
On the Feasibility of Using a High-level Solver
within Robotic Mobile Fulfillment Systems*

Maria Torcoroma Benavides-Robles, Jorge M. Cruz-Duarte,
José C. Ortiz-Bayliss, and Ivan Amaya

Tecnologico de Monterrey, Monterrey 64700, Mexico,
E-mails: {A00836554, jorge.cruz, jcobayliss, iamaya2}@tec.mx

Abstract—A Robotic Mobile Fulfillment System (RMFS) is a
collaborative environment in which a robot delivers products
to human for fulfilling orders. However, it is a computationally
complex optimization problem. In this work, we analyze the
feasibility of using high-level solvers for selecting suitable low-
level methods. To this end, we generate 111 instances distributed
into two datasets. Moreover, we implement two kinds of high-
level solvers. The first one is a set of handcrafted rules. The
second approach uses a decision tree. Our data reveals that it
is possible to construct high-level solvers that benefit from the
different strengths of the low-level methods by selecting which
one to apply. The rules produced by hand and the decision trees
high-level solvers are competitive concerning the best individual
performer in terms of two standard metrics for this problem:
throughput time and orders completed.

Index Terms—RMFS, Robotic Mobile Fulfillment System,
Warehouse, Kiva system, Mobile robots, E-commerce, RAWSim-
O simulator.

I. INTRODUCTION

RECENT years have been challenging for all disciplines.
Among such challenges, retailers experienced a sudden

rise in their online demand because of the pandemic. For
some companies, this meant developing and integrating a
new business scheme. For others, it implied a higher stress
in their supply chain. Nowadays, people have kept on using
online ordering systems and so automated warehouses must
be improved.

In the not-so-distant past, products within warehouses were
handled manually. Thanks to technology breakthroughs, espe-
cially in robotics, many systems integrate robots and human
labor into a collaborative environment nowadays [1], [2]. The
first automated warehouse dates from 1960 [3], but it was
not until 2008 that the interest grew, starting with Wurman et
al.’s proposal for automated warehouses [4]. They used an
automated guided vehicle to transport products to and from
their storage locations, and into a packing station. In doing
so, they improved the performance of the warehouse. They
also coined the terms ‘pods’ and ‘workstation’ for the storage
locations and the packing station. Plus, although their approach
was initially referred to as the Kiva system, it was later
generalized into the name used in the present, i.e., Robotic
Mobile Fulfillment Systems (RMFS). There are other diverse

*Maria Benavides thanks the Consejo Nacional de Humanidades, Ciencia
y Tecnologı́a (CONAHCyT) for the financial support provided through her
fellowship 866896. The authors also thank CONAHCyT for the financial
support given through grant 287479.

kinds of automated warehouses [3], but we limit ourselves to
RMFS for the sake of brevity.

Research on RMFS is sparse. From the scarce literature,
one can find that some authors have focused on the system’s
sensitivity. For example, Feng et al.analyzed the location
influence of workstations [5], Valle et al.studied the pod
allocation [6], and Ma et al.examined the distribution of Stock
Keeping Units (SKUs) [7]. Besides that, there have been a few
attempts to incorporate Artificial Intelligence into RMFS. For
example, Yang used a clustering model for grouping orders and
items based on similarity metrics [8]. Conversely, Douchan
and Kaminka developed a model based on Reinforcement
Learning that learns when to use different collision-avoidance
approaches [9]. Although such a work incorporates a high-
level approach for selecting lower-level techniques, it does
so for the robot movement component. Hence, it is easy to
identify a knowledge gap regarding the feasibility of using
high-level approaches to improve the pod storage component
of the RMFS. This work addresses to fill such a gap.

II. THEORETICAL FOUNDATIONS

We now present some foundations of our work.

