
Model-Free Optimal Control Based on
Reinforcement Learning for Rotary Inverted

Pendulum
Eduardo Yudho

Departamento de Control Automático
CINVESTAV-IPN

Mexico City, 0736, Mexico

Xiaoou Li
Departamento de Computación

CINVESTAV-IPN
Mexico City, 0736, Mexico

Brisbane Ovilla-Martı́nez
Departamento de Computación

CINVESTAV-IPN
Mexico City, 0736, Mexico

Wen Yu
Departamento de Control Automático

CINVESTAV-IPN
Mexico City, Mexico

Abstract—In this article, an algorithm based on reinforcement
learning was used to design an optimal adaptive controller for
the rotary inverted pendulum, without explicitly solving the
algebraic Riccati equation and without knowing the dynamics of
the system. The rotary inverted pendulum is an underactuated
mechanical system with two degrees of freedom. Parametric
variation was used to evaluate the capacity of the algorithm.
The results were satisfactory.

Index Terms—reinforcement learning, rotary inverted pendu-
lum, LQR

I. INTRODUCTION

The rotary inverted pendulum, also known as the Furuta
pendulum [1]–[3], constitutes a mechanism composed of a
horizontally rotating arm and a vertically rotating pendulum
[4]. The system is equipped with a sole actuator, which
imparts torque to the arm and indirectly influences the pen-
dulum’s position. Consequently, it embodies a underactuated
mechanical system with two degrees of freedom. Because the
rotary inverted pendulum is a highly non-linear, non-minimal
phase, simple-structured, multivariable, and unstable system,
it is frequently employed to validate the effectiveness and
performance of various control algorithms [5].
Feedback control theory constitutes the systematic exploration
of methodologies aimed at formulating control algorithms
for human-engineered systems, ensuring the compliance of
predetermined performance and safety criteria [6]. Feedback
control systems operate on the fundamental principle of ob-
serving a system’s output, juxtaposing it against the desired
trajectory, and subsequently computing the requisite control
signal to effectuate adjustments to the system’s performance
[7]. However, the application of conventional control strategies
typically requires a degree of familiarity with the dynamics of
the underlying system.
When the model of a dynamic system is known, it’s possible
to linearize it around an operating point and design linear con-
trollers based on the model. A process of linearization about

an operational point affords the opportunity to devise linear
control strategies. Among these strategies, the linear quadratic
regulator (LQR) is a notable example. The LQR controller is
architected through an offline procedure involving the solution
of the algebraic Riccati equation, thereby facilitating the
minimization of a predetermined cost function. Nevertheless,
it is noteworthy that alterations in system parameters can
potentially undermine the optimality of the LQR controller,
thereby engendering the need for periodic recalibration.
According to Lewis [6]–[8], adaptive control and optimal con-
trol represent two different philosophies of feedback controller
design. Typically, computing optimal controllers for linear
systems involves an offline design by solving the Hamilton-
Jacobi-Bellman (HJB) equations, such as the Riccati equation,
using complete knowledge of the dynamic system.
On the other hand, adaptive controllers learn online to control
unknown systems based on measured information in real-time
along the system trajectories. Usually, adaptive controllers are
not designed to be optimal in the sense of minimizing user-
specified performance functions, but they must satisfy certain
conditions of inverse optimality.
Reinforcement learning, on the other hand, involves a cause-
and-effect relationship between actions and rewards or penal-
ties [9]. For this, reinforcement learning algorithms are built
on the idea that effective control decisions should be rein-
forced through signals, making it more likely to reuse them.
Additionally, reinforcement learning is based on evaluated
environmental information in real time and can be seen as
action-based learning [7]. Thus, from a theoretical point of
view, reinforcement learning is related to adaptive and optimal
control methods. This makes it possible to use reinforcement
learning to solve optimal control problems.
Therefore, in this paper we present the use of an algorithm
based on reinforcement learning to achieve online learning
of the solution for a linear quadratic regulator applied to
the rotary inverted pendulum. Subsequently, the algorithm’s

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1269

development is presented, commencing with an analysis rooted
in the Linear Quadratic Regulator (LQR) framework and
the algebraic Riccati equation. Following this, the obtained
results are presented through simulation, whereby a compar-
ison between optimal solutions and solutions derived from
reinforcement learning estimations is delineated.

