
Training Artificial Neural Networks by
Coordinate Search Algorithm

Ehsan Rokhsatyazdi∗1, Shahryar Rahnamayan∗2, SMIEEE, Sevil Zanjani Miyandoab∗1,
Azam Asilian Bidgoli∗3, H.R. Tizhoosh4, SMIEEE

*Nature-Inspired Computational Intelligence (NICI) Lab
1Department of Electrical, Computer, and Software Engineering, Ontario Tech University, Oshawa, ON, Canada

2Department of Engineering, Brock University, St. Catharines, ON, Canada
3Faculty of Science, Wilfrid Laurier University, Waterloo, ON, Canada

4Rhazes Lab, Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA

Abstract—Training Artificial Neural Networks (ANNs) poses a
challenging and critical problem in machine learning. Despite
the effectiveness of gradient-based learning methods, such as
Stochastic Gradient Descent (SGD), in training neural networks,
they do have several limitations. For instance, they require
differentiable activation functions, and cannot optimize a model
based on several independent non-differentiable loss functions
simultaneously; for example, the F1-score, which is used during
testing, can be used during training when a gradient-free op-
timization algorithm is utilized. Furthermore, the training (i.e.,
optimization of weights) in any DNN can be possible with a
small size of the training dataset. To address these concerns,
we propose an efficient version of the gradient-free Coordinate
Search (CS) algorithm, an instance of General Pattern Search
(GPS) methods, for training (i.e., optimizing) neural networks.
The proposed algorithm can be used with non-differentiable
activation functions and tailored to multi-objective/multi-loss
problems. Finding the optimal values for weights of ANNs is a
large-scale optimization problem. Therefore instead of finding the
optimal value for each variable, which is the common technique
in classical CS, we accelerate optimization and convergence by
bundling the variables (i.e., weights). In fact, this strategy is a
form of dimension reduction for optimization problems. Based
on the experimental results, the proposed method is comparable
with the SGD algorithm, and in some cases, it outperforms the
gradient-based approach. Particularly, in situations with insuf-
ficient labeled training data, the proposed CS method performs
better. The performance plots demonstrate a high convergence
rate, highlighting the capability of our suggested method to find a
reasonable solution with fewer function calls. As of now, the only
practical and efficient way of training ANNs with hundreds of
thousands of weights is gradient-based algorithms such as SGD
or Adam. In this paper we introduce an alternative method for
training ANN.

Index Terms—Coordinate Search, Gradient-free, Large-Scale
Optimization, Expensive Optimization, Artificial Neural Network
(ANN), Stochastic Gradient Descent (SGD)

I. INTRODUCTION

Optimizing the weights in an Artificial Neural Network
(ANN), also called training, is one of the most significant and
challenging machine learning problems [1] and is still an open
research direction. Since there are thousands or millions of
weights in the state-of-the-art neural networks, it is considered
a huge-scale optimization problem, and solving such high-
dimensional problems is very expensive in terms of time and

memory complexities. Metaheuristic methods are one way to
train ANNs.

Kaveh et al. [1] reviewed recent developments in meta-
heuristic algorithms for deep learning and training ANNs.
They have compared these algorithms based on exploitation
and exploration abilities, convergence speed, finding the global
optimum, hyper-parameter setting, and implementation. Ac-
cording to their results, hybrid metaheuristic-convolutional
neural network architectures perform better than other methods
in many medical image classification applications and are
effective in medical applications.

Metaheuristic optimizers are also useful when back-
propagation-based optimization methods face crucial limita-
tions and do not perform properly. For example, in Spiking
Neural Networks (SNNs) [2], the nature of the spiking neurons
is discontinuous and non-differentiable. Accordingly, Javanshir
et al. have proposed a novel metaheuristic-based optimizer
for SNNs, and shown that it outperforms other methods, e.g.,
genetic algorithm (GA), differential evolution (DE), particle
swarm optimization (PSO), and harmony search (HS).