A. Robotic Mobile Fulfillment Systems (RMFSs)

An RMFS integrates diverse variables within a warehouse,
such as the number of robots, pods, products, and humans.
These variables relate to different optimization problems,
e.g., the planning of routes for the robots, the scheduling of or-
ders, and the distribution of products within pods. Fig. 1 shows
an illustrative RMFS layout proposed by Wurman et al. in [4].
Hence, the RMFS corresponds to a complex optimization
problem, where that complexity stems from more than just the
inherent optimization problems. Instead, it emerges due to the
interaction of those problems and the many details that must
be simultaneously considered in real life. For example, in real
life, a robot and a pod can exist at the exact location (the pod
sits on top of the robot), but two robots (or two pods) cannot.
In the case of a large order, it may take quite some time to
fulfill it. Hence, processing an order at multiple workstations
may be desirable in real-world applications. Nevertheless, this
makes the modeling more complex and incurs the need for an
additional station that integrates all parts of the order. These
elements must be clearly defined since they interact when
simulating the warehouse.

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 1274

Fig. 1: Illustrative layout of a warehouse based on [4].

With the release of the Kiva system in [4], interest in these
proposals was sparked. However, because of the problem’s
complexity, isolating some components is usually necessary.
For instance, some authors have analyzed the pod allocation
component of the RMFS, albeit under different conditions. An
early approach was presented by Xie et al., who developed
a Genetic Programming-based Hyper-Heuristic strategy [10].
Later, Yuan et al. worked on the Multi-Robot Task Allocation
for e-commerce applications [11]. Further, Zhuang et al. im-
plemented a Mixed Integer Programming model that accounts
for workload balancing and pod conflicts [12].

Some companies have already attempted to implement an
RMFS. For example, Amazon has leveraged it to improve
worker safety, and they have opted for different kinds of robots
for handling different kinds of products [13]. In contrast,
FedEx has tested the system for sorting letters and small
packages [14]. Plus, Walmart has considered it to improve
product resupply [15]. In any case, alternatives are diverse, so
an adequate approach to tackling the RMFS is required.

B. Some previous attempts at solving RMFSs

Many researchers have considered diverse methods for tack-
ling the problem components related to RMFSs. Most of these
methods are hybrid approaches since it is necessary to consider
different subproblems simultaneously. For example, Yuan et
al.implemented a heuristic method based on Greedy and Sim-
ulated Annealing algorithms [16]; Zou et al.reported a multi-
component technique merging Variable Neighborhood Search,
semi-open queuing networks, and a two-phase approximate
approach [17]; Lee et al. presented an A* algorithm based on
a cyber-physical system [18]; and Sun et al. deployed an A*
approach for routing combined with a Simulated Annealing
algorithm for scheduling [19].

Similarly, other authors have focused on simulating different
aspects of the RMFS. A relevant example is that from Lienert
et al., who simulated changes in the storage layout and found
a way to increase warehouse throughput [20]. Another work
worth mentioning is that from Wu et al., who focused on the
structural parameter configuration of the warehouse [21].

Interestingly, many experts have also implemented Heuris-
tics and Metaheuristics for tackling the RMFS. Some ex-
amples worthy of mentioning include the Integrated Bi-level

Memetic algorithm [22], an auction-based heuristic method
[23], and a Heuristic Beam Search algorithm [24]. Other
implementations involve the use of Genetic Algorithms [10],
[25], Mathematical Programming techniques [26], Machine
Learning algorithms [8], [27], and Monte Carlo sampling [28].

C. Available Frameworks for RMFS

The literature contains different approaches for simulating the
warehouse within an RMFS. Among them, one finds two open-
source alternatives. The first one is Alphabet Soup, developed
by Hazard et al. [29] but no longer supported. Nonetheless, this
framework was employed by Merschformann et al. as a base
for the second alternative: the RAWSim-O framework [30].
RAWSim-O includes many new parameters, striving to di-
minish the gap between simulation and reality. Among them,
one can find different solvers for different subproblems; for
example, for allocating pods, it incorporates six alternatives:

Random: Place pods in random positions.
Fixed: Store pods at locked (fixed) positions.
Nearest: Allocate pods based on distance information.
Station Based: Store pods close to workstations.
Cache: Keep pods, will be used in the near future, close to

workstations.
Turnover: Assign positions to returning pods using item-

frequency information.

