
Connectivity Schemas in NeuroEvolution: What
Neural Architectures does GEPNN evolve?

Mwaura, Jonathan
Khoury College of Computer Sciences

Roux Institute At Northeastern University
Portland, ME, USA

j.mwaura@northeastern.edu

Heminway, Ryan
Khoury College of Computer Sciences

Northeastern University
Boston, MA, USA

heminway.r@northeastern.edu

Abstract—In recent years, there has been a rise in popularity of
using evolutionary algorithms (EA’s) in conjunction with artificial
neural networks (ANN’s). This approach is commonly known as
NeuroEvolution (NE). NeuroEvolutionary approaches typically
optimize just the weights of an ANN or optimize the architecture,
learning rates, thresholds, and weights together. Algorithms
capable of the latter are known as Topological and Weight
Evolving ANN (TWEANN). One such TWEANN is Gene Expres-
sion Programming for Neural Networks (GEPNN). This paper
presents an empirical investigation of the network topologies that
arise when GEPNN is used and whether evolved architectures
have any relation to state of the art architectures. Results show
that GEPNN naturally discovers powerful structural motifs such
as shortcut connections and also creates sparse networks. Both
these schemas have been shown to be advantageous in deep
learning techniques. As an additional contribution from this
work, we provide an open source library for developing GEPNN
solutions in Python.

Index Terms—Evolutionary computation, intelligent systems,
neural networks, NeuroEvolution, architectures

I. INTRODUCTION

Artificial neural networks (ANN’s) are mathematical mod-
els of neuron connectivity and learning in systems biology.
Although ANN’s depict a simplified version of what happens
in systems biology, they have proven to be powerful models
for solving complex problems [1], [2]. Performance of these
models relies on optimized weights and a network topology
suited for the problem. It is common for the topology to be
human designed based on mathematical formulations and for
the weights to be optimized through a gradient-based method
such as gradient descent.

Evolutionary Algorithms (EAs) are techniques that mimic
Darwinian evolution to create models for heuristic search.
These techniques have been shown to provide an alternative
method to neural network weights optimization. In addition,
EA techniques that evolve ramified tree-like structures (e.g
Gene Expression Programming) have shown great capabilities
at evolving both the architecture and the weights of the neural
network.

The work presented here investigates network topologies
that occur when EAs are used to evolve the structure and
weights of an ANN. The motivation is to compare the patterns
of connectivity created by evolutionary methods with those

seen in existing architectures that have provided state-of-the-
art results. Specifically, this work experiments with Gene
Expression Programming for Neural Networks (GEPNN)[3]
to observe the patterns of connectivity it creates. We view our
contribution as a stepping stone to understanding the broader
applications of EAs for topological innovation.

The rest of this paper is arranged as follows: First, a
literature review discussing ANNs, deep learning and GEPNN
is given. Second, the experimental setup is shown specifying
all aspects of the experimentation. Thirdly, the results showing
both performances and evolved structures is shown. Fourthly,
a discussion highlighting insights to the results is presented
and finally, a conclusion and motivation for further work is
drawn.

II. LITERATURE REVIEW

A. Artificial Neural Networks

Artificial neural networks, at their core, are connectionist
models for computation. Each fundamental unit in an ANN
is a node or neuron that calculates the weighted sum of its
inputs and applies an activation function to produce output.
The mathematical formulation for this is:

a = f(b+

n∑
i=1

wixi) (1)

where a represents the output of the node, f represents the ac-
tivation function used, b represents the bias term for the given
node, wi corresponds to the weight of the connection from
the ith input, and xi represents the value of the ith input. The
combination of these basic units of computation, with non-
linear activation functions, into a layered structured yielded
the neural network architecture known as the Multilayer Per-
ceptron (MLP) [4]. The MLP architecture, visualized in Fig.
1, is identifiable as having at least three layers corresponding
to an input, hidden, and output layer of densely connected
nodes.

