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Abstract—Recent studies have shown that the performance
of evolutionary neural architecture search (i.e., neuroevolution)
algorithms can be significantly improved by the use of island
based strategies which periodically experience extinction and
repopulation events. Further, it has been shown that the
simplex hyperparameter optimization (SHO) method can also
improve neuroevolution (NE) performance by optimizing neu-
ral network training hyperparameters while the NE algorithm
also trains and designs neural networks. This work provides
an extensive examination of combining island repopulation
events with five different island-based variations of SHO. These
methods are evaluated for the evolution of recurrent neural
networks for the challenging problem of multivariate time
series forecasting on two real world datasets. We show with
statistical significance that adding repopulation to the SHO
variants in almost every case improves performance, and for
those that does there is no statistical difference. In addition, we
find that one variant in particular, multi-island, random island
best genome (MIRIB) performs the best across all experiment

types.
Index Terms—Neuroevolution, Time Series Forecasting, Hy-

perparameter Optimization, Recurrent Neural Networks

I. INTRODUCTION

Determining the optimal design of a neural network for
a given task is a challenging problem, which can be exac-
erbated by the fact that what constitutes an optimal neural
network for a particular dataset may change depending on
how it is used — some use cases may for example sacrifice
accuracy for performance or low energy consumption [1].
Additionally, the manual design of neural networks is a
time consuming task which also requires significant domain
expertise. Due to this, neural architecture search (NAS)
methods have become a significant area of research, as they
can automate the design process of neural networks [2].

Traditional NAS techniques often rely on gradient-
based [2] or reinforcement learning methods [3] to explore
a large space of possible neural network architectures. How-
ever, searching for optimal architectures can also be done
utilizing evolutionary algorithms for NAS (i.e., neuroevolu-
tion). Neuroevolution (NE) algorithms are appealing in that
they can provide a more flexible and expansive framework
to search less restricted NAS search spaces [4].

Another benefit provided by NE algorithms is that they
tend to be easily distributed, allowing scalable performance
on high performance computing systems. They can even
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benefit from potentially superlinear speedup by using island-
based distribution strategies [5]. Recent work has shown that
NE algorithms can be even further sped up by utilizing
extinction and repopulation events, preventing them from
being stuck at local optima [6].

Another recent work by Kini ef al. [7] has shown that
NE algorithms can not only automate the process of train-
ing and designing neural networks, but also optimize the
hyperparameters with which the neural networks are trained,
further increasing their performance, using a method called
simplex hyperparameter optimization (SHO). This work is
novel in that while there are a few existing architecture
and hyperparameter search methodologies [8], [9], generally
NE algorithms have focused on evolving network topology
and weights, and if they do any hyperparameter tuning
they use common techniques such as random search [10],
Grid Search [11], Bayesian optimization [12], gradient-
based optimization [13], or population-based optimization
[14].

This work extends on the work by Kini et al. [7] by
exploring a series of five variants of SHO which can be
combined with island-based distribution strategies as well
as extinction and repopulation events for improved perfor-
mance. These methods have been implemented as part of the
Evolutionary eXploration of Augmenting Memory Models
(EXAMM) algorithm, which is a NE method focused on
the automated design of recurrent neural networks for time
series forecasting.

Time series forecasting (TSF) plays a pivotal role in
forecasting future trends and patterns, which facilitates
informed decision making, optimizes resource allocation,
and increases efficiency. Time series forecasting could be
used for financial decision making [15], promoting retail
sales [16], forecasting energy demand in power industry
[17], predicting spread of diseases [18], and route planning
in transportation [19]. Designing TSF models for various
applications manually could be time consuming and requires
tuning for the optimal hyperparameters, neural architecture
search (NAS) is an effective way to search for the optimal
neural network for specific TSF applications [20], [21].

This work evaluates the five SHO variants with and with-
out repopulation events to optimize training hyperparameters
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for the Adam and Nesterov momentum optimizers as part of
EXAMM for the evolution of recurrent neural networks to
perform TSF on two real world multivariate datasets. These
datasets are challenging in that they are non-seasonal and
noisy, one consisting of aviation sensor data coming from
multiple flights of Cessna 172 (C172) aircraft, and the other
from 7 years of sensor data from multiple wind turbines.
Results show that with statistical significance repopulation
events improve performance across almost all experiments,
and do not have a statistical difference when they do not.
Further, we show that a SHO variant which combines global
island selection for diversity with local selection of best
genomes hyperparmeters within islands performed the best
across all experiments.