It is essential to mention that different authors have used
these two frameworks. Douchan et al. utilized Alphabet Soup
in their work for evaluating the effectiveness index intrinsic
reward [9]. Likewise, Merschformann et al. used RAWSim-O
to analyze the RMFS’s path planning component by generating
ten different instances [31]. In more recent work, Xie et
al. developed 27 instances to analyze the effect of splitting
an order across some workstations [32]. As the reader may
notice, the size of the datasets used in previous works is quite
conservative.

III. METHODOLOGY

Throughout our experiments, we used the RAWSim-O frame-
work [30] to emulate the warehouse and all the inner processes
that lead to order completion. Bear in mind that this frame-
work continuously generates orders for the simulation, and
the termination criterion was, thus, set to a fixed simulation
time of five hours. As mentioned, the RMFS involves many
variables easily defined within the framework, such as the
layout distribution, the number of robots, the total SKUs, and
the techniques used to solve each subproblem. Moreover, the
framework internally generates all the products and orders
with this information. For the scope of this work, we strove
to modify as few variables as possible, seeking to generate
different kinds of instances. Hence, we concentrated on the
pod allocation component of the RMFS. With this information,
we could monitor the effect of selecting different techniques
to solve such a component.

1275

A. Problem Instances

We generated 27 instance types with different parameters
based on a two-fold approach. So, instances can be sorted into
two big groups, as Table I shows. Set I contains instances with
some abrupt parameter variations, focusing on the number of
replenishment stations, workstations, robots, pods, and SKUs.
Our goal with this set was to generate instances with different
patterns, motivated by the idea that different solvers perform
differently. Here, we also want to analyzed the repeatability of
the solvers. Thus, we generated 15 instances of each type using
different seed values. So, we can find conflicting scenarios
for the same instance type; for example, within the same
type, cases where solver A performs great on one instance
but poorly on another.

TABLE I: Features of the instance types in Set I.

Type Replenishment Workstation Bots Pods SKUs

1 4 4 6 428 1000
2 4 4 75 428 1000
3 8 8 32 809 1000
4 4 4 32 428 10000
5 8 8 32 809 10000
6 4 4 32 428 100

The second set of instances, Set II, was simpler in nature
and only modified the number of replenishment stations,
workstations, and pods. Table II displays the features of the
instance types for this set. Our goal with Set II was to study
how the nature of instances changes with smoother transitions.
Hence, we selected combinations of big, medium, and small
values, which may provide more detailed patterns. Also, we
only generated a single instance of each type to keep things
as simple as possible.

TABLE II: Features of the instance types in Set II.

Type Replenishment Workstation Bots Pods SKUs

7 32 1 1 3094 1000
8 32 1 32 3094 1000
9 32 32 1 3094 1000

10 32 32 32 3094 1000
11 1 1 1 3094 1000
12 1 1 32 3094 1000
13 1 32 1 3094 1000
14 1 32 32 3094 1000
15 12 6 6 1190 1000
16 12 6 12 1190 1000
17 12 12 6 1190 1000
18 12 12 12 1190 1000
19 6 6 6 1190 1000
20 6 6 12 1190 1000
21 6 12 6 1190 1000
22 6 12 12 1190 1000
23 1 1 6 142 1000
24 1 1 12 1190 1000
25 1 6 1 618 1000
26 1 6 6 618 1000
27 1 6 12 618 1000

In summary, we analyzed 111 instances: 15 of each of the
first six types and one of the remaining 21 types. Although
this value may seem small, we remind the reader that previous

works have considered 10 [31] and 27 [32] instances, respec-
tively. Hence, we are confident that our proposed number
of instances is enough to elucidate some patterns. Finally,
for all experiments, we utilized the same layout distribution
for the warehouse as shown in Fig. 2. The reason is that
the location of workstations and replenishment stations affect
performance [33]. In our warehouse, we arranged the work-
stations on the right and the replenishment stations on the left,
following the scheme proposed by Merschformann et al. [30].
Plus, we considered two metrics for analyses: throughput time
and orders completed. The first indicates how long an order
takes to exit the system. The second one represents the number
of orders completed within the five-hour simulation window.