Furthermore, the MLP architecture provides the basis for
feedforward neural network (FFNN) architectures. FFNN’s
map a fixed-size input to a fixed-size output using layers of
nodes which have incoming connections from all nodes of the
previous layer [5]. With each successive layer of non-linear
nodes, a FFNN is able to extract hierarchical relationships in

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1829

the inputs to model complex functions. This capability creates
a general processing schema that is well suited for classical
problems such as classification or regression. As powerful
as a feedforward network can be, its simplistic formulation
also leads to drawbacks. Notably, the architecture assumes
independence between training samples and constrains all
inputs and outputs to a fixed size. These drawbacks have
major impacts on tasks such as machine translation where
input sentences are often different lengths than the desired
output and modelling relationships between words in a sample
is critical to effective learning.

Fig. 1. Basic feedforward architecture of a Multilayer Perceptron1.

B. Deep Learning

The capabilities of the first neural networks spurred years of
machine learning (ML) research around these models includ-
ing the creation of different architectures, training approaches,
and optimization strategies. Deep learning (DL) refers to the
field of ML interested in computational models created with
multiple layers of processing units such that the system is
able to extract features at multiple levels of abstraction. There
are many DL architectures in literature. However, this work
reviews topical developments among two popular variants:
Convolutional Neural Networks (CNN’s) and Recurrent Neural
Networks (RNN’s). For a comprehensive review of deep
learning and its history, please see [5].

1) Convolutional Neural Networks: CNNs, also known as
ConvNets, are one of the most popular and successful ANN
architectures that depart from the archetype set forth by the
MLP. CNNs are specifically designed for processing data that
is image-like, structured into one or two dimensional arrays
[5]. A simple example of CNN architecture can be seen in
Fig. 2. The critical innovation of the first CNN was the
use of a single neuron with a ”local receptive field” such
that the activation value of the neuron can be viewed as
the application of a convolutional kernel to a part of the
input image [6]. This pattern of connectivity is referenced as
the ”convolutional layer” in works surrounding these topics
[5]. This architectural shift away from neurons with dense

1Image adapted from https://kindsonthegenius.com/blog/
basics-of-multilayer-perceptron-a-simple-explanation-of-multilayer-perceptron/

input connections unlocks key processing capabilities. First,
the application of convolution to create activation maps at
each layer provides the model with a natural way to learn
of how local features in an image are related. Second, since
dense connections are not used in convolutional layers, and the
weights for all units in such a layer are shared, the number
of free parameters that must be optimized during training is
dramatically reduced [6], this leads to ease in training.

Since CNN’s first use in 1989, there have been a number
of notable variations in architectural composition that demon-
strate further improvements in training efficiency and compu-
tational capabilities. For more detail on these innovations such
as pooling or dropout layers, please refer to [7].

Fig. 2. Architecture of a basic Convolutional Neural Network, with labeled
patterns of connectivity3.

Another innovative connection schema related to CNNs is
the ”shortcut” or ”skip” connection [8]. This schema provides
a connection between nodes that skips one or more layers
as visualized in Fig. 3. Although simplistic, this non-standard
connection has been used extensively with results that demon-
strate its flexibility and utility [9]–[12]. For instance in [9],
shortcut connections are used across stacked convolutional
layers such that the layers are forced to learn residual functions
rather a true underlying mapping. In addition, [13] argues that
shortcut connections enable construction of deeper networks
in the face of vanishing gradient when training deep networks
with gradient based optimization methods.

Further benefits of shortcut connections are shown in [14]–
[16]. For example, [15] shows that skip connections avoid
”singularities” which cause non-identifiability in the model
which hinders optimization during training and also leads to
favourable initialization of weight parameters [15]. These find-
ings highlight the value of shortcut connections in designing
deep neural network architecture as well as the fact that many
of these topological motifs may not be fully understood.

