
Federated Self-Supervised Learning
for Intrusion Detection

Bruno H. Meyer1, Aurora T.R. Pozo1, Michele Nogueira2, WagnerM. Nunan Zola1
1Department of Informatics,Federal University of Paraná, Brazil

2Department of Computer Science,Federal University of Minas Gerais, Brazil
email: {bruno, aurora, wagner}@inf.ufpr.br, michele@dcc.ufmg.br

Abstract—Deep learning and federated learning show signif-
icant success in cybersecurity for Intrusion Detection Systems
(IDS). This paper presents the Federated Self-Supervised Learn-
ing (FSSL) framework proposed for IDSs. FSSL combines Self-
Supervised Learning (SSL) with federated learning to obtain a
global model. SSL works at the client level, where only unlabeled
data is available, and thus it enables the learning from these data.
This knowledge enhances the training of the target model. There-
fore, FSSL follows a federated learning approach, where private
data from multiple clients help to create a global model. Each
client learns an unsupervised model, which is then transmitted to
a server and combined into a single model. The communication
between clients and the server aims to improve model perfor-
mance and convergence. Conducted experiments compare FSSL
with a baseline approach using limited data and a deep learning
model. FSSL utilizes an autoencoder to learn a representational
model on unlabeled data and transfers knowledge by initializing
deep learning model weights with the encoder layers. Results
show that FSSL significantly improves the F1-Score of detection
systems across three well-known datasets (NSL-KDD, TonIoT,
and BotIoT). Moreover, the proposed model demonstrated a
noteworthy capability to detect previously unidentified attacks
when compared to the baseline.

Index Terms—Federated Learning, Self-Supervised Learning,
Intrusion Detection Systems

I. INTRODUCTION

The increasing sophistication and frequency of cyber-attacks
have led to the development of a wide range of Intrusion
Detection Systems (IDS) to protect computer networks. Within
the domain of Cybersecurity, Intrusion Detection Systems
(IDS) are designed to tackle the issue of discerning and
mitigating cyberattacks. This involves examining various sets
of information, such as how software behaves, log files, and
data on network traffic. The goal is to spot and address
anything unusual or potentially harmful happening in a system.
Historically, IDS were first proposed using classical statistical
methods to identify anomalies. Although, these methods were
limited, due to their unfeasibility to learn with data to identify
new types of attacks. In order to surpass these limitations, re-
searchers have explored the use of machine learning (ML) and
artificial intelligence techniques. For instance, the utilization

This work was supported by São Paulo Research Foundation (FAPESP),
grants #2018/23098-0 and #2021/04431-2, by the Coordination for the Im-
provement of Higher Education Personnel (CAPES), Coordination for the
Improvement of Higher Education Personnel (CAPES) - Program of Academic
Excellence (PROEX), and CNPq grants #141179/2021-0

of ML approaches have resulted on more accurate detections,
lowering false alarms [1]. In industrial control systems specif-
ically, ML algorithms have been utilized to develop anomaly-
based detection methods using packet capture files [2].

Artificial neural networks, a fundamental component of
machine learning, emulate the interconnected structure of
the human brain to process information. Comprising layers
of nodes or neurons, these networks specialize in learning
patterns from data through a training process. In classification
tasks, neural networks analyze input data and assign it to
predefined categories based on learned patterns, showcasing
their ability to discern complex relationships. In addition,
neural networks are also usefull in autoencoders, which is
a specific kind of unsupervised learning setup. Autoencoders
consist of an encoder and decoder, and they can effectively
compress information by transforming input data into an array
and subsequently reconstructing the original data from this
generated array. This dual functionality of neural networks
(enabling classification tasks and facilitating unsupervised
learning scenarios like autoencoders) underscores their ver-
satility in the field of machine learning. In the context of
Intrusion Detection Systems (IDS), neural networks can be
utilized by training these networks with metrics that describe
network traffic, associating the traffic with labels indicating
whether the traffic is legitimate or indicative of a particular
type of attack [3].