Many metaheuristic-based optimization algorithms have
been introduced for training ANNs and shown significant
results. Improved GA (IGA) [3], improved PSO [4], PSO-
MLFFNN [5], and ESPNet [6] are some examples. Generally
speaking, metaheuristic or swarm optimization algorithms can
be used for training, but they are usually very time-consuming,
or used for very small size networks with a small number of
weights [7]–[10]. Hence, gradient-based training methods are
often preferred, since they are faster and more efficient. These
optimization algorithms work by relying on derivatives (for
one-dimensional functions), and gradients (for more than one-
dimensional problems) [11]; therefore, activation functions
must be differentiable when using these methods. Moreover,
despite the efficiency of the existing state-of-the-art gradient-
based methods, e.g., Adam [12], they cannot be employed in
the case of multiple loss/objective functions (multi-objective
problems).

On the other hand, Coordinate descent (CD) algorithms
try to tackle optimization problems by solving a sequence
of simple optimization problems [13]. coordinate search (CS)

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1540

is also a Generalized Pattern Search (GPS) algorithm. These
algorithms are derivative-free and the objective function is
calculated at a specific number of sample points along a
suitable set of search directions in each iteration [14], [15].
Thus, they are a category of decomposition-based algorithms.
At each iteration, CD optimizes one or a block of coordinates
(variables) while fixing all other coordinates or blocks [16].
In fact, the idea behind the CD algorithm is that, when
directional derivatives are unavailable or difficult to compute,
one-dimensional minimization can be replaced to approximate
a good solution [17]. In numerical linear algebra or arithmetic
optimization, gradient information is required to apply CD.
However, when exact gradient information is not applicable,
the method is called coordinate search (CS). In this case, the
algorithm benefits function value samplings on coordinates in
turn to find a suitable value for each variable. CS can solve
black-box optimization problems.

Despite the simplicity of CS and inexact derivative-free
minimization, the algorithm still produces acceptable practical
results and performs better than many other algorithms in
solving expensive optimization problems. Depending on the
number of coordinates that are optimized simultaneously, CS
can be viewed as two variants. At each iteration, the algorithm
may update only one coordinate based on the fitness evaluation
of the sampled points while all other coordinates are fixed.
In order to accelerate the optimization process, particularly in
large- or huge-scale optimization problems, a block-CS can be
utilized in which instead of only one coordinate, a block of
variables can be updated simultaneously, and consequently, the
number of fitness evaluations is decreased dramatically [18].

The motivation of this study is to develop a simple, general-
purpose, and gradient-free ANN optimization (i.e., training)
algorithm. Considering that CS is an efficient and popular
method for optimizing large-scale problems, we use and tailor
it to our purpose. In this research, we show that the proposed
CS algorithm can be exploited for training a fully connected
neural network with a personal computer using only one
CPU in a reasonable time, which is not feasible with other
gradient-free algorithms. In addition, in contrast with gradient-
based methods, CS can work with non-differentiable activation
functions, train an ANN for multi-objective problems with
multiple independent loss functions as in [19], and be applied
to any ANN/DNN architecture. In other words, it is structure-
independent and can be used in a graph structure DNN, e.g.,
a real brain structure. Our proposed algorithm shows better
performance than gradient-based algorithms in some cases,
especially when the training dataset is small, as well.

This paper is organized as follows: Section II outlines
our proposed method, highlighting the steps and employed
techniques, Section III provides information regarding exper-
imental settings and the results and analysis derived from our
study, and Section IV concludes with remarks.

II. PROPOSED METHOD

In this section, the components of the proposed method are
explained in detail. These techniques include the proposed CS

Fig. 1. An illustration of one iteration in two-extreme-point CS with three
variables - For each variable, two extreme points of the box-constraints are
evaluated, and the box-constraints are updated based on the best result.

scheme, bundling weights, initialization, and data feeding.