2) Recurrent Neural Networks: A different, yet simple,
shift in connectivity gave rise to another popular class of
DL models: Recurrent Neural Networks (RNN). These models
break the concept of FFNN connections to enable enhanced
processing of sequential data. As seen in Fig. 4, RNNs are
identified by ”recurrent” connections which allow the transfer

3Image adapted from https://www.analyticsvidhya.com/blog/2021/05/
20-questions-to-test-your-skills-on-cnn-convolutional-neural-networks/

1830

Fig. 3. Example of a shortcut connection commonly used in deep neural
network architectures. Image adapted from [9].

of information across sequence steps via a ”hidden state” [17].
With its recurrent formulation, RNN models explicitly solve
some of the shortcomings previously mentioned about FFNN.
Principally, RNNs do not assume independence between se-
quence elements and can be used for dynamically sized inputs
and outputs.

Continuing with simple shifts in connectivity, bidirectional
RNNs (BRNN’s) add an additional layer of hidden nodes
that support recurrent connections to both past and future
elements in the sequence [18]. While useful, the basic RNN
models still suffer from the same problems such as vanishing
gradients [13]. To overcome this, researchers created new
”memory cells” to replace traditional nodes in the hidden layer
of a network [19]. The most popular architectures for these
memory cells are called the Long Short-Term Memory unit
(LSTM) and the Gated Recurrent Unit (GRU) [17] (See in
Fig. 5). One way to understand these memory cells is as a
more complex activation function for a typical neuron, with
multiple functional components within it. The added functional
components are termed ”gates” which control the flow of data
throughout the cell to conditionally ”remember” or ”forget”
information within the hidden state [20]. Important to our
discussion on structures, [17] emphasize that the memory
cell is really a ”composite unit, built from simpler nodes
in a specific connectivity pattern”. Apart from its structure,
memory cells are imperative to modern RNN architectures
because their recurrent gated connections are able to propagate
errors across time steps in such a way that avoids exploding
or vanishing gradients [17].

In another feat of topological innovation, [21] combined
shortcut connections with RNNs for an architecture they
deemed a Dilated Recurrent Neural Network (dRNN). The
addition of a shortcut connection to an RNN was able to
produce state-of-the-art performance while improving training
efficiency ”even with standard RNN cells”.

This short review of architectural components present in
CNNs and RNNs showcases that although these are two differ-
ent models of connectivity, they both share a common theme
of using skip connections. In addition, skip connections seem

5Image adapted from https://towardsdatascience.com/
illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Fig. 4. Architecture of a simple RNN with a single hidden node. Image
adapted from [17].

Fig. 5. Architectures of LSTM and GRU cells, with labeled structural
components5.

to lead to ease of training as well as improved performance.
The rest of this work investigates whether skip connections
and other noteworthy connectivity schemas will arise with use
of GEPNN.

C. Gene Expression Programming for Neural Networks
(GEPNN)

Gene Expression Programming (GEP) [22] is an evolution-
ary algorithm (EA) similar to Genetic Algorithms and Genetic
Programming. GEP combines the simplicity of Genetic Algo-
rithm (linear chromosome representation) with the capabilities
of Genetic Programming (ramified tree structures), to create a
genotype/phenotype mapping that allows it to outperform its
predecessors on complex problems.

A GEP individual, the genome, is made of a fixed length
string of symbols that corresponds to one or more genes [22].
Symbols in the string correspond to arithmetic functions such
as addition or multiplication as well as to input variables. The
value of this representation is its expression into a phenotype
which represents a mathematical expression tree. The expres-
sion tree is what is ultimately used for fitness evaluations of the
individual. While each gene does have a fixed length, the open
reading frame (ORF) construction of the phenotype means that

1831

a genome is capable of representing expression trees of varying
sizes. This provides a wider search space and the propensity
to discover optimally sized expression trees for a given task.