Fig. 2: Layout distribution generated by the RAWSim-O
framework [30].

B. Effect of Using High-level Solvers
For this work, we produce three high-level solvers for the

problem. The first one, SR, is based on an empirical analysis
of the behavior of the low-level methods. This handcrafted
approach uses a simple yet useful rule to select the low-level
method to apply in each situation:

IF Type == 1 OR Type == 2 use Station Based

IF Type == 3 use Nearest

ELSE use Turnover

The remaining two solvers are motivated by reducing the
need for human intervention in the design process. To do so,
we relied on Decision Trees (DTs). Such trees identify the
features that best characterize the instances and allow us to
map an instance to a suitable solving strategy. We train such
trees on 66% of the instances within Set I and test them on
the remaining 33% of the instances from such a set. Then,
we generate a DT for each one of the performance metrics
(i.e., throughput time and orders completed) using the package
rpart in R. Although we know that hyper-parameter tuning
may improve the performance of these classifiers, we opt for
the default parameter setup for simplicity. Let us call these
methods ST (Fig. 3a) and SO (Fig. 3b).

At this point, it is worth noticing that all high-level solvers
incorporate Nearest and Turnover. However, our experience

1276

(a) ST (throughput time)

(b) SO (orders completed)

Fig. 3: Internal structure of high-level solvers generated with
decision trees for different metrics.

suggests that Station Based could be useful in some cases,
as we consider in SR. Nonetheless, ST and SO opt for using
Random instead.

IV. EXPERIMENTAL RESULTS

Along the following lines, we analyze the results derived
from running the methods described in Sect. II-C on the in-
stances considered for this work. As we mentioned in Sect III,
we also consider two approaches for the high-level solvers:
a handcrafted rule and data-driven decision trees. Moreover,
since we analyze two performance metrics, we divide our
analysis into two folds, one per metric.

A. Problem instances

Let us begin by analyzing the generated instances and the
performance of baseline solvers. Tables III and IV present all
performance metrics. Both tables exhibit a similar behavior,
where only a few heuristics have the best performance, and
it is easy to see that the Random solver never wins, at least
in this set. Moreover, Cache is the best alternative only for a
single instance. Notwithstanding, it is also evident that there is
no such thing as the ‘perfect’ solver that works best across all

instances. This strengthens the idea that combining solvers is
a good approach. Such an effect can also be deduced from the
last column. Here, we provide information about a synthetic
oracle, for comparison purposes. However, such a solver is
unfeasible in practice as it requires solving each instance
with all solvers. Nonetheless, this synthetic solver serves as
a reference value. In fact, this approach allows for an average
throughput time 11.31 time units smaller than that of the best
solver. Similarly, it allows for an average of 91.33 more orders.
Bear in mind that such values disregard the cases where a
solver fails to finish in the allotted computation time.

TABLE III: Performance of baseline solvers on the generated
instances when considering the throughput time metric.