A. Proposed Two-extreme-point CS

In CS, one variable or block of the variables changes one-
by-one in each iteration during the optimization process, and
other variables and blocks are kept fixed just like in CD.
In two-extreme-point CS, two sample points (i.e., extreme
points) for each variable are evaluated in each iteration.
Because of its superiority according to our experiments, we
prefer this scheme to classical (two-center-point) CS, in which
center points of the right and left halves are evaluated for
updating the box-constraints, and three-point CS, in which the
left, center, and right points are compared. In Algorithm 1,
the pseudo-code of the proposed algorithm is provided. At
the first iteration, the lower and upper (extreme) values of
each variable’s box-constraint are selected (i.e., sampled) for
function evaluation, while for the next variables, the center
points of their box-constraints are considered as the initial
values. Fig. 1 illustrates this process. In this figure, there are
three variables, and the goal is to minimize the fitness function
f(X). After comparing the samples of extreme points of each
variable, the bounds of box-constraints are updated based on
a constraint shrinkage factor (BSF) to shrink the search space.
BSF is set to 5% in our tests. As shown in Algorithm 1, for
example, if the lowest point of a box-constraint is a better
solution than its uppest point, the uppest 5% of the interval
would be cut and removed. As a result, the interval shrinks
toward the better side. Then, the corresponding variable is set
to the center of the shrunk region. This process repeats for
all variables and updates their values. This process continues
in the second iteration with updated variables and shrunk in-
tervals resulting from the previous iteration. The optimization
stops at a predefined number of iterations. In this method, the
box-constraint for each variable shrinks exponentially with the
iteration number.

B. Bundling Weights

In order to accelerate the training procedure, as a large-scale
optimization problem, we bundle all variables into n bundles,
where n = Nw/BS, Nw is the number of variables (weights),
and BS stands for the bundle size. In each iteration, all vari-
ables in a bundle are optimized simultaneously. Therefore, CS

1541

Algorithm 1: Two-extreme-point CS
input : D: Dimension of the problem,

U : Upper bounds, L: Lower bounds,
Nite: Number of iterations,
BSF : Box-constraint shrinkage factor

output: S: The best solution found so far

for i← 1 to D do
Ci =

Ui−Li

2 ;
end
for j ← 1 to Nite do

for i← 1 to D do
SiL = f([C1, C2, ..., Li, ..., CD]);
SiR = f([C1, C2, ..., Ui, ..., CD]);
if SiL < SiR then

Ui = Ui − (Ui − Li)×BSF ;
Ci =

Ui−Li

2 ;
S = SiL;

end
if SiL > SiR then

Li = Li + (Ui − Li)×BSF ;
Ci =

Ui−Li

2 ;
S = SiR;

end
end

end

selects the extreme right or left point in their box-constraints
for all variables in the bundle based on the fitness evaluation.
At the beginning of each iteration, variables are shuffled and
bundled again to alleviate the dependency of optimization on
the order of variables. Nevertheless, the box-constraint differs
for each variable in a new bundle, we choose the upper and
lower bounds of the box-constraint of each variable as the
extreme points.

C. Initialization

For training a neural network, initialization of the weights
is very important. There are different approaches to this issue.
The first approach is center initialization which is a wise
choice for many applications, and more importantly for high-
dimensional problems [20]. But in this special case, the center
point of the box-constraint would be zero, and if all variables
(except one bundle) are set to zero for initialization, CS
can hardly move toward the optimum point. By changing
one bundle while other bundles are set to zero, it is more
likely to face multiplication by zero, which results in zero
for the network output. To prevent this problem, we can
choose a large value for bundle sizes to change many weights
simultaneously. In this way, inputs can find a non-zero pass to
the network output, however, as we will explain later, accuracy
may degrade by choosing a large bundle size.

Another way to initialize weights is random initialization,
uniform or normal. By normal distribution random initializa-
tion, with the mean being zero, we can benefit from center

Fig. 2. Three schemes of feeding the training data into network (a) Feeding
whole data as one batch, (b) Separate folds, (c) Sliding fold

point initialization and avoid plenty of multiplication by zero
[20]–[22].

D. Data Feeding

Feeding whole training data at once for optimization im-
proves accuracy, but is not the most appropriate choice in terms
of efficiency. Instead of using the whole data for training, data
can be separated into different folds. For each fitness call to
calculate the error value, a fold can be selected for training,
which is very similar to batch training [23]. In this way, the
network will see all the training data in multiple phases, and
accuracy will not suffer very much. The network trains faster
when fed one fold at a time. For example, if the training data
is divided into six folds, the training phase can be accelerated
by a factor of six. Feeding the network with different folds
can be done in two ways. The first one is dividing the training
data into several separate folds. The other way is starting with
a fold, and sliding that over the data. Fig. 2 illustrates three
different ways of feeding data.