An important extension to GEP is the capability to be
utilised in NeuroEvolution, that is, the application of an evo-
lutionary algorithm for optimization of one or more aspects of
ANNs. In the case of GEP, the ramified tree-like structures of
an individual phenotype is interpreted as a neural architecture.
This is referred to as Gene Expression Programming for
Neural Networks (GEPNN) [3]. The GEPNN evolves not only
the weights of a neural network but also its topology, activation
thresholds and learning rates.

In order to enable NeuroEvolution in the basic GEP lin-
ear encoding, new domains for weights and thresholds are
appended to the end of the genome, with the boundaries of
each domain determined by the maximum arity of the function
set used [3]. Typical genetic operators such as mutation and
recombination are easily modified to support these new do-
mains. Figure 6 shows an example of a GEPNN chromosome
and neural architecture.

Fig. 6. Example of the linear genome of a GEPNN individual and its
expression as a neural network phenotype, including weights and thresholds
for connections and nodes respectively. Adapted from [3].

NeuroEvolution (NE) is not exclusive to GEPNN. In various
works, genetic algorithms and evolution strategies have been
used in optimization of neural network weights as an alterna-
tive to backpropagation [23], [24]. For instance in [25], a GA
proved to be competitive and even advantageous in optimizing
the weights of deep neural networks with fixed topologies .

EAs such as GEPNN, that are built for the capability
to evolve the architecture, weights, learning thresholds and
activate weights of ANN are known as Topological and
Weight Evolving Artificial Neural Networks (TWEANNs)
[23]. TWEANN’s have been shown to perform compara-
bly to state of the ANN/DL models. For instance, [26],
[27] demonstrate the use of NeuroEvolution of Augmenting
Topologies (NEAT) to evolve the topology of memory cells
for sequence learning problems with RNNs. The results were
memory cells that were comparable in structural components
and performance to that of state-of-the-art LSTM cells. In
another work, Evolutionary Acquisition of Neural Topologies

(EANT) was shown to yield successive performance on an
XOR and Double Pole balancing problem [28]

NEAT and EANT provide an alternative to GEPNN and
utilise different encoding and optimization strategies to achieve
NE. Notable to our discussion on structures, NEAT uses
an individual encoding which includes unique identifiers for
nodes in the resultant network that allow for connections
between any two nodes [29]. EANT takes this a step further
by additionally encoding the type of connection between
nodes [28]. It is valuable to keep these differences in mind
throughout the remaining analysis. The work reported here
investigates GEPNN due to its simplicity and the capabilities
to mutate the head section of the genome which we posit could
lead to capabilities in evolving skip connections.

III. EXPERIMENTAL SETUP

In this work, the aim was to apply GEPNN to classical
machine learning problems as a medium for analyzing the pat-
terns of connectivity that arise in the evolved neural networks.
Similar to [30] where the capabilities for GEPNN in ML
is investigated, the work reported here use two classification
tasks and one regression problem.

The classification problems used were (a) Iris data set [31]: a
small but well studied classification task that has 150 samples,
4 features per sample, and 3 possible classes and (b) the Glass
data set [32]: a slightly more complex with 214 samples, 9
features per sample, and 6 possible classes. All experiments
used an 80/20 train and test split where test data was used to
evaluate the model’s ability to generalize to unseen samples
after it was finished training. The regression problem chosen
uses the polynomial function of y = 2.718a2 + 3.146a which
provide a relatively difficult function finding task. Note that
these ML problems are investigated in [30] and their usage in
the current work is to act as a benchmark to verify that the
implementation yielded expected results.

A. Algorithm Parameters

Parameters that are shared between all experiments can be
found in Table I. Parameters that are unique for the regression,
iris classification, and glass classification experiments can be
found in Table II. To clarify notation in the listed function
sets, typical activation functions used for neural network
construction are described using a formula of AF where A
describes the arity of the function, and F describes the type
of activation function used. Following the convention set in
[3], the arity descriptor D refers to a function with arity of
two. The activation functions are one of [ReLu, sigmoid, tanh]
and are denoted in the notation by the first letter of their name.
A function set entry of Ds thus refers to a sigmoid function
with an arity of two.