Type Random Fixed Nearest Station Based Cache Turnover Oracle

1 483.83 489.17 444.34 444.08 465.68 467.00 444.08
2 185.49 184.91 185.81 184.63 186.64 186.71 184.63
3 194.16 194.73 184.99 197.36 195.85 186.78 184.99
4 188.22 188.22 187.16 187.01 188.41 185.28 185.28
5 343.41 316.69 304.42 329.58 314.67 299.86 299.86
6 190.90 189.77 190.96 191.74 190.71 188.98 188.98
7 560.84 496.10 461.24 461.24 548.74 581.82 461.24
8 184.16 185.34 183.32 185.10 185.75 186.66 183.32
9 693.97 718.54 690.36 680.25 Inf 546.91 546.91
10 Inf Inf Inf 673.89 Inf Inf 673.89
11 574.03 542.15 502.09 502.09 532.65 560.82 502.09
12 183.40 183.21 186.48 184.10 184.76 181.40 181.40
13 740.75 672.86 581.95 784.77 Inf 694.81 581.95
14 644.38 603.08 Inf 631.67 Inf Inf 603.08
15 597.86 554.92 562.81 585.48 545.12 550.75 545.12
16 418.52 385.36 379.63 404.30 423.48 379.19 379.19
17 615.57 558.51 583.39 580.12 616.87 540.78 540.78
18 595.76 571.75 543.74 602.84 578.32 557.22 543.74
19 602.07 552.70 504.32 534.60 605.69 534.93 504.32
20 418.25 396.25 377.76 410.65 400.61 384.52 377.76
21 648.03 591.13 544.99 579.78 578.26 543.04 543.04
22 610.97 571.67 560.50 612.72 579.73 536.70 536.70
23 187.16 186.94 186.20 185.81 188.09 187.41 185.81
24 183.42 184.98 183.88 185.43 184.73 182.74 182.74
25 627.92 599.62 544.78 538.05 611.17 578.57 538.05
26 547.86 548.91 522.16 552.81 541.92 492.49 492.49
27 396.92 403.62 359.85 397.97 406.83 386.50 359.85

TABLE IV: Performance of baseline solvers on the generated
instances when considering the orders completed metric.

Type Random Fixed Nearest Station Based Cache Turnover Oracle

1 1493 1448 1599 1534 1497 1519 1599
2 4322 4339 4327 4347 4301 4306 4347
3 7934 8015 8214 7951 7981 8242 8242
4 4177 4167 4202 4202 4175 4228 4228
5 4319 4400 4781 4449 4514 4817 4817
6 4335 4362 4334 4325 4330 4345 4362
7 290 302 381 381 301 305 381
8 1092 1086 1096 1087 1079 1076 1096
9 224 229 238 214 0 261 261
10 0 0 0 4652 0 0 4652
11 279 313 350 350 322 298 350
12 1092 1093 1073 1085 1083 1105 1105
13 201 241 250 196 0 229 250
14 4949 5355 0 5085 0 0 5355
15 1146 1177 1204 1131 1138 1238 1238
16 2431 2591 2746 2548 2407 2608 2746
17 1089 1189 1205 1124 1112 1210 1210
18 2169 2307 2381 2183 2235 2332 2381
19 1104 1195 1180 1222 1088 1275 1275
20 2459 2569 2648 2491 2546 2574 2648
21 1060 1174 1196 1166 1165 1228 1228
22 2170 2181 2342 2210 2224 2422 2422
23 1073 1074 1074 1078 1067 1066 1078
24 1088 1080 1087 1078 1082 1093 1093
25 275 296 313 314 295 299 314
26 1189 1233 1243 1243 1220 1269 1269
27 2676 2621 2776 2611 2598 2669 2776

1277

B. High-level Solvers for Throughput Time

Among our three classifiers, SR is generic, and ST fo-
cuses on the throughput time. Hence, we now analyze their
performance over the test set. Our data indicates that it is
quite complex to properly match instance types and low-level
solvers. Even so, both approaches improve upon the baseline
solvers. For example, SR obtain the best overall value (7170.43
time units). In contrast, the best standalone low-level solver
(Turnover) exhibits a throughput time 21.98 time units higher.
In the case of ST, the improvement is smaller, being only
14.53 time units better than Turnover. Notice that the modest
performance of ST is due to the low accuracy that its internal
classifier exhibits (40% on the test set). Regardless of this
phenomenon, we must stress that it helps to improve the
overall process and reduce the throughput time. Also, the
humble savings SR and ST offer is somewhat expected at
this point since the classification process for this task still
presents many areas for improvement. Then, as we improve the
classification process in the future, we shall also improve the
overall performance of the high-level solvers. To emphasize
the benefit of using SR and ST, we analyze the percentage of
instances where each method obtains the best result (success
rate). As observed, both SR and ST obtain the best results in
50% of the instances in the test set (Fig. 4a). Moreover, they
outperform the low-level methods. Do note that in case of ties,
both solvers are successful. Hence, the total success rate can
be larger than one.