II. EXAMM - EVOLUTIONARY EXPLORATION OF
AUGMENTING MEMORY MODELS

The Evolutionary eXploration of Augmenting Memory
Models (EXAMM) algorithm is a novel asynchronous and
distributed neuro-evolution strategy. EXAMM automates the
design and training of recurrent neural networks (RNNs)
with a particular focus on multivariate time series forecast-
ing (TSF). EXAMM employs an island-based strategy RNN
where instead of a utilizing single population in the evolu-
tion process, n islands with a capacity of m genomes evolve
independently with the occasional transfer of information
between islands via an inter-island crossover operation in
genome (RNN) generation. EXAMM typically initializes
itself with a single minimal seed genome, which is a RNN
that is just a fully connected input to output nodes. It is also
possible to utilize pre-designed and trained RNN in the case
of transfer learning [22]. Following this, EXAMM evolves
progressively more complex RNNs via a set of mutation,
inter-island and intra-island crossover operations.

EXAMM’s distributed algorithm is comprised of sin-
gle master process and several worker processes which
asynchronously request genomes, which are trained for a
selected amount of epochs, and after which the performance,
architecture, hyperparameters and weights of those genomes
are reported back to the master process. If a newly evaluated
genome is more fit (i.e., has a lower mean squared error
(MSE) on the validation datset) than the worst genome in
its target island, the worst genome will be removed from
that island and the new more fit genome will replace it.
Due to space restraints, we refer the reader to Ororbia et al.
[23] which provides an in depth description of the EXAMM
algorithm.

ITII. SIMPLEX HYPERPARAMETER OPTIMIZATION (SHO)

Simplex Hyperparameter Optimization (SHO) is a method
created by Desell et al. [24], which built upon the initial
notion of the Nelder-Mead simplex technique [25]. SHO
can utilize multiple parent values to estimate a gradient and
perform crossover in highly scalable distributed evolutionary
algorithms. Desell ef al. later extended SHO as a method
for optimizing Convolutional Neural Network (CNN) hyper-
parameters [26]. More recently, Kini et al. [7] utilized SHO

to optimize RNN-specific hyperparameters in the EXAMM
algorithm with promising results.

SHO begins with a burn-in phase to reduce initial bias of
the method. The burn-in phase typically lasts until all islands
(or a single population) are full, or until a given number of
genomes have been generated. In the burn in phase, for each
of the parameters p, initial values are randomly assigned
within predefined bounds, ~ U[hp min, Rp,maz)]:

hi = (Tand(07 1) * (hp,maw - hp,min)) + hp,min (1)

After the burn-in phase, the main phase of SHO performs
hyperparameter optimization. In this phase, to generate hy-
perparameters N distinct genomes are selected from within
the available population(s). Amongst the selected genomes,
SHO calculates the gradient between the hyperparameters of
the best genome hyeq ,, and the mean of the hyperparameters
of the other N — 1 genomes hgqyq,p. It then finds a random
point along the line made between the average and best
hyperparameters /1 and [2 and multiplies the gradient by this
point to generate the new simplex hyperparameters Nyeo p:

r = (rand(0,1) x 1) — Iy ()

hnew,p = havg,p + Tk (hbest,p - havgap) (3)

IV. SIMPLEX HYPERPARAMETER OPTIMIZATION (SHO)
VARIANTS

The previous work by Desell [26] only utilized a single
island without repopulation, and while the more recent
work by Kini er al. [7] utilized islands, it did not utilize
repopulation and only had a preliminary implementation of
island SHO which randomly selected parent genomes from
a randomly selected island (described as the MIRI method
in the next Section). This work expands on prior work by
providing an in depth examination of multiple methodolo-
gies for utilizing SHO given islands of populations, and
also incorporates repopulation into the process. Note for
all methodologies, the N parental genomes for SHO are
selected without replacement. In particular, we investigate
the five following variants on SHO (each with and without
repopulation):

A. Single Island, Full Population SHO (SIFP)

To provide a baseline methodology without islands, SIFP
utilizes a single population (single island) which is used for
both genome generation and hyperparameter optimization
with SHO. This is the same method as utilized in De-
sell [26].