III. EXPERIMENTS

A. Network Architecture

Almost in all structures of neural networks, one or more
fully connected layers are used. Hence, we have selected
a fully connected neural network with two hidden layers
as the framework, which is similar to [24]. The first and
second layers of this network consist of 300 and 100 nodes,
respectively. The benchmark used for evaluating the results is
the MNIST-Digit dataset [25], which is for handwriting digit
recognition. Each sample of this dataset comes in a 28×28
pixels image related to one digit. We flatten each image into
a 1D vector with 28×28 = 784 parameters. The input size of
the network was chosen equal to the input vector dimension,
784. The output layer has ten nodes, which represent ten
classes, and each class is linked to one digit. The total number
of weights is 266,610. MNIST-Digit has 60,000 images for
training and 10,000 images for testing. Fig. 3 illustrates the
network architecture and the number of nodes for each layer.
Activation functions for hidden layers one and two are ReLU
[26], and for the output layer, it is Softmax. The loss function
is categorical cross-entropy.

1542

Fig. 3. Structure and number of the nodes in the fully connected network,
used as our framework

A simple ANN is still a very high-dimensional optimization
problem. Gradient-based algorithms can train these networks
with high accuracy, but non-gradient-based algorithms such
as DE are remarkably time-consuming, and this makes them
impractical for training such huge-scale networks, especially
on a personal computer with only one CPU. On the other
hand, we know that the CS algorithm shrinks the search space
exponentially. Therefore, we have tailored it for training fully
connected networks.

B. Metrics

To assess the performance of training algorithms, we use
accuracy, precision, and recall as metrics. Precision is the
probability that an object is predicted correctly as a member
of class x, given that it is returned by the system as a member
of that class. Recall is the probability that an object of class
x is predicted correctly.

C. Numerical Results and Analysis

1) Comparing the Proposed Method with SGD: In this
section, the results of the two-extreme-point CS are compared
with SGD, which is a well-known algorithm for training neural
networks, when all or a small subset (e.g., 1/60) of the data
is used for training. We want to see the effect of training on a
small dataset. This is the case in many real-world applications
because there is no access to a large labeled dataset most of
the time.

First, we trained the network with 266,610 weights using all
training samples from the MNIST dataset, including 60,000
instances. The performance plot of training and testing is
provided in Figs. 4 and 5, respectively. The proposed CS starts
with a better accuracy value and converges to the optimum
point faster than SGD. However, in the end, the results show
almost the same test accuracy for both methods. So, the
suggested method can be regarded as an alternative for training
neural networks. The proposed CS shows a remarkable ability
to optimize very large-scale problems. Training and testing
results are reported in Table I.

In Fig. 5, the dashed red line shows if the training process is
stopped after five iterations, which is equal to 10D fitness calls,
the accuracy is relatively high (92.11%). This early stopping is
very beneficial in evolving neural network processes. Assume

Fig. 4. Comparing the training performance plots of SGD and the proposed
CS by feeding all training data

Fig. 5. Comparing the testing performance plots of SGD and the proposed
CS by feeding all training data

that the hyperparameters of an ANN or its structure should
be optimized as in [27] (evolving deep neural networks), in
which the network should be trained for each fitness call.
Therefore, many fitness calls are needed for the optimization
process, so the network should be trained many times which
is extremely time-consuming. If early stopping leads to high
accuracy, which is the case with our proposed CS method,
optimization can be accelerated significantly.

To continue, 1000 training samples from the MNIST Fash-
ion dataset, which includes 60,000 training samples in total,
are selected for training the neural network. This reflects the
lack of enough labeled training data and is one of the main
challenges in optimizing neural networks. Table II reports the
results for three test cases: SGD, the proposed CS, and the
hybrid scheme. In the hybrid method, the network is trained
using CS only for one iteration. In the next iterations (epochs),
the adjusted weights by CS are passed to SGD as initial
points. SGD optimizes the weights in the following epochs.
The hybrid method benefits from both the advantages of CS,

TABLE I
COMPARING THE RESULTS OF TWO-EXTREME-POINT CS AND SGD WHEN

FEEDING ALL TRAINING DATA

SGD Proposed CS
Train Accuracy 96.65% 96.59%
Test Accuracy 96.14% 96.12%

1543

Fig. 6. Comparing the training performance plots of SGD, the proposed CS,
and their hybrid by feeding a small subset (1/60) of training data

Fig. 7. Comparing the testing performance plots of SGD, the proposed CS,
and their hybrid by feeding a small subset (1/60) of training data

which is higher accuracy, and SGD, which is higher speed.
From the table, CS achieves the best accuracy while SGD
cannot reach notable accuracy with small-size training data.
The hybrid method outperforms SGD in terms of training and
test accuracies. Although it could not reach CS accuracy, it is
a faster technique than CS.