B. Experiment Variations

To support the focus on connectivity in GEPNN, two
GEPNN variations of each task described above were run. The
first variation uses the canonical description of GEPNN where
there are no limitations on the type of networks that can be

1832

TABLE I
COMMON PARAMETERS FOR ALL EXPERIMENTS

Number of runs 100 Gene length 41
Tournament size 3 Mutation rate 0.044
Population size 20 One point crossover rate 0.6

IS transposition rate 0.1 RIS transposition rate 0.1
Head length 7 Extra domains transposition rate 0.1

Number of Elites 1

TABLE II
EXPERIMENT-SPECIFIC PARAMETERS

Regression Iris Glass
Generations 5000 1000
Function Set *,+,/ -,*,+,Dr ,Dt,Ds

Terminal set a sl,pl,sw,pw Si,K,Fe,Al,RI,Ca,Ba,Mg,Na
Gene Count 1 3 7
Max arity 2 4

evolved other than those implicit in the encoding itself. The
second variation, denoted henceforth as ”guided”, restricts the
head section of every individual to a length of seven rather than
eight and restricts it to contain only functions. In this variation,
genetic operators are modified or disabled to maintain this
invariant. Elements within the head can still be mutated to
other functions within the function set. All other parameters
used for this experiment match those listed for the canonical
GEPNN experiment.

C. Fitness Functions

The fitness functions used match those used in [30] to
provide a fair comparison. Specifically, the fitness function
used for the regression experiment is:

fi =

Ct∑
i=1

(M − |C(i,j) − Tj |) (2)

where M is the range of selection, C(i, j) the value returned
by the individual i for fitness case j (out of Ct fitness cases)
and Tj is the target value for fitness case j. For this problem,
M = 100 was used which provides for fmax = 1000.

For the classification problems, a summed Cross Entropy
Loss between label predictions and true labels for the entire
training set is used. The output of a GEPNN individual, when
evaluating a specific input, is a vector of logits where each
individual logit is the output of a gene in the individual. During
the fitness evaluation of an individual, the logits are passed
through a Softmax function to create a probability distribution
over the set of possible classes. The Softmax plays the role of
the linking function as originally described in [3]. True labels
are formatted in a one-hot vector notation.

D. Programming Framework

The work described here extended the open-source Geppy
[33] library to create a new library for the flexible application
of GEPNN. In addition, the library is constructed with the
flexibility to create PyTorch compatible neural networks. This

new GEP library, GeppyNN, has been made publicly available
to enable reproducibility of the reported results.

IV. RESULTS

A. Performance Analysis

The results of the regression and classification tasks are
summarized in Tables III and IV respectively. All the results
represent an average across the one hundred runs conducted
for each task. Both variations of the GEPNN implementation
performed quite well on these tasks as can be seen in com-
parisons with the results found in [30].

TABLE III
REGRESSION RESULTS

Implementation Variation Average Max Fitness
Wang et al. [30] GEPNN 995.70

This paper GEPNN 995.05
This paper GEPNN (Guided) 996.26

TABLE IV
CLASSIFIER RESULTS

Implementation Data Set Variation Test Accuracy
Wang et al. [30] Iris GEPNN 94.00%

This paper Iris GEPNN 96.16%
This paper Iris GEPNN (Guided) 92.04%

Wang et al. [30] Glass GEPNN 57.94%
This paper Glass GEPNN 62.16%
This paper Glass GEPNN (Guided) 63.31%

The aim of showing these performances is to ascertain and
reproduce GEPNN performance on typical tasks applied to
machine learning. These results mirror those attributed to[30].
Of importance is that the performance of the guided GEPNN
is not hampered by the limitations imposed on it.

