control-associated term. However, the approach can be adapted
to other setups and term priorities. Similarly, systems with
three or more learned terms may use different combinations
of restrictions depending on whether lower or upper boundary
is more important.

Ideally, system sensitivity should factor in the product
W1σ1(x̂) and W2σ2(x̂). Otherwise, the outputs of activation
functions may overwhelm the bounded weights in calculations,
reintroducing insensitivity into the system. This can be espe-
cially problematic if their output varies by orders of magnitude
in different parts of the process; for instance, if activation
functions output values close to 0 in the initial stages and
values near 1 in the later stages. While this isn’t critical in
our periodic control setup, in some cases, it could necessitate
different sensitivity considerations.

VI. CONCLUSION

In this work, new learning laws with predefined sensitivity
to external disturbances for a nonparametric identifier based on
a dynamic neural network were proposed. The identifier was
used to track the vestibulo-ocular reflex during eye movement.
However, the model considered does not claim to reproduce
the reflex with physiological accuracy due to insufficient
nonlinearity generated by the selected sigmoidal activation

functions. However, the introduction of predefined sensitivity
into the learning laws of the DNN shows that the model can
track the general trend of systems with uncertain dynamics.
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