Studies focusing on IDS usually consider public datasets,
collected in controlled scenarios with labeled data [1], [2],
[4]. But this scenario is not what we have on real-world,
where network traffic data are mostly unlabeled and distributed
among different computers. Two specific approaches have
gained attention in recent years to address the data require-
ments of real-world scenarios. The first is Federated Intrusion
Detection System, which involves multiple detection systems
being aggregated into a single network to enhance the privacy
guarantees during the construction of IDS [1]. Therefore,
federated learning avoids situations where models require the
centralization of data obtained from different sources, and
which can expose private information that can be obtained
from network traffic. The second one is the Self-Supervised
Learning (SSL) that emerged as an effective method to extract
knowledge from unlabeled data to improve robustness of
machine learning models trained with few labeled data.

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 822

This study explores the implementation of SSL to address
the challenges posed by unlabeled data utilizing Federated
Learning (FL) for IDS. FL is an innovative approach that
enables the use of machine learning algorithms, like artificial
neural networks, to build models trained with distributed
and private data. The primary hypothesis investigated in this
research is the feasibility of learning SSL models on individual
local datasets using Federated Learning (FL) approaches, and
subsequently combining them to create a unified representa-
tional model for effective IDS implementation. This hypothesis
was validated through experimental analysis, wherein clients
within a Federated Learning setting learned a representation
model using SSL. The resulting model was then transmitted
to a server to enhance the training of a supervised learning
model.

This paper proceeds as follows. Section II provides an
overview of important related works in the field of SSL and
federated learning applied to cybersecurity. Section III de-
scribes the background knowledge to understand the proposed
framework. Section IV outlines the proposed framework for
Federated Self-Supervised Learning. Section V details the
evaluation methodology. Finally, Sections VI and VII show
the results and conclusions.

II. RELATED WORKS

In the field of IDS, various approaches, including signal
processing and supervised/unsupervised ML, have been stud-
ied [2]. However, these approaches often assume a centralized
setting that may not be suitable for large-scale networks with
distributed systems. Additionally, using ML algorithms with
cybersecurity data poses challenges like class imbalances,
noisy data, and the need for continuous updates to adapt to new
attack patterns, which can reduce the efficiency and accuracy
of IDS in real-world applications.

Federated Learning, a novel approach in ML, has gained
attention due to its ability to address issues of data privacy and
centralization while enabling collaboration among multiple
parties [5]. This approach has been explored in the context of
IDS, where ML models, such as neural networks, are trained
in a distributed architecture to create a robust IDS model while
preserving data privacy.

Several approaches have been proposed to apply Federated
Learning in IDS. However, many of these proposals rely on
scenarios where labeled data is available for clients [1], [2],
[4]. Another approach involves using publicly available cen-
tralized data to train supervised learning algorithms, but this
may be unfeasible when labeled data is scarce [2]. Different
methods have been proposed, including utilizing autoencoders
for anomaly detection [6], searching for thresholds based on
reconstruction errors [7], and using Temporal Convolutional
Generative Adversarial Networks (TCGAN) for synthetic data
generation [8]. However, these approaches have limitations,
such as the lack of flexibility in leveraging other strategies
besides autoencoders, limited knowledge transfer, and diffi-
culties in complex loss function modifications [9], [10].

While SSL has shown promise in enhancing supervised
learning models, its application in cybersecurity, including
IDS, is still relatively unexplored [11], [12]. Further research
is needed to evaluate the effectiveness of SSL in cybersecu-
rity. The motivation behind introducing the Federated Self-
Supervised Learning (FSSL) in this article stems from a
notable gap in the current research of Intrusion Detection
Systems (IDS). This gap highlights the motivation of new
studies to leverage the potential enhancements offered by
FSSL. The innovation proposed in this article aims to address
this void, specifically targeting the improvement of cyberattack
detection. A key feature of this approach involves harnessing
unlabeled data, easily accessible through traffic monitoring
tools deployed across diverse networks. The utilization of
such unlabeled data constitutes a novel avenue for fortifying
the capabilities of IDS systems. Also, the adoption of the
federated learning paradigm facilitates the application of this
method across various scenarios, especially in cases where
safeguarding data privacy is paramount. This is achieved by
avoiding the transmission of network traffic data beyond local
networks.

III. BACKGROUND

In the field of networking, various machine-learning tech-
niques have been employed to improve network performance
and security. This research focuses on IDS, which monitor
network traffic to detect and prevent unauthorized access
or malicious activities. In these approaches, each network
traffic connection is used to create a dataset with several
connections using the packet capture file. Then, the dataset
is used to build a model that can be, for instance, an artificial
neural network, which can then identify patterns of suspicious
behavior of new network traffic connections. Each connection
is related to a label, which indicates if the connection is normal
or malicious. In some applications, a malicious connection
can be represented by several types of cyberattacks such as
Distributed Denial of Service (DDoS), phishing, and malware
infections. Furthermore, each connection is also associated
with its network metadata, such as the protocol used and the
type of data transmitted, which can be represented by a fixed
number of features like strings and numbers.