B. Structural Analysis

The main focus of this work is on analyzing the neural
architectures created by GEPNN. Figures 7,8,9,10, and 12
show the final neural architecture discovered by the best indi-
vidual among all runs for the regression (standard GEPNN),
regression (guided GEPNN), Glass (standard GEPNN), Glass
(guided GEPNN), and Iris (guided GEPNN) experiments re-
spectively. Connection weights are omitted from all images
for readability. Nodes are labeled with the activation function
used, corresponding to the provided function set for a given
experiment. Note also that each input can appear multiple
times as unique nodes in the image, due to the drawing library
used.

As a general observation across all experiments, GEPNN
produces FFNN of various sizes. Notably, all neural archi-
tectures are sparsely connected and a common motif, most
obvious in Figures 7 and 9, is the presence of shortcut connec-
tions. As expected, the algorithmic restrictions for the guided
experiments cause the neural architecture of each gene in an
individual to be characterized by a structure that resembles
a full binary tree in the hidden layers. This is easily seen

1833

Fig. 7. Neural architecture of the best individual found while solving the
regression experiment using standard GEPNN. This solution achieved a fitness
of 999.57.

Fig. 8. Neural architecture of the best individual found while solving the
guided regression experiment using guided GEPNN. This solution achieved a
fitness of 999.87.

in Figure 10. Although not included here, a visualization of
the individuals throughout the evolutionary path for the guided
experiments would show that the structure of the hidden layers
remains static throughout. The only perceived changes to
the neural architecture, for the guided experiments, come in

Fig. 9. Neural architecture of the best individual found while solving the
Glass classification experiment using standard GEPNN. This solution achieved
a fitness of 253.96 and a final test accuracy of 74.42%.

the form of changes to the activation functions, input layer
connections, and connection weights. As evident in Tables III
and IV, this restriction did not limit the effectiveness of the
solutions.

Taking a closer look at how these final neural architec-
tures evolve, Figure 12 depicts the neural architecture of
the best individual in the population at various points along
the evolutionary path for the Iris experiment using standard
GEPNN. The figure in the top left of Figure 12 depicts a very
simple neural architecture that provided the best fitness in the
population beginning at generation 10 and lasting to generation
29. In the top center of Figure 12, the neural architecture
is representative of a trend seen throughout the experiments:
improvements in the fitness of an individual are often made
by incrementally building out one sub-structure at a time.
In the case of the individual from generation 500, this was
realized by building out the central gene between generation
29 and generation 500. The individual from generation 550
captures the moment where the system begins expanding the
right gene structure as well. By generation 1000, the best
neural architecture found for the standard Iris classification
experiment is reminiscent of the structures found in other
experiments. Interestingly, we observe that the structure built
up in the middle gene for the individual at generation 500 has
now shifted to the left gene (likely through transposition) by
generation 1000.

V. DISCUSSION

The results across all figures demonstrate the capabilities
of GEPNN to evolve sparse connectivity schema as well
as shortcut (skip) connections. As earlier discussed these
two aspects have led to an increase in performance in both
CNNs and RNNs. In GEPNN, the sparse connectivity and
the skip connections can be explained by the representation
of GEPNN individuals. Principally, GEPNN uses a direct
linear representation where the phenotype is formulated by
an Open Reading Frame (ORF) expansion. This alone pro-
hibits recurrent connections from ever being discovered, since
connections are implicit in the representation so there is no
way to specify a type for the connection. Just as important,
the representation does not provide unique identifiers for
nodes. This is quite limiting and is the reason why dense
connections are simply impossible. Beneficially, though, the
flexibility surrounding placement of functions and terminals
allows the incorporation of diverse activation functions and
natural discovery of shortcut connections.

As demonstrated by the guided experiments, GEPNN pro-
vides a flexible tool for designers to constrain the types of
architectures discovered. This work presents a single way
to do this, but the authors posit that many different models
are possible. These algorithmic constraints can be viewed as
tool for designers to incorporate a priori knowledge about a
problem domain.