TABLE II
COMPARING SGD, TWO-EXTREME-POINT CS, AND HYBRID OPTIMIZER

BY FEEDING A SMALL SUBSET OF TRAINING DATA

SGD Proposed CS Hybrid
Train Accuracy 75.2% 96.9% 86.2%
Test Accuracy 71.1% 77.4% 75.7%

Performance plots for training and testing of this series of
experiments are illustrated in Figs. 6 and 7, respectively. As it
is illustrated, the proposed CS can find a better set of weights
with a small number of iterations. This fast convergence rate
is very beneficial since optimizing weights in neural networks
is demanding. So, a fast convergence rate reduces training
time. Meanwhile, we should note that, by using a smaller
set of training samples, CS would perform even faster while
achieving better accuracy than SGD.

To better understand network performance, the confusion
matrix, precision, and recall are also reported besides accuracy.
The normalized confusion matrix for SGD and the proposed
CS is shown in Fig. 8. For the proposed CS, the number and
amount of confusion between classes are less than SGD, which
indicates superior classification ability. In addition, Table III

reports the average precision and recall over all classes. For
both precision and recall cases, CS achieves significantly better
results than SGD. It proves our method’s superiority over SGD
in classification.

TABLE III
COMPARING AVERAGE PRECISION AND RECALL OVER ALL CLASSES

Average Precision Average Recall
SGD 0.7259 0.7185

Proposed CS 0.7774 0.7743

2) Effect of Initialization: Table IV shows the test accuracy
of the network when using different initialization approaches.
The center initialization which sets all weights to zero as the
initial values reached the accuracy of 93.71%. For uniform
random initialization, the results for different intervals are
reported. In addition, different values for mean and standard
deviation for random initialization with a normal distribution
are also evaluated. In conclusion, random normal initialization
(µ = 0, σ = 0.1) results in the highest accuracy.

3) Effect of Data Feeding: In this section, different ways
of feeding training data into the network are investigated and
the results are presented in Fig. 9. Feeding with separate
folds causes more fluctuations in training accuracy (Fig. 9(b)).
However, as shown in Fig. 9(c), when it reaches the end of
the training procedure of each fold, a spike appears in the
performance plot. The sliding amount in this test is 100, i.e.,
each fold slides 100 samples each time. Table V shows the
effect of different data feeding techniques on accuracy. The
highest accuracy can be achieved by feeding the whole data
in each function call, but the fastest training can be obtained
using separate and sliding folds. With the same training speed,
separate folds lead to the better accuracy.

The number of folds for feeding training data is a parameter
that can be studied. Higher numbers even make the optimiza-
tion faster, but maybe a trade-off is needed because the smaller
size of folds may degrade accuracy of training.

4) Effect of Different Bundle Sizes (BS): As mentioned
earlier, bundling weights is a sort of dimension reduction. To
explore the effect of bundle size (BS), some experiments were
conducted. It is noticeable that larger bundle sizes lead to a
lower number of function calls (NFC), and vice versa. For
a fair comparison, the NFC for all tests is considered a fixed
number. So, the number of iterations varies based on BS. When
BS is 100, the number of iterations is 40, and when BS is 25,
the number of iterations is decreased to 10 to keep the same
NFC. BS can be considered fixed for all iterations or it may
adaptively change in different iterations. For example, in one
of our tests, BS is set to 25 for the first five iterations (half of
the total NFC) and changed to 100 for the next 20 iterations.
An immature convergence may occur when there are fewer
iterations. Table VI reports the results of three test scenarios:
In the first scenario, we set the BS to 100 for 40 iterations. In
the second one, we run 20 iterations with BS=100 and change
it to 25 for the next 5 iterations. In the last scenario, BS is
increased from 25 to 100 after 5 iterations.