A. Federated Learning

Federated Learning (FL) has emerged as a promising ap-
proach in the field of cybersecurity for situations where
publicly labeled data is scarce [1]. It allows for the learning of
models on multiple decentralized devices without exchanging
sensitive information, thereby preserving privacy. Machine-
learning techniques can be extended to federated learning by
adapting the learning process of models. Besides, several well-
known pre-processing techniques can be applied in data of
federated learning, like transforming strings in numeric values
and using data normalization.

A parametric model contain several values called parameters
(or weights), which are used to perform predictions. The
most common algorithm used in applications of FL is the

823

Federated Averaging (FedAvg). FedAvg consists in initializing
the weights of a parametric model (usually an artificial neural
network) in a central node referred to as server, which is
then distributed to multiple devices in the network called
clients. For neural networks, the parameters represent the set of
weights that are learned in the training process. Then, several
iterations named rounds are executed. A round in a FL involves
that each client updates the weights of the model using its
local training data and returning an updated set of weights to
the server. The server then receives these updated weights and
averages them to generate a new set of global model weights,
which are subsequently distributed back out to the clients for
the next round.

A common problem faced in applications of FL for cy-
bersecurity data is the class imbalance issue, where normal
instances outnumber1 malicious instances [13]. The imbalance
can be of different kinds. Also, a problem emerges when
data is not independent and identically distributed (IID), in
which each client might have a different distribution of data
with different local dataset sizes. IID stands for ”independent
and identically distributed,” which refers to a set of random
variables that are statistically independent of each other and
follow the same probability distribution. Usually, a solution to
these issues involves techniques such as class weighting, over-
sampling or undersampling and incorporating regularization
in applications where neural networks are used to obtain the
model of classification. However, care should be taken when
applying these techniques to maintain the privacy of client
data, which is a concern when using Federated Learning.

B. Self-Supervised Learning

Self-Supervised Learning is a ML approach that enables
models to learn from unannotated data, reducing the reliance
on labeled training data [11]. SSL is particularly valuable in
scenarios where labeled data is limited or costly to obtain, such
as in cybersecurity applications. By leveraging unlabeled data,
SSL can enhance model performance and aid in identifying
and mitigating security threats.

SSL involves two steps: pre-training on unlabeled data to
capture the underlying data structure and fine-tuning on la-
beled data for downstream tasks like classification or anomaly
detection. During pre-training, models can learn to predict data
characteristics or generate synthetic examples, such as rotating
unlabeled images and using the rotation angle as labels [11].
This pre-training step is known as the pretext task.

In the second step, called knowledge transfer, the pre-trained
model is utilized. Knowledge transfer involves feature extrac-
tion or fine-tuning. Feature extraction transforms the input data
into abstract representations that serve as input for downstream
models trained with labeled data. Fine-tuning modifies the pre-
trained model by training it on labeled data for more accurate
classification or anomaly detection. For instance, two neural
networks can be employed (one for the pretext task and one for
the target task) with shared architecture [9]. The parameters

1There are exceptions like DDoS attacks.

learned by the pretext task model can partially initialize the
target task model. Although SSL offers advantages, challenges
like pretext task definition and effective knowledge transfer
need to be addressed.

C. AutoEncoders

An autoencoder is a neural network architecture that aims
to reconstruct its input as accurately as possible [6]. It consists
of two components: the encoder, which compresses the input
data into a lower-dimensional representation called the “latent
space”, and the decoder, which attempts to reconstruct the
original input from the latent representation. What makes
autoencoders particularly useful is their ability to learn from
unlabeled data, enabling unsupervised learning.