Finally, unlike most human designed architectures, or even
those generated by other evolutionary algorithms, GEPNN al-
gorithmically incorporates a set of diverse activation functions.

1834

Fig. 10. Neural architecture of the best individual found while solving the Glass classification experiment using guided GEPNN. This solution achieved a
fitness of 260.08 and a final test accuracy of 74.42%.

Fig. 11. Neural architecture of the best individual found while solving the
guided Iris classification experiment using guided GEPNN. This solution
achieved a fitness of 72.35 and a final test accuracy of 96.15%.

Fig. 12. Neural architecture of the best individual found at generations 29 (top
left), 500 (top center), 550 (top right), and 1000 (bottom) when solving the
Iris classification experiment using standard GEPNN. The fitnesses of these
individuals were 106.31, 84.02, 82.64, and 73.12 respectively. The final test
accuracy of the individual from generation 1000 was 100%.

The upside of this feature is worth exploring more in the future
as it is unique compared to other approaches and, as far as we
know, not well studied.

VI. CONCLUSION

This work explored the neural connectivity schemas dis-
covered by the GEPNN algorithm. Whereas not exhaustive,
the work carried out a literature review that shows that skip

connections contribute a lot of advantages in deep learning
techniques such as RNN and CNN. The review further con-
centrated on GEPNN, which is a TWEANN technique. The
experimentation created a variation of GEPNN, the so called
guided version, where the head section of the GEP could only
contain functions. This guided GEPNN created structures that
somewhat represented full binary trees; the intention being to
investigate the possibility of creating dense networks using
GEPNN.

The experimental results demonstrate the type of structures
that GEPNN is capable of producing. Results show GEPNN
naturally produces skip connections and sparse networks.
These results showcase that GEPNN can be utilised in tasks
that deep neural networks would be used. Furthermore, a
lightweight library for developing GEPNN solutions in Python
has been published to enable research repeatability.

A future work in this direction is to investigate capabilities
of other TWEANN technique such as EANT and NEAT and
create an empirical comparison with GEPNN. It is imme-
diately possible to theorize about the different patterns of
connectivity possible due to choices in the encoding repre-
sentations of these other TWEANNs, and we hope to explore
this experimentally in the future.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” in Advances in Neural Information Process-
ing Systems, F. Pereira, C. Burges, L. Bottou, and K.
Weinberger, Eds., vol. 25, Curran Associates, Inc., 2012.

[2] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is
all you need,” in Advances in Neural Information Pro-
cessing Systems, I. Guyon, U. V. Luxburg, S. Bengio,
et al., Eds., vol. 30, Curran Associates, Inc., 2017.

[3] C. Ferreira, “Designing neural networks using gene
expression programming,” in Applied Soft Computing
Technologies: The Challenge of Complexity, A. Abra-
ham, B. de Baets, M. Koppen, and B. Nickolay, Eds.,
Springer-Verlag, 2006, pp. 517–536.

[4] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
“Learning internal representations by error propaga-
tion,” in Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Volume 1: Founda-
tions, D. E. Rumelhart and J. L. Mcclelland, Eds., MIT
Press, 1986, pp. 318–362.

1835

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
nature, vol. 521, no. 7553, p. 436, 2015.

[6] Y. LeCun, B. Boser, J. Denker, et al., “Handwritten
digit recognition with a back-propagation network,” in
Advances in Neural Information Processing Systems, D.
Touretzky, Ed., vol. 2, Morgan-Kaufmann, 1989.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recog-
nition,” in Proceedings of the IEEE, vol. 86, 1998,
pp. 2278–2324.

[8] C. Bishop, Neural networks for pattern recognition.
Oxford University Press, USA, 1995.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” in Proceedings of
2016 IEEE Conference on Computer Vision and Pattern
Recognition, ser. CVPR ’16, IEEE, 2016, pp. 770–778.

[10] B. Ripley, Pattern Recognition And Neural Networks.
Jan. 2008, vol. 11.