II. ROTARY INVERTED PENDULUM

The rotary inverted pendulum is a two-degree-of-freedom
underactuated mechanical system with a horizontally rotating
arm and a vertically rotating pendulum [4].
The geometric analysis of the rotational joints was conducted,
as depicted in Fig. 1. The left side corresponds to the hori-
zontal plane, encompassing the analysis of the arm and the
projection of the pendulum onto this plane. The right side
displays the pendulum on the vertical plane.

Fig. 1. The horizontal and vertical planes.

The arm has a length L1, mass m1, distance to the center of
mass l1, and a moment of inertia J1. Similarly, the pendulum
has a length L2, mass m2, distance to the center of mass l2,
and a moment of inertia J2.
The motion equations for this kind of manipulator systems are
the characteristic the manipulator equation:

M (q) q̈ + C (q, q̇) q̇ +G (q) = τ (1)

where q is a generalized coordinate vector, M(q) ∈ Rn×n is
the inertial matrix, C(q, q̇) ∈ Rn×n captures Coriolis forces,
G ∈ Rn captures the gravitational torques and τ ∈ Rn repre-
sents the generalized forces. For the rotary inverted pendulum,
we have q = [θ, α]T , where θ and α are the rotational angles
for the arm and pendulum, respectively. and:

M(q) =

[
θ1 + θ2 sin

2 q2 θ3 cos q2
θ3 cos q2 θ4

]
C (q, q̇) =

[
1
2θ2 sin 2q2q̇2

1
2θ2 sin 2q2q̇1 − θ3 sin q2q̇2

− 1
2θ2 sin 2q2q̇1 0

]
G (q) = [0,−θ5 sin q2]

T , τ = [τ1, 0]
T

with θ1 = J1 + m1l
2
1 + m2L

2
1, θ2 = m2l

2
2, θ3 = m2L1l2,

θ4 = I2 +m2l
2
2 and θ5 = gm2l2.

Taking into consideration viscous friction in the rotational
joints, b1 and b2, and the electromechanical model of the
actuator with the constant βm, the linear state-space represen-
tation of the system is sought in the form ẋ = Ax + Bu.

For the linearization of the system, the equilibrium point
x∗ = [0, 0, 0, 0]

T was considered, resulting in:

A =

0 1 0 0
0 a22 a23 a24
0 0 0 1
0 a42 a43 a44

 , B =

0
b2
0
b4

 (2)

with:

a22 = −
(
J2 +m2l

2
2

)
(b1 + βmKgKb)

(J1 +m1l21) (J2 +m2l22) + J2m2L2
1

a23 = − gm2
2L1l

2
2

(J1 +m1l21) (J2 +m2l22) + J2m2L2
1

a24 =
m2L1l2b2

(J1 +m1l21) (J2 +m2l22) + J2m2L2
1

a42 =
m2L1l2 (b1 + βmKgKb)

(J1 +m1l21) (J2 +m2l22) + J2m2L2
1

a43 =
gm2l2

(
J1 +m1l

2
1 +m2L

2
1

)
(J1 +m1l21) (J2 +m2l22) + J2m2L2

1

a44 = −
b2

(
J1 +m1l

2
1 +m2L

2
1

)
(J1 +m1l21) (J2 +m2l22) + J2m2L2

1

b2 =
βm

(
J2 +m2l

2
2

)
(J1 +m1l21) (J2 +m2l22) + J2m2L2

1

b4 = − βmm2L1l2
(J1 +m1l21) (J2 +m2l22) + J2m2L2

1

with βm = (ηgKgηmKm)/Rm.