Autoencoders can be seen as compression models, with
the choice of loss function playing a crucial role in mea-
suring the similarity between the input and the reconstructed
output. While achieving a perfect reconstruction is typically
unattainable, autoencoders have proven successful in vari-
ous applications. Two common uses of autoencoders include
generating meaningful representations by training on unla-
beled data and leveraging the reconstruction error to detect
anomalies. By training an autoencoder on unlabeled data,
the encoder can extract valuable features as inputs encodings
using high-dimensional arrays for visualization or clustering.
Alternatively, the reconstruction error can be employed to
identify instances that significantly deviate from the majority
of the training data, suggesting the presence of anomalies or
outliers. In this article, autoencoders will be explored by their
capacity to create representation models using the encoder part
of the architecture, which can be trained using unlabeled data.

D. Intrusion Detection Systems

IDS is a critical component of network security, providing
mechanisms for detecting and reacting to suspicious activity
patterns outside of normal behavior [2]. One approach to
improving IDS involves applying ML algorithms, such as
anomaly-based and deep learning-based methods. In IDS, the
network traffic can be captured in a packet capture file and
used to develop machine-learning algorithms for anomaly
detection. These algorithms use mathematical techniques to
learn, profile, classify and predict unusual results in the
network traffic, which are indicative of potential attacks on
a system.

Several datasets were created to evaluate IDS solutions
[12]. These datasets usually contain several network flows (or
connections), where each flow represents a set of network
packets sent from an origin to a destination using a fixed
number of metrics like timestamp, connection duration time,
and transmitted bytes, among others. Also, each flow is related
to a label that indicates if the flow is related to normal traffic or
a type of cyberattack. Therefore, by analyzing these flows and
identifying anomalous behavior patterns, IDS can be evaluated
by detecting potential threats and compared with the labels.
It is important to avoid false negatives in IDS to minimize
the risk of missing cyberattacks, while also minimizing false

824

positives to avoid unnecessary alerts leading to disruption of
normal system operations. For this reason, it is important
to investigate novel approaches that achieve higher accuracy
in intrusion detection while keeping false positives and false
negatives to a minimum [1].

IV. A FRAMEWORK FOR FEDERATED SELF-SUPERVISED
LEARNING FOR IDS

The motivation behind this research is to address the chal-
lenges faced by Intrusion Detection Systems (IDS) that employ
Federated Learning (FL) in detecting cyber-attacks. A novel
framework for Federated Self-Supervised Learning is proposed
in this article. The framework aims to combine the benefits
of federated learning and SSL techniques. The framework
considers the use of unlabeled data, a characteristic that is
not considered in all Federated Learning techniques.

The framework leverages SSL allowing the model to learn
from large quantities of unannotated data by generating an-
notations and labels internally in each federated client. In
this way, privacy and critical data can be protected without
leaving the clients while improving intrusion detection models.
In Figure 1, a scenario is presented where a target task is
being solved using a supervised learning model trained with
limited data. Additionally, the server can take advantage of
clients, where a large amount of unlabeled data is available.
In this problem, the supervised learning model should be able
to deal with new data that can have potentially different data
distribution compared to the training data, see Figure 1.

The proposed framework assumes a pool of pretext tasks to
be executed in each client, which corroborates with strategies
based on personalized learning. Each client creates their task-
specific patterns autonomously depending on patterns observed
in their data. However, an essential key is required in this
framework: all clients should share a common representation
model. This characteristic is necessary because these repre-
sentation models are aggregated during federated training to
compose a single global representation model. For instance,
neural networks can solve each client pretext task, which all
neural networks shares at least the initial layers that serve
as a common representation model, but each model will be
trained with different clients data. Then, several rounds can be
executed until all clients reach desirable convergence criteria,
providing an effective model representation using unlabeled
data. A simple and effective method for creating representation
models from unlabeled data involves training AutoEncoders on
this data. AutoEncoders are trained to encode the input data
into a latent vector, which is then utilized to reconstruct the
original input. By assessing the reconstruction error, we can
determine the model’s ability to learn an effective representa-
tion through its encoder. This learned representation supports
the transfer of learning approaches.

After training a model representation using one or more
pretext tasks among clients in federated learning, knowledge
transfer is performed. The goal is to utilize the representation
method to enhance training efficiency with limited labeled
data. This can be achieved using various methods discussed

in the literature on self-supervised learning (SSL) [11] and
transfer learning [10]. For example, the representation method
can be applied in a straightforward process where all input data
is transformed before being used in training the supervised
learning model. Although this technique is simple, it allows
for the combination of different approaches. For instance,
representation models can be learned using neural networks,
and then these models can be used to transform data for other
machine learning algorithms besides neural networks.