B. Multi Island, Full Population SHO (MIFP)

This method is used to investigate the performance of
islands while still utilizing the baseline SHO method in
SIFP. Genomes are generated from multiple islands in a
round-robin fashion (as is standard in EXAMM), however
hyperparameters to train those genomes are generated by
SHO selecting the N parents at random from across all
islands (as if they were a single population).
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C. Multi Island, Random Island SHO (MIRI)

This method represents strategy used in prior work by
Kini et al. [7]. This also uses round-robin genome generation
from multiple islands, however for hyperparameter genera-
tion with SHO, it selects a random island (which may not
be the island used for genome generation) and then the N
randomly selected individuals for SHO from that random
island.

D. Multi Island, Current Island SHO (MICI)

This is similar to MIRI except that the N individuals for
SHO are randomly selected from the same (current) island
which is generating the RNN genome instead of a random
island.

E. Multi Island, Random Island Best Genome SHO (MIRIB)

The last method utilizes a more selective but global ap-
proach to SHO. MIRIB uses round-robin genome generation
from multiple islands as in the previous strategies, however
for SHO, it selects N islands at random and then from each
of the selected islands, it selects the hyperparameters from
best individual genome on that island in terms of its fitness
scores.

V. ISLAND REPOPULATION

To further improve the performance of the EXAMM
neuroevolution process, this work also investigates com-
bining these variants of SHO (MIFP, MIRI, MIRIB and
MICI) with the island repopulation procedure performed
originally by Lyu et al. [6]. This approach reduces sub-
optimal performance of EXAMM algorithm, which can
occur due to premature convergence of the island-based
strategies. This strategy uses periodic extinction and repopu-
lation events which occur with a specified frequency (in this
work either every 150 or 300 generated genomes). When
one of these events occur, the island whose best genome is
the worst compared to all other islands is repopulated by
removing all genomes and repopulating the island with new
genomes generated by mutation and crossover operations
from genome with the overall best fitness across all other
islands. This both encourages diversity but also prevents
islands from getting prematurely “stuck” in a local minima.

VI. RESULTS
A. Datasets

Similar to the work done by Kini er al. [7], this work
was evaluated using two large scale, real world, multi-
variate time series benchmark datasets provided as part of
the EXAMM github repository'. The first dataset consists
of flight data from the National General Aviation Flight
Information Database (NGAFID). This dataset contains 12
files each representing a flight from a Cessna 172 Skyhawk
(C172). The duration of each flight ranges between from
1 to 3 hours, with per second recordings from 31 sensors.
Recorded values from the pitch sensor of the plane were

Thttps://github.com/travisdesell/exact

Weight Initial After

Update Hyperparamer Range Burn In

- n [0.001, 0.05] | [0.00001, 0.3]

Nesterov m [0.9, 0.99] [0.9, 0.99]
51 [0.9, 0.99] [0.9, 0.99]

Adam B2 [0.9, 0.99] [0.9, 0.99]
€ [1e-9, 1e-8] [1e-9, 1e-8]

TABLE I: SHO Hyperparameter Value Ranges

considered as the response variable to predict for the flight
dataset experiments.

The second dataset was derived from ENGIE’s La Haute
Borne open data wind farm. It utilized multivariate time
series data collected from 5 wind turbines between 2013
and 2022, with 22 sensors being recorded with a 10 minute
frequency. The response variable predicted for the experi-
ments was Average Active Power.

B. Experimental Setup

Each dataset was evaluated using each of the five vari-
ations on SHO to optimize hyperparameters for Nesterov
momentum and Adam as neural network training optimizers.
All methods except for SIFP were evaluated using no re-
population, repopulation every 150 generated genomes, and
repopulation every 300 generated genomes. It is not possible
to utilize repopulation on SIFP as there is only a single
population. The experiments