(a) Throughput time

(b) Orders completed

Fig. 4: Success rate of the high-level solvers and low-level
methods on the test set, considering both performance metrics.

So, What happens when the high-level solvers are tested on
unseen instances? Aiming to answer this question, we solved
Set II with ST. It is relevant to mention that SR cannot be
applied to unseen instances since the rule contains only seen
instance types (types 1 to 6). This time, however, the results

could be more favorable, as ST failed to improve upon the time
yielded by the best low-level solver (Station Based). Again,
this is expected since ST never saw these instances during
the training and because their parameters differ from those of
the first six instance types. Despite this adverse situation, ST
managed to rank second while providing solutions with 183.2
more time units than Station Based (the best performer in Set
II with 10,273.69 time units).

C. High-level Solvers for Orders Completed

In terms of the second metric, Turnover remains the best
low-level solver. Once again, both SR and SO represent the
best alternative, each yielding a total of 38 more orders than
Turnover on the test set. This is noteworthy since these two
solvers exhibit a different internal structure. Recall that SR
incorporates Station Based as an available low-level method,
and SO prefers Random instead. Thus, using different low-
level methods may produce the same exact performance.
Moreover, the classifier that powers SO has an accuracy of
50%, which is low. Hence, the performance improvement w.r.t.
Turnover may yet be expanded.

In terms of the success rate (Fig. 4b), SO falls slightly be-
hind Turnover. However, it is still competitive when compared
to the other low-level solvers.

Migrating to Set II exhibits the generalization limitations
of using a hand-made rule since it is impossible to use it
on unseen instances. In contrast, the best low-level solver,
Station Based, yields 33449 orders completed. This time,
SO cannot improve such a mark, although it ranks above
Cache, SR, and Turnover. However, it remains far from Station
Based, the best performer for this set, with a difference of
8735 orders completed. As with the previous metric, this
result is expected since the test is clearly beyond the actual
generalization capabilities of the models.

V. CONCLUSIONS

Throughout this paper we analyzed the feasibility of us-
ing a high-level solver, such as an algorithm portfolio, for
improving the performance of a Robotic Mobile Fulfillment
System (RMFS). To this end, we generated three different
approaches and analyzed two metrics: throughput time and
orders completed. One of our approaches (SR) represent a
handcrafted set of rules based on domain knowledge about
the instance subset. The remaining two (ST and SO) were
generated using decision trees. Additionally, we considered
two sets of instances: one with 90 instances and another one
with 21.

Our data revealed that ST and SO work for both metrics.
They both perform properly on the testing subset of Set I.
But more interestingly, they remain competitive when tackling
Set II, which contains never-before-seen instances of different
types. Nonetheless, the performance gains obtained by ST and
SO are not outstanding. But despite this, such a behaviour
is consistent with the current stage of our research. In the
case of SR, and although it performs well on the training set,

1278

it remains unfeasible for datasets with instances of different
types. Hence, decision trees seem to be a better option.

When analyzing the baseline solvers we noticed that the
Random solver is not a good option for the datasets. Notwith-
standing, it can be useful when combined with other ap-
proaches, as ST and SO showed. This agrees with the fact
that the best low-level solver changes depending on the
dataset. For example, in Set I, the best low-level option is
Turnover. However, in Set II, it is Station Based and Turnover
experiences a decrease in performance. In contrast, ST and
SO remain competitive. We deem this as noteworthy since it
implies that some generalization capability was learnt from
the data.