Another possibility for implementing knowledge transfer
is sharing the first layers of neural network architectures
of the pretext task models and the model that solves the
target task and using the representation model learned through
SSL to initialize the parameters (weights) of the supervised
learning model. This approach can boost the convergence
of the supervised model and improve its accuracy, besides
enabling the training process to achieve smaller minimum local
errors through common optimization methods used to train
neural networks like Adam [14] and SGD [15].

Achieving good minimum local errors is an essential factor
when training neural networks, particularly for complex tasks
that require a significant amount of labeled data. However, it
is known that it is impossible to ensure convergence when
the desired neural network output is similar or equal to non-
convex functions. This is the case of several problems like IDS,
where is possible to exist non-linear data where different types
of network traffic share the same representation. Therefore,
the proposed framework can help mitigating the convergence
challenge faced in the scenarios mentioned before. The mit-
igation can be achieved through knowledge transfer, which
allows the supervised learning model to leverage the advantage
of pre-trained representation learning. This can help reducing
the occurrence of multiples local minima during training,
providing a head start in the training process.

V. EXPERIMENTAL SETUP

The proposed FSSL framework was compared to a baseline
framework approach using three datasets of network traf-
fic data commonly used for evaluating IDS. Both of these
frameworks are described in Figure 1. The baseline approach
consists in a centralized (non federated) training, where private
and unlabeled data distributed among clients is not used.
This section describes the datasets used in the experiments,
as well as the details of the implementation of the baseline
and FSSL approaches. Also, it details the evaluation methods.
The datasets used in the experiments2 are: TonIoT (461.043
instances and 10 classes), BotIoT (2.942.153 instances and 5
classes), and NSL-KDD (131.594 instances and 30 classes).
These datasets were processed to create settings equivalent to
the presented in Figure 1.

For each dataset, a stratified random subsample equivalent to
1% of the entire set was chosen as labeled data, resulting in a
reduced training data size. The remaining 99% of each dataset
was used to train the autoencoder models. The labeled data

2Datasets public available: TonIoT, BotIoT, and NSL-KDD

825

Centralized
Server

Client 1 Client 2 Client N

Local Models

Federated Learning

Communication using
only model parameters

(without data)

Learning an encoder
model using

unsupervised learning

Client 1
Unlabeled

Data

Federated Averaging:

 : Global model parameters

 : Local model i parameters

Current
Pretext task

Current
Pretext task

Current
Pretext task

Global Encoder
Model

Aggregation of local
models

Parameters of a
model that has

learned to represent
an input

Labeled
train data

Knowledge
transfer

Reduced data
(compared to

unlabeled data)

Labeled
train data

Reduced data
(compared to

unlabeled data)

Baseline
framework

FSSL Framework

Pretext
task pool

Task
Schedule

Client 2
Unlabeled

Data

Client N
Unlabeled

Data

Fig. 1. The FSSL and baseline frameworks.

was carefully selected to represent both normal and anomalous
cyberattack samples. To create different scenarios, the remain-
ing data was divided into 10 groups representing different
federated clients. The clients’ data can be categorized as either
IID or Non-IID based on their level of data homogeneity or
heterogeneity. This was achieved using a technique from a
previous work [16] that employs the Dirichlet distribution to
control the degree of data homogeneity/heterogeneity across
clients. We used two parameter values, 0.1 for high hetero-
geneity and 100.0 for low heterogeneity, to create the two
considered scenarios.

Three methods were used to create a detection model for
cybersecurity using three datasets, which in each method can
be aided by non-IID or IID non-labeled data distributed among

ten clients. The first method assumes a simple and common
approach where only labeled data is used to train a supervised
learning neural network model, which will be referred to
as a baseline method. In contrast, the FSSL framework was
implemented to take advantage of the nonlabeled data in the
same scenario using the non-IID or IID data. An autoencoder
was used to implement the pretext task of the FSSL frame-
work for learning representations from non-labeled data. The
autoencoder shares the first layer of the neural network that
was used in the target model (the neural network used to detect
attacks). The autoencoders were trained using 10 rounds with
the FedAvg algorithm, and then the averaged autoencoder was
used to initialize the first layer of the target model, which is
then trained in the same way as in the baseline method.