1544

(a) Proposed CS (b) SGD
Fig. 8. Comparing confusion matrices for the proposed method and SGD on MNIST

TABLE IV
COMPARING THE EFFECT OF DIFFERENT INITIALIZATION APPROACHES ON THE TEST ACCURACY

Fixed Initialization Random Initialization
Center Uniform Center Normal Distribution

Value = 0 R ∈ [−2, 2] R ∈ [−1, 1] µ = 0, σ = 0.05 µ = 0, σ = 0.1 µ = 0, σ = 0.2 µ = 0, σ = 0.3
93.71% 91.2% 92.63% 93.64% 93.82% 92.52% 92.3%

TABLE V
ACCURACY RESULTED FROM DIFFERENT FEEDING DATA APPROACHES

Feed whole data in one batch Feed with separate folds Feed with sliding fold
(sliding amount = 100)

Fixed center initialization 94.66% 93.71% 93.52%
Random center initialization

µ = 0, σ = 0.1
94.74% 93.82% 93.70%

Speed-up 1x ∼ 6x ∼ 6x

TABLE VI
THE EFFECT OF BUNDLE SIZE, EXPLORED IN THREE SCENARIOS: IN THE FIRST SCENARIO, BS IS SET TO 100 FOR 40 ITERATIONS. IN THE SECOND ONE,

WE RUN 20 ITERATIONS WITH BS=100 AND CHANGE IT TO 25 FOR THE NEXT 5 ITERATIONS. IN THE LAST SCENARIO, BS IS INCREASED FROM 25 TO
100 AFTER 5 ITERATIONS.

Bundle Size (BS)
Feed with separate folds 93.82% 93.95% 95.23%

Feed whole data in one batch 94.74% 94.88% 96.12%

Results show that when BS is low (i.e., 25) in the first
5 iterations, accuracy is higher than other cases. Due to the
lower BS in the first iterations, this scenario indicates better
exploration and higher accuracy. From the 6th iteration, we
increase the BS to 100 for the remaining 20 iterations to
accelerate the optimization process.

IV. CONCLUSION REMARKS

In this paper, a novel method for training a neural network
was presented as a high-dimensional optimization problem,
a method based on two-extreme-point bundling CS. The
proposed method is a simple gradient-free algorithm where
a group of variables (weights) are bundled together to be
optimized simultaneously. For each bundle, the extreme points

of box-constraints are evaluated to determine the optimal
values for all variables in the bundle.

We explored the effect of different initialization methods,
bundle sizes, and loading data approaches to present the
most effective method. Based on the obtained results, random
normal initialization, feeding whole training data in one batch,
and using lower bundle sizes in first iterations lead to better
accuracy. However, combining CS with SGD, feeding data
in separate folds, and increasing the bundle size accelerate
training.

Our suggested CS algorithm can be a feasible alternative
method to train artificial neural networks. It can find good
solutions with very small NFC, which can be very beneficial
in expensive optimization processes, where each function call

1545

(a) Feeding whole data in one batch

(b) Feeding with separate folds (6 batches)

(c) Feeding with sliding fold
Fig. 9. Results of training the fully connected neural network with the
proposed CS using different training data feeding methods

incurs high costs, as well as in evolving neural network
procedures aimed at acceleration. This algorithm treats the
problem as a black-box optimization task, so it can train com-
plex network structures such as graph-based networks, which
is not possible with gradient-based techniques. Moreover,
this algorithm can be used with non-differentiable activation
functions and also tailored to optimize networks for multi-
objective/multi-loss problems. In addition, the experiments
showed that the lack of enough labeled training data, which
is the case in many real-world applications, is in favor of our
method. Future works should conduct experiments on various
sizes and architectures of deep neural network.

REFERENCES

[1] M. Kaveh and M. S. Mesgari, “Application of meta-heuristic algorithms
for training neural networks and deep learning architectures: A compre-
hensive review,” Neural Processing Letters, pp. 1–104, 2022.

[2] A. Javanshir, T. T. Nguyen, M. P. Mahmud, and A. Z. Kouzani, “Training
spiking neural networks with metaheuristic algorithms,” Applied Sci-
ences, vol. 13, no. 8, p. 4809, 2023.

[3] F. H.-F. Leung, H.-K. Lam, S.-H. Ling, and P. K.-S. Tam, “Tuning of the
structure and parameters of a neural network using an improved genetic
algorithm,” IEEE Transactions on Neural networks, vol. 14, no. 1, pp.
79–88, 2003.

[4] M. Meissner, M. Schmuker, and G. Schneider, “Optimized particle
swarm optimization (opso) and its application to artificial neural network
training,” BMC bioinformatics, vol. 7, no. 1, pp. 1–11, 2006.