We are aware that there is a lot of work ahead of us.
For starters, the performance gains are modest. This can be
improved by tweaking the parameters of the decision trees or
by implementing a different algorithm altogether. Similarly,
the features that we analyze in this work are too broad. Hence,
there is a need for developing relevant features that allow to
differentiate among different instances of the same type. The
distribution of SKUs within pods may prove a relevant source
for such data. Finally, one may also expand upon the low-
level solvers and integrate other alternatives as well as more
instances.

REFERENCES

[1] A. Joseph, “Impact of robotic automation in e-commerce after pan-
demic,” COMMERCE & MANAGEMENT, p. 125.

[2] S. Tyrała, A. Orwat, and Ł. Makowski, “Trends and sales models in
e-commerce: Examples of best practices,” Zeszyty Naukowe, vol. 96,
no. 1, pp. 89–105, 2022.

[3] K. Azadeh, R. De Koster, and D. Roy, “Robotized and automated
warehouse systems: Review and recent developments,” Transportation
Science, vol. 53, no. 4, pp. 917–945, 2019.

[4] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” in AI Magazine,
vol. 29, pp. 9–19, 2008.

[5] L. Feng, X. Liu, M. Qi, S. Hua, and Q. Zhou, “Picking Station
Location in Traditional and Flying-V Aisle Warehouses for Robotic
Mobile Fulfillment System,” in 2018 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM), pp. 1436–
1440, IEEE, dec 2018.

[6] C. A. Valle and J. E. Beasley, “Order allocation, rack allocation and
rack sequencing for pickers in a mobile rack environment,” Computers
& Operations Research, vol. 125, p. 105090, jan 2021.

[7] Z. Ma, G. Wu, B. Ji, L. Wang, Q. Luo, and X. Chen, “A Novel Scattered
Storage Policy Considering Commodity Classification and Correlation in
Robotic Mobile Fulfillment Systems,” IEEE Transactions on Automation
Science and Engineering, pp. 1–14, 2022.

[8] N. Yang, “Evaluation of the Joint Impact of the Storage Assignment
and Order Batching in Mobile-Pod Warehouse Systems,” Mathematical
Problems in Engineering, vol. 2022, pp. 1–13, apr 2022.

[9] Y. Douchan and G. A. Kaminka, The Effectiveness Index Intrinsic
Reward for Coordinating Service Robots, vol. 6. 2018.

[10] J. Xie, Y. Mei, A. T. Ernst, X. Li, and A. Song, “A genetic programming-
based hyper-heuristic approach for storage location assignment prob-
lem,” Proceedings of the 2014 IEEE Congress on Evolutionary Compu-
tation, CEC 2014, pp. 3000–3007, 2014.

[11] R. Yuan, J. Li, X. Wang, and L. He, “Multirobot Task Allocation
in e-Commerce Robotic Mobile Fulfillment Systems,” Mathematical
Problems in Engineering, vol. 2021, 2021.

[12] Y. Zhuang, Y. Zhou, Y. Yuan, X. Hu, and E. Hassini, “Order picking op-
timization with rack-moving mobile robots and multiple workstations,”
European Journal of Operational Research, vol. 300, no. 2, pp. 527–544,
2021.

[13] A. Staff, “New technologies to improve Amazon employee safety,” 2021.
[14] W. Knight, “Robots Won’t Close the Warehouse Worker Gap Anytime

Soon,” 2021.
[15] J. Metzger, “Chain Reaction: We’re Partnering with Symbotic to Bring

High-Tech Automation to Our Supply Chain,” 2021.
[16] R. Yuan, J. Li, W. Wang, J. Dou, and L. Pan, “Storage Assignment Opti-

mization in Robotic Mobile Fulfillment Systems,” Complexity, vol. 2021,
pp. 1–11, nov 2021.

[17] B. Zou, Y. Y. Gong, X. Xu, and Z. Yuan, “Assignment rules in robotic
mobile fulfilment systems for online retailers,” International Journal of
Production Research, vol. 55, no. 20, pp. 6175–6192, 2017.