III. LINEAR QUADRATIC REGULATOR

A wide range of discrete-time systems can be characterized
through the linear time-invariant state-space representation:

xk+1 = Axk +Buk (3)

with the discrete time index k, the state vector xk ∈ Rn,
the control input vector ukRm, A ∈ Rn×n and B ∈ Rn×m.
Furthermore, the state transition equation corresponds to a de-
terministic Markov Decision Process (MDP) [2]. The policies
of interest in this type of systems are state feedback policies
of the form:

uk = h(xk) = −KTxk (4)

with the control policy K ∈ Rn a constant feedback gain
vector. The gain vector K should be chosen in such a way
that the closed-loop system matrix, Acl = A−BKT , has all
its eigenvalues strictly within the unit circle.
Likewise, it is possible to assign a per-step cost or utility,
which represents a measure of the control cost at each step.
A standard form is the quadratic function:

r (xk, uk) = xT
kQxk + uT

kRuk (5)

where Q ∈ Rn×n and R ∈ Rm×m, with Q = QT ≥ 0
and R = RT > 0 to ensure a well-defined cost function. It is
assumed that the pair (A,B) is stabilizable, meaning that there
exists a feedback gain K that makes the closed-loop system
asymptotically stable.

1270

On the other hand, the total cost of a state xk under the control
policy h (xk), denoted as Vh (xk), is defined as the sum of
utilities at each step that the policy h (xk) has incurred, starting
from step k, where:

Vh (xk) =
1

2

∞∑
i=k

(
xT
i Qxi + uT

i Rui

)
(6)

This definition implies the following recursive relationship:

Vh (xk) =
1

2
r (xk, uk) +

1

2

∞∑
i=k+1

(
xT
i Qxi + uT

i Rui

)
=

1

2
r (xk, uk) + Vh (xk+1) (7)

By assuming that the optimal cost function, V ∗, is quadratic
in the state, it can be expressed as:

V ∗ (xk) =
1

2
xT
k Pxk (8)

where P ∈ Rn×n is the cost matrix for the policy K. Thus,
the Bellman equation is expressed as:

xT
k Pxk = xT

kQxk + uT
kRuk + xT

k+1Pxk+1 (9)

Substituting for the system dynamics (3) and the feedback gain
(4), assuming a constant state feedback policy, h (xk), that is
stationary for some stabilizing gain K. Since this must hold
for all states xk, it is considered:(
A−BKT

)T
P
(
A−BKT

)
− P +Q+KRKT = 0 (10)

This matrix equation is linear in P and is known as the
Lyapunov equation when K is fixed [6]. Thus, it is evident
that the discrete-time LQR Bellman equation is equivalent
to a Lyapunov equation [7]. Solving this equation with a
predetermined gain K yields P = PT > 0.
Similarly, the Hamiltonian function for a discrete-time LQR
is given by:

H (xk, uk) = r (xk, uk) + xT
k+1Pxk+1 − xT

k Pxk (11)

A necessary condition for optimality is the stationary value
condition, given by ∂H (xk, uk) /∂uk = 0. Such that we
obtain:

Ruk +BTP (Axk +Buk) = 0 (12)

From which the control signal is derived as:

uk = −Kxk = −
(
R+BTPB

)−1
BTPAxk (13)

Therefore, the policy will be:

K =
(
R+BTPB

)−1
BTPA (14)

Substituting for the control policy into the Bellman equation
(9) and simplifying the result, we obtain the discrete-time
Hamilton-Jacobi-Bellman equation:

ATPA−P +Q−ATPB
(
R+BTPB

)−1
BTPA = 0 (15)

This equation is quadratic in P and is known as the alge-
braic Riccati equation, equivalent to the Bellman optimality
equation for an LQR [7]. According to Bradtke [10], this is a
straightforward yet computationally expensive way to obtain
K∗, if precise system models and cost functions are known.