826

A. Architectures and validation methods

The implementation of the autoencoder and classification
deep learning models was carried out using the Keras and
Tensorflow libraries (version 2.6) in Python3. Note that this
research does not focus on exploring neural network architec-
tures, leaving room for other works to extend the presented
experiments with different configurations. The autoencoder
was inspired by the architecture used by [17] and consisted
of a multilayer perceptron with one hidden layer containing
1000 units, utilizing linear activation and a dropout ratio
of 0.2. The final layer of the autoencoder employed the
relu activation function and the categorical cross-entropy loss
function. For the classification model, the initial layers were
shared with the autoencoder architecture, while the final
layers used softmax activation function and the categorical
cross-entropy loss function. The RMSprop algorithm was
selected as the optimizer for training the neural networks,
with the default parameters of the Tensorflow library being
utilized. The autoencoders were trained using 10 rounds of
federated learning communication. The classification neural
networks were trained using 300 epochs. The evaluation of
the three models was made using a 10-fold validation (cross
validation) [5] and the average F1-score of each trained
model was measured. The results were compared between
scenarios to different levels of homogeneity/heterogeneity by
the t-student statistical test to identify significant differences
in the performance considering the F1-score. To guarantee
the reproducibility of our results, we will provide access to
the source code, result data, and specific analyses, such as
the t-student test, through the following GitHub repository:
https://github.com/BrunoMeyer/FSSL-SCCI2023.

VI. RESULTS

In Table I, it is possible to observe the macro average F1-
score for each method and scenario, as well as the specific
F1-score for the detection of each network traffic type. In the
table, FSSL∗ represents the FSSL model trained with Non-IID
data). The results of the experiments conducted in this study
demonstrate the effectiveness of using FSSL over a baseline
approach, especially in scenarios where IID data is used. An
example of this can be seen in the BotIoT dataset, where the
FSSL achieved a macro average F1-Score of 0.508, while the
baseline approach only achieved 0.305. All macro-average F1-
Scores showed significant statistical differences when evalu-
ated using the t-student test and a 10-fold validation strategy
for Ton-IoT and Bot-IoT (p-values smaller than 0.025). While
FSSL achieved a slightly better average F1-Score in the NSL-
KDD dataset, there was no statistically significant difference
(p-value ¡ 0.05). This might be due to the dataset’s complexity
with multiple classes, necessitating other techniques to address
challenges not explored in this study. An interesting result
from the experiments is that in the scenario where non-IID
data is used, the FSSL framework achieved a slightly lower
average F1-score compared to the scenario where IID data is
used to train the pretext task model. This characteristic is a
promising discovery for cybersecurity data, where datasets are

often non-IID due to the diversity and variability of attacks,
requiring strategies to normalize or compensate for the fact
that some federated clients have more data than others.

TABLE I
AVERAGE F1-SCORE AND TRAINING/TESTING INSTANCES ARE SHOWN,

INCLUDING FSSL∗ (TRAINED WITH NON-IID DATA). MACRO-AVERAGE’S
STANDARD DEVIATION IS PRESENTED USING 10-FOLD VALIDATION.

Dataset Instance
type

Train Test Baseline FSSL FSSL∗

TonIoT

Macro 502 4519 0.853 0.873 0.871
Average ± 0.013 ± 0.013 ± 0.017

backdoor 21 196 0.914 0.941 0.954
ddos 21 195 0.721 0.737 0.743
dos 21 196 0.890 0.887 0.876
injection 21 196 0.461 0.588 0.590
mitm 1 10 0.000 0.013 0.000
normal 326 2940 0.917 0.924 0.925
password 21 196 0.592 0.738 0.731
ransomware 21 196 0.736 0.706 0.683
scanning 21 196 0.826 0.861 0.846
xss 21 196 0.795 0.791 0.795

BotIoT

Macro 997 8980 0.305 0.508 0.384
Average ± 0.036 ± 0.069 ± 0.047

DDoS 524 4716 0.211 0.567 0.393
DoS 448 4040 0.435 0.435 0.368
Normal 1 1 0.000 0.000 0.000
Reconnaissance 24 222 0.000 0.536 0.483