[5] M. Geethanjali, S. M. R. Slochanal, and R. Bhavani, “Pso trained ann-
based differential protection scheme for power transformers,” Neuro-
computing, vol. 71, no. 4-6, pp. 904–918, 2008.

[6] J. Yu, S. Wang, and L. Xi, “Evolving artificial neural networks using an
improved pso and dpso,” Neurocomputing, vol. 71, no. 4-6, pp. 1054–
1060, 2008.

[7] J. Zhou, Z. Duan, Y. Li, J. Deng, and D. Yu, “Pso-based neural
network optimization and its utilization in a boring machine,” Journal
of Materials Processing Technology, vol. 178, no. 1-3, pp. 19–23, 2006.

[8] M. Carvalho and T. B. Ludermir, “Particle swarm optimization of neural
network architectures andweights,” in 7th International Conference on
Hybrid Intelligent Systems (HIS 2007). IEEE, 2007, pp. 336–339.

[9] E. A. Grimaldi, F. Grimaccia, M. Mussetta, and R. Zich, “Pso as
an effective learning algorithm for neural network applications,” in
Proceedings. ICCEA 2004. 2004 3rd International Conference on Com-
putational Electromagnetics and Its Applications, 2004. IEEE, 2004,
pp. 557–560.

[10] J. Ilonen, J.-K. Kamarainen, and J. Lampinen, “Differential evolution
training algorithm for feed-forward neural networks,” Neural Processing
Letters, vol. 17, pp. 93–105, 2003.

[11] A. Jameson, “Gradient based optimization methods,” MAE Technical
Report No, no. 2057, 1995.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[13] H.-P. P. Schwefel, Evolution and optimum seeking: the sixth generation.
John Wiley & Sons, Inc., 1993.

[14] C. Bogani, M. Gasparo, and A. Papini, “Generalized pattern search
methods for a class of nonsmooth optimization problems with structure,”
Journal of Computational and Applied Mathematics, vol. 229, no. 1, pp.
283–293, 2009.

[15] E. Tzinis, “Bootstrapped coordinate search for multidimensional scal-
ing,” arXiv preprint arXiv:1902.01482, 2019.

[16] A. A. Bidgoli and S. Rahnamayan, “Memetic differential evolution
using coordinate descent,” in 2021 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2021, pp. 359–366.

[17] E. Frandi and A. Papini, “Coordinate search algorithms in multilevel
optimization,” Optimization Methods and Software, vol. 29, no. 5, pp.
1020–1041, 2014.

[18] P. Tseng, “Convergence of a block coordinate descent method for
nondifferentiable minimization,” Journal of optimization theory and
applications, vol. 109, no. 3, pp. 475–494, 2001.

[19] F. Nikbakhtsarvestani, A. Asilian Bidgoli, M. Ebrahimi, and S. Rahna-
mayan, “Multi-objective coordinate search optimization,” pp. 1–7, 2023.

[20] S. Rahnamayan and G. G. Wang, “Toward effective initialization for
large-scale search spaces,” Trans Syst, vol. 8, no. 3, pp. 355–367, 2009.

[21] S. Mahdavi, S. Rahnamayan, and K. Deb, “Center-based initialization
of cooperative co-evolutionary algorithm for large-scale optimization,”
in 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE,
2016, pp. 3557–3565.

[22] S. Rahnamayan and G. G. Wang, “Center-based initialization for large-
scale black-box problems,” in Proceedings of the 8th WSEAS interna-
tional conference on Artificial intelligence, knowledge engineering and
data bases, 2009, pp. 531–541.

[23] D. Masters and C. Luschi, “Revisiting small batch training for deep
neural networks,” arXiv preprint arXiv:1804.07612, 2018.

[24] Y. Lu and R. Yang, “Not all features are equal: Feature level-
ing deep neural networks for better interpretation,” arXiv preprint
arXiv:1905.10009, 2019.

[25] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[26] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.

[27] E. Rokhsatyazdi, S. Rahnamayan, H. Amirinia, and S. Ahmed, “Opti-
mizing lstm based network for forecasting stock market,” in 2020 IEEE
congress on evolutionary computation (CEC). IEEE, 2020, pp. 1–7.

1546