[11] C. Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu,
“Deeply-Supervised Nets,” ArXiv e-prints, vol. stat.ML,
2014.

[12] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with
convolutions,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 1–9.

[13] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-
term dependencies with gradient descent is difficult,”
IEEE Transactions on Neural Networks, vol. 5, no. 2,
pp. 157–166, 1994.

[14] O. K. Oyedotun, K. A. Ismaeil, and D. Aouada, “Train-
ing very deep neural networks: Rethinking the role of
skip connections,” Neurocomputing, vol. 441, pp. 105–
117, 2021.

[15] E. Orhan and X. Pitkow, “Skip connections eliminate
singularities,” in International Conference on Learning
Representations, 2018.

[16] E. T. B. Lundby, H. Robinsson, A. Rasheed, I. J.
Halvorsen, and J. T. Gravdahl, Sparse neural networks
with skip-connections for identification of aluminum
electrolysis cell, 2023.

[17] Z. C. Lipton, “A critical review of recurrent
neural networks for sequence learning,” CoRR,
vol. abs/1506.00019, 2015.

[18] M. Schuster and K. Paliwal, “Bidirectional recurrent
neural networks,” IEEE Transactions on Signal Process-
ing, vol. 45, no. 11, pp. 2673–2681, 1997.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[20] K. Cho, B. van Merrienboer, C. Gulcehre, et al., Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation, 2014.

[21] S. Chang, Y. Zhang, W. Han, et al., “Dilated recurrent
neural networks,” Oct. 2017.

[22] C. Ferreira, “Gene expression programming: A new
adaptive algorithm for solving problems,” Complex Sys-
tems, vol. 13, no. 2, pp. 87–129, 2001.

[23] E. Papavasileiou, J. Cornelis, and B. Jansen, “A Sys-
tematic Literature Review of the Successors of “Neu-
roEvolution of Augmenting Topologies”,” Evolutionary
Computation, vol. 29, no. 1, pp. 1–73, Mar. 2021.

[24] X. Yao, “Evolving artificial neural networks,” Proceed-
ings of the IEEE, vol. 87, no. 9, pp. 1423–1447, 1999.

[25] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O.
Stanley, and J. Clune, “Deep neuroevolution: Genetic al-
gorithms are a competitive alternative for training deep
neural networks for reinforcement learning,” CoRR,
vol. abs/1712.06567, 2017.

[26] J. Bayer, D. Wierstra, J. Togelius, and J. Schmidhuber,
“Evolving memory cell structures for sequence learn-
ing,” in Artificial Neural Networks – ICANN 2009, C.
Alippi, M. Polycarpou, C. Panayiotou, and G. Ellinas,
Eds., Springer Berlin Heidelberg, 2009, pp. 755–764.

[27] A. Rawal and R. Miikkulainen, “From nodes to net-
works: Evolving recurrent neural networks.,” CoRR,
vol. abs/1803.04439, 2018.

[28] Y. Kassahun and G. Sommer, “Efficient reinforcement
learning through evolutionary acquisition of neural
topologies,” in The European Symposium on Artificial
Neural Networks, 2005.

[29] K. O. Stanley and R. Miikkulainen, “Evolving neural
networks through augmenting topologies,” Evolutionary
Computation, vol. 10, no. 2, pp. 99–127, 2002.

[30] W. Wang, Q. Li, and X. Qi, “Gene expression program-
ming neural network for regression and classification,”
in Advances in Computation and Intelligence, L. Kang,
Z. Cai, X. Yan, and Y. Liu, Eds., Springer Berlin
Heidelberg, 2008, pp. 212–219.

[31] R. A. Fisher, Iris, UCI Machine Learning Repository,
1988.

[32] B. German, Glass Identification, UCI Machine Learning
Repository, 1987.

[33] S. Gao, geppy: a Python framework for gene expression
programming, version 0.1, 2020. [Online]. Available:
https://github.com/ShuhuaGao/geppy.

1836