NSL
KDD

Macro 573 5161 0.883 0.889 0.892
Average ± 0.011 ± 0.012 ± 0.014

apache2 18 165 0.934 0.928 0.917
back 9 81 0.151 0.293 0.362
mailbomb 1 4 0.693 0.763 0.792
mscan 30 276 0.860 0.872 0.870
multihop 3 29 0.000 0.000 0.000
named 3 34 0.040 0.000 0.040
neptune 1 1 0.989 0.989 0.990
nmap 7 65 0.951 0.965 0.962
normal 24 224 0.915 0.915 0.918
pod 1 3 0.338 0.292 0.295
buffer overflow 1 3 0.000 0.000 0.000
portsweep 120 1080 0.689 0.683 0.677
processtable 1 17 0.924 0.911 0.909
ps 248 2239 0.031 0.043 0.046
rootkit 1 9 0.107 0.117 0.107
saint 4 37 0.470 0.477 0.461
satan 17 153 0.782 0.786 0.808
sendmail 1 2 0.000 0.000 0.000
smurf 1 2 0.873 0.868 0.867
snmpgetattack 7 71 0.551 0.605 0.614
snmpguess 18 167 0.633 0.669 0.681
teardrop 1 2 0.042 0.050 0.043
warezclient 16 152 0.000 0.000 0.000
warezmaster 4 39 0.867 0.860 0.860
xlock 8 73 0.000 0.000 0.000
xsnoop 1 3 0.000 0.000 0.000
xterm 1 1 0.000 0.000 0.000
guess passwd 23 212 0.896 0.905 0.904
httptunnel 1 1 0.730 0.743 0.729
ipsweep 1 1 0.801 0.767 0.768
land 1 2 0.000 0.000 0.000

When examining the F1-score for each individual class, it
becomes evident that certain classes, such as “Normal” in
the BotIoT dataset, present significant challenges in terms of
accurate identification. In this particular case, the training data
for the detection model consisted of only one sample of the
“Normal” class, resulting in an extremely imbalanced scenario
that needs the implementation of additional techniques to
enhance the F1-score. Both FSSL and FSSL with non-IID
data demonstrated notable improvements in detecting certain
classes, such as “Reconnaissance” in the BotIoT dataset. The
F1-score for this class increased from 0.0 in the baseline
approach to 0.536 when utilizing FSSL. This finding provides

827

evidence that the proposed framework enhances the detection
of cyberattacks that conventional supervised learning models
struggle to identify when trained with limited training data.

One important aspect to analyze in the experimental results
is the relationship between the average number of instances
used to train the supervised model and the achieved F1-score.
Similar to real-world scenarios, the network traffic in the
datasets used in the experiments exhibits a high degree of
data imbalance. For example, in the BotIoT dataset, the class
“Normal” has an average of only one instance for training and
another for testing. As a result, the classification inefficiency
is observed across all compared methods for this class, leading
to an F1-score of 0.

A possible evidence for why FSSL outperforms the base-
line approach in terms of efficiency becomes apparent when
examining the number of training instances for certain classes
and the resulting F1-Score. For example, consider the “Re-
connaissance” class in the BotIoT dataset, which only has 24
training instances out of a total of 997 instances, and was
tested using 222 instances. Although this is not as extreme as
the previously mentioned “Normal” class, it still represents an
imbalanced scenario. FSSL achieved an average F1-Score of
0.536 for IID data and 0.483 for non-IID data, whereas the
baseline approach achieved an F1-Score of 0. In other words,
FSSL generally enhances the detection of certain classes even
when a small number of training instances are provided to the
classification model. However, it is still necessary to have at
least a minimal amount of training data. This characteristic
can also be observed for other classes in the experimental
results presented in Table I. For instance, in the TonIoT
dataset, the “Men-In-The-Middle” class (“mimt”) showed a
slight improvement in F1-Score from 0.0 to 0.013, and the
“password” class shows an improvement from 0.592 to 0.738.