IV. REINFORCEMENT LEARNING FOR OPTIMAL CONTROL

It is possible to implement an online algorithm based on the
Q-function without knowing the system dynamics, only mea-
suring information along the system trajectories. This yields
adaptable optimal control algorithms that converge online to
optimal control solutions.
The Q-function for a discrete-time LQR, following the policy
K, is derived from the value function as [6]:

Q (xk, uk) =
1

2
r (xk, uk) + V ∗ (xk+1) (16)

Where the control signal uk is arbitrary, and the policy
uk = h (xk) is followed for k + 1 and subsequent steps.
Expressing the Q-function using the solution of the algebraic
Riccati equation, P , the Q-function for discrete-time LQR is
as follows:

Q (xk, uk) =
1

2
zTk

[
ATPA+Q ATPB
BTPA BTPB +R

]
zk (17)

with zk = [xk, uk]
T . Additionally, the following is proposed:

Q (xk, uk) =
1

2
zTk Szk =

1

2
zTk

[
Sxx Sxu

Sux Suu

]
zk (18)

and the matrix S = ST > 0 with S ∈ Rl×l, Sxx ∈ Rn×n,
Sxu = ST

ux ∈ Rn×m, Suu ∈ Rm×m, where:[
ATPA+Q ATPB
BTPA BTPB +R

]
=

[
Sxx Sxu

Sux Suu

]
On the other hand, for the policy update, ∂Q (xk, uk) /∂u = 0
is considered. From the representation (17), we obtain:

0 = BTPAxk +
(
BTPB +R

)
uk (19)

Therefore, it’s possible to express the optimal control signal
as a function dependent on the state vector xk:

uk = −(BTPB +R)−1BTPAxk (20)

However, upon considering the partial derivative of expression
(18) with respect to the control signal, we have:

uk = −S−1
uu Suxxk (21)

The expression (20) requires knowledge of the system dynam-
ics (A,B) to perform control policy improvement, whereas
(21) only requires knowledge about the matrix S from the Q-
function [10].
According to [7], the matrix S from the Q-function (18) can be
estimated online, without knowing the system dynamics, using
identification techniques. To accomplish this, the Q-function
(18) is expressed in a parametric form:

Q (x, u) = Q (z) = WT (z ⊗ z) = WTϕ (z) (22)

with W being the vector formed by the elements of S and ⊗
denoting the Kronecker product. The function ϕ (z) = z ⊗ z
represents the quadratic polynomial basis in terms of the ele-
ments of z. By eliminating redundant entries of ϕ (z), it is en-
sured that W will solely contain the (n+m) (n+m+ 1) /2
elements from the upper half of S, taking the form:

W = [s11, 2s12, · · · , s22, 2s23, · · · , s33, 2s34, , · · · , sll]T

1271

Meanwhile, the vector of quadratic functions takes the form:

ϕ (z) =
[
z21 , z1z2, · · · , z1zl, z22 , z2z3, · · · , z2zl, · · · , z2l

]T
The temporal difference error is defined as:

ek = r (xk, uk) +Q (xk+1, h (xk+1))−Q (xk, uk) (23)

Substituting the approximation of the function Q into the
temporal difference error:

ek = r (xk, uk) +WTϕ (zk+1)−WTϕ (zk) (24)

The step of evaluating the function Q in a policy iteration
algorithm is given as:

WT
j+1 (ϕ (zk)− ϕ (zk+1)) =

1

2

(
xT
kQxk + uT

kRuk

)
(25)

with the policy improvement step:

hj+1 (xk) = argmin
u

(
WT

j+1ϕ (xk, u)
)
, ∀x ∈ X (26)

Since (25) involves (n+m) (n+m+ 1) /2 unknowns, which
form the vector W , it perfectly corresponds to the type of
equations used in system identification. Therefore, for its
online implementation, Recursive Least Squares (RLS) was
utilized for updating the parameter vector Wj+1 with the
regression vector [10]:

Φk = ϕ (zk)− ϕ (zk+1) (27)

The data to be measured at each step include
(xk, uk, r (xk, uk) , xk+1, uk+1), where uk+1 is computed
as hj (xk+1), with hj (·) representing the current policy.
It’s necessary to add test noise to the control signal uk to
ensure persistent excitation. The recursive relations of the
RLS algorithm are provided by [10]:

Wj+1 = Wj +
PcjΦk

(
r (xk, uk)−WT

j Φk

)
1 + ΦT

k PcjΦk

Pcj+1
= Pcj −

PcjΦkΦ
T
k Pcj

1 + ΦT
k PcjΦk

(28)

This algorithm requires the initial feedback gain to be stabiliz-
ing. This gain can be easily determined through initial testing
on the plant [10].
The update of the parameter vector W is performed until
the RLS algorithm converges, utilizing the Euclidean norm
of the difference between each update, ∥Wj+1 −Wj∥ ≤ εW ,
where εW is a small constant, as a convergence parameter.
Similarly, the Euclidean norm of the variation in estimation
∥Kj+1 −Kj∥ ≤ εK is employed, where εK is a small
constant. This way, the convergence of the algorithm is de-
termined, and the estimation process is halted.

V. SIMULATIONS

Simulations were conducted using a Matlab Simulink model
to implement the reinforcement learning algorithm. The non-
linear model of the rotary inverted pendulum was employed
during the simulations to assess the algorithm’s capability to
approximate the optimal solution of the linear system.

For the simulations of the rotary inverted pendulum, the
parameters were utilized as m1 = 0.2570 kg, L1 = 0.2159 m,
l1 = 0.0619 m, b1 = 2.4×10−3 N, J1 = 9.9829×10−4 kg·m2,
Rm = 2.6 Ω, Km = 7.68× 10−3 V·s/rad, Kb = 7.68× 10−3

N·m/A, Kg = 70, ηm = 0.69 and ηg = 0.9.
It was proposed to evaluate the algorithm’s ability to find the
online solution of a discrete-time LQR in the presence of
parametric uncertainty. The experiments were initiated with
the medium pendulum, having a length of L2 = 0.3365
m, with a center of mass l2 = 0.1556 m, and a mass of
m2 = 0.127 kg. Later, the short pendulum was replaced with
a length of L2 = 0.20 m, with a center of mass l2 = 0.1635
m, and a mass of m2 = 0.0970 kg.
The linear Furuta pendulum model was discretized using Mat-
lab with the zero-order hold (zoh) method for a sampling time
of 2 ms. Subsequently, an LQR was designed for each system,
considering the quadratic cost function. The matrices Q and R
were chosen as Q = 20I and R = 1. Thus, the gain vectors
were Km = [−3.6148,−5.4437,−69.5539,−10.3393]

T and
Kc = [−3.2097,−4.8446,−58.4409,−8.0511]

T .
In the simulation of the reinforcement learning-based algo-
rithm, Q = 20I and R = 1 were kept for the utility
function. The initial value of the covariance matrix was set
as Pc0 = 90I . Concerning the parameter vector W , better
performance was observed when W0 = 0.
To determine an initial gain vector, tests were con-
ducted with the closed-loop system and the vector K0 =
[−1,−1,−10,−1]

T was chosen. Additionally, to establish al-
gorithm convergence, εW and εK were set to ε = 1×10−9. As
a result, the K vector was updated when ∥Wj + 1−Wj∥ ≤ ε
or when the discrete time steps k since the last update
exceeded a maximum of 150, 000. The algorithm also halts
when ∥Kj+1 −Kj∥ ≤ ε.
Fig. 2 displays the tuning of the gain vector K for the LQR
of the Furuta pendulum with both the medium and short
pendulums. The top portion illustrates the 3 components with
the smallest magnitude for easier visualization.

Fig. 2. Tuning of the LQR.