[18] C. Lee, B. Lin, K. Ng, Y. Lv, and W. Tai, “Smart robotic mobile
fulfillment system with dynamic conflict-free strategies considering
cyber-physical integration,” Advanced Engineering Informatics, vol. 42,
p. 100998, oct 2019.

[19] Y. Sun, N. Zhao, and G. Lodewijks, “An autonomous vehicle
interference-free scheduling approach on bidirectional paths in a robotic
mobile fulfillment system,” Expert Systems with Applications, vol. 178,
p. 114932, sep 2021.

[20] T. Lienert, T. Staab, C. Ludwig, and J. Fottner, “Simulation-based
performance analysis in robotic mobile fulfilment systems analyzing the
throughput of different layout configurations,” SIMULTECH 2018 - Pro-
ceedings of 8th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications, no. Simultech, pp. 383–
390, 2018.

[21] S. Wu, C. Chi, W. Wang, and Y. Wu, “Research of the layout opti-
mization in robotic mobile fulfillment systems,” International Journal
of Advanced Robotic Systems, vol. 17, p. 172988142097854, nov 2020.

[22] S. Teck and R. Dewil, “A bi-level memetic algorithm for the integrated
order and vehicle scheduling in a RMFS,” Applied Soft Computing,
vol. 121, p. 108770, may 2022.

[23] Y. Bao, G. Jiao, and M. Huang, “Cooperative optimization of pod
repositioning and AGV task allocation in Robotic Mobile Fulfillment
Systems,” Proceedings of the 33rd Chinese Control and Decision
Conference, CCDC 2021, pp. 2597–2601, 2021.

[24] N. Boysen, D. Briskorn, and S. Emde, “Parts-to-picker based order
processing in a rack-moving mobile robots environment,” European
Journal of Operational Research, vol. 262, no. 2, pp. 550–562, 2017.

[25] J. Zhang, F. Yang, and X. Weng, “A Building-Block-Based Genetic
Algorithm for Solving the Robots Allocation Problem in a Robotic
Mobile Fulfilment System,” Mathematical Problems in Engineering,
vol. 2019, pp. 1–15, feb 2019.

[26] S. Teck and R. Dewil, “Optimization models for scheduling operations
in robotic mobile fulfillment systems,” Applied Mathematical Modelling,
vol. 111, pp. 270–287, nov 2022.

[27] Y. Niu and F. Schulte, “Human Aspects in Collaborative Order Picking –
What if Robots Learned How to Give Humans a Break?,” pp. 541–550,
Springer International Publishing, 2021.

[28] F. J. Aldarondo and Y. A. Bozer, “Expected distances and alternative
design configurations for automated guided vehicle-based order pick-
ing systems,” International Journal of Production Research, vol. 60,
pp. 1298–1315, feb 2022.

[29] C. J. Hazard, P. R. Wurman, and R. D’Andrea, “Alphabet Soup: A
Testbed for Studying Resource Allocation in Multi-vehicle Systems,”
Proceedings of the AAAI Workshop on Auction-Based Robot Coordina-
tion, 2006.

[30] M. Merschformann, L. Xie, and H. Li, “RAWSim-O: A simulation
framework for robotic mobile fulfillment systems,” Logistics Research,
vol. 11, no. 1, pp. 1–11, 2018.

[31] M. Merschformann, L. Xie, and D. Erdmann, “Path planning for Robotic
Mobile Fulfillment Systems,” no. December 2018, 2017.

[32] L. Xie, N. Thieme, R. Krenzler, and H. Li, “Introducing split orders and
optimizing operational policies in robotic mobile fulfillment systems,”
European Journal of Operational Research, vol. 288, no. 1, pp. 80–97,
2021.

[33] T. Lamballais, D. Roy, and M. B. De Koster, “Estimating performance in
a Robotic Mobile Fulfillment System,” European Journal of Operational
Research, vol. 256, no. 3, pp. 976–990, 2017.

1279