VII. CONCLUSION

This paper presented and evaluated a Federated Self-
Supervised Learning (FSSL) framework for Intrusion Detec-
tion Systems. The framework demonstrated promising results
in accuracy and F1-score, outperforming baseline approaches
and highlighting the potential of using unlabeled data to im-
prove supervised models in cybersecurity intrusion detection
using federated learning settings. The FSSL framework has
the potential to enhance the effectiveness and convergence
speed of supervised models while addressing privacy and
security concerns associated with centralized data collection
in IDS implementation. Overall, the results of the experiments
showed that the proposed Federated Self-Supervised Learning
framework outperformed the baseline approach improving the
F1-score ratio in up to 20%. The autoencoders used in the
pretext task were used mainly due to their simplicity to be
implemented and to avoid possibly unnecessary complexity in
the evaluation of the proposed FSSL framework. Although it
is expected that specific cybersecurity-related pretext tasks can
be explored to improve the advantage of knowledge transfer
using unlabeled data, we will address further analysis in future
work to confirm this hypothesis. Furthermore, a simple neural

network architecture was also adopted to avoid unnecessary
complexity to interpret the results. Future works can explore
the usage or the search for more complex architectures and
identify if the results found in this research continue to
show the same behavior in the analyzed scenarios or other
possible evaluation methods. Additionally, this study focused
on scenarios with limited labeled training data compared to
unlabeled data, and further investigation is required to assess
the advantages and disadvantages of the proposed framework
in other scenarios.

REFERENCES

[1] S. Arisdakessian, O. A. Wahab, A. Mourad, H. Otrok, and M. Guizani,
“A survey on iot intrusion detection: Federated learning, game theory,
social psychology and explainable ai as future directions,” IEEE Internet
of Things Journal, 2022.

[2] E. M. Campos, P. F. Saura, A. González-Vidal, J. L. Hernández-Ramos,
J. B. Bernabé, G. Baldini, and A. Skarmeta, “Evaluating federated
learning for intrusion detection in internet of things: Review and
challenges,” Computer Networks, vol. 203, p. 108661, 2022.

[3] N. Moustafa, “A new distributed architecture for evaluating ai-based
security systems at the edge: network ton iot datasets. sustain. cities
soc. 72, 102994 (2021),” 2021.

[4] M. Alazab, S. P. RM, M. Parimala, P. K. R. Maddikunta, T. R.
Gadekallu, and Q.-V. Pham, “Federated learning for cybersecurity:
concepts, challenges, and future directions,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 5, pp. 3501–3509, 2021.

[5] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in
federated learning,” Computers & Industrial Engineering, vol. 149, p.
106854, 2020.

[6] J. Schneible and A. Lu, “Anomaly detection on the edge,” in MIL-
COM 2017-2017 IEEE military communications conference (MILCOM).
IEEE, 2017, pp. 678–682.

[7] T. Zhang, C. He, T. Ma, L. Gao, M. Ma, and S. Avestimehr, “Federated
learning for internet of things,” in Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems, 2021, pp. 413–
419.

[8] M. Abdel-Basset, N. Moustafa, and H. Hawash, “Privacy-preserved
cyberattack detection in industrial edge of things (ieot): A blockchain-
orchestrated federated learning approach,” IEEE Transactions on Indus-
trial Informatics, vol. 18, no. 11, pp. 7920–7934, 2022.

[9] O. Aouedi, K. Piamrat, G. Muller, and K. Singh, “Federated semisu-
pervised learning for attack detection in industrial internet of things,”
IEEE Transactions on Industrial Informatics, vol. 19, no. 1, pp. 286–
295, 2022.

[10] T. V. Khoa, D. T. Hoang, N. L. Trung, C. T. Nguyen, T. T. T. Quynh,
D. N. Nguyen, N. V. Ha, and E. Dutkiewicz, “Deep transfer learning:
A novel collaborative learning model for cyberattack detection systems
in iot networks,” IEEE Internet of Things Journal, 2022.

[11] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon,
“A survey on contrastive self-supervised learning,” Technologies, vol. 9,
no. 1, p. 2, 2020.

[12] P. K. Mvula, P. Branco, G.-V. Jourdan, and H. L. Viktor, “A systematic
literature review of cyber-security data repositories and performance
assessment metrics for semi-supervised learning,” Discover Data, vol. 1,
no. 1, p. 4, 2023.

[13] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wress-
negger, L. Cavallaro, and K. Rieck, “Dos and don’ts of machine learning
in computer security,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 3971–3988.

[14] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond,” arXiv preprint arXiv:1904.09237, 2019.

[15] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimiza-
tion: Distributed optimization beyond the datacenter,” arXiv preprint
arXiv:1511.03575, 2015.

[16] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 10 713–10 722.

[17] J. Wang, J. Hu, J. Mills, G. Min, M. Xia, and N. Georgalas, “Federated
ensemble model-based reinforcement learning in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, 2023.

828