The vector obtained for the medium pendulum was K̂m =
[−4.2965,−5.2935,−68.2348,−9.6118]

T and for the short
pendulum K̂c = [−3.5859,−4.7077,−56.9293,−7.9692]

T .
Subsequently, an experiment was proposed to compare the
response of the system with the vectors K. The initial condi-

1272

tion vector x0 = [θ0, 0, α0, 0]
T was chosen, with θ0 = −15

and α0 = 10. Simulations were conducted for both short
and medium pendulums, comparing Km and Kc against
the reinforcement learning obtained vectors K̂m and K̂c,
respectively.
Fig. 3 and Fig. 4 presents the comparison of the four con-
trollers, where labels LQRi indicate the use of analytically
calculated vectors, and labels RLi indicate the use of vectors
obtained by reinforcement learning.
Upon analyzing the behavior of the arm, it was observed that
the controllers obtained through RL exhibited very similar be-
haviors. Furthermore, they yielded a quicker response, which
might indicate a slightly higher control signal compared to the
optimal controllers.

Fig. 3. LQR responses comparison

On the other hand, the pendulum’s response exhibited a similar
behavior across all four controllers. It was observed that
the optimal controllers maintained a very close overshoot.
However, the controllers tuned through reinforcement learn-
ing displayed a greater difference in the magnitudes of the
maximum overshoot values.

Fig. 4. LQR responses comparison

In order to compare the performance of each controller, the
LQR cost function with matrices Q = 20I and R = 1 is used.

J (xk, uk) =

N−1∑
k=0

xT
kQxk + uT

kRuk (29)

The obtained results are presented in Table I.

TABLE I
LQR COST FUNCTION RESULTS

Controller Cost
LQR1 8, 114.9
RL1 8, 151.2

LQR2 7, 121.1
RL2 7, 134.8

VI. CONCLUSIONS

Simulations were conducted in Matlab Simulink to imple-
ment a reinforcement learning-based algorithm that enables
online solution of a discrete-time LQR to control the Furuta
pendulum around its unstable equilibrium. Two pendulum
scenarios were considered with different lengths and masses,
referred to as the medium pendulum and the small pendulum.
The tuning results demonstrated that by implementing the
reinforcement learning-based algorithm, it’s possible to find
solutions close to the calculated values. The controllers ob-
tained through reinforcement learning provided a performance
very close to that achieved with the optimal controllers. In
both cases, the increase observed in the cost function was
minimal, with an increase of 0.45% for the medium pendulum
and 0.19% for the short pendulum. Thus, the reinforcement
learning-based algorithm presents an alternative that doesn’t
necessitate knowledge of the system’s dynamics to find solu-
tions close to optimal controllers.

REFERENCES

[1] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing up control of inverted
pendulum,” in Proceedings IECON ’91: 1991 International Conference
on Industrial Electronics, Control and Instrumentation, vol. 3, pp. 2193–
2198, 1991.

[2] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-up control of
inverted pendulum using pseudo-state feedback,” Proceedings of the
Institution of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, vol. 206, no. 4, pp. 263–269, 1992.

[3] M. Yamakita, K. Furuta, K. Konohara, J. Hamada, and H. Kusano,
“Vss adaptive control based on nonlinear model for titech pendulum,”
in Proceedings of the 1992 International Conference on Industrial
Electronics, Control, Instrumentation, and Automation, vol. 3, pp. 1488–
1493, 1992.

[4] I. Fantoni and R. Lozano, Non-linear Control for Underactuated Me-
chanical Systems. London: Springer, 2002.

[5] J. Moreno-Valenzuela and C. Aguilar-Avelar, Motion Control of Under-
actuated Mechanical Systems. Cham, Switzerland: Springer, 2018.

[6] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits and Systems
Magazine, vol. 9, no. 3, pp. 32–50, 2009.

[7] D. Vrabie, K. G. Vamvoudakis, and F. L. Lewis, Optimal adaptive con-
trol and differential games by reinforcement learning principles. Control,
Robotics and Sensors, Institution of Engineering and Technology, 2012.

[8] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to design
optimal adaptive controllers,” IEEE Control Systems Magazine, vol. 32,
no. 6, pp. 76–105, 2012.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 2nd ed., 2018.

[10] S. J. Bradtke, Incremental Dynamic Programming for On-Line Adaptive
Optimal Control. PhD thesis, University of Massachusetts, USA, 1995.
UMI Order No. GAX95-10446.

1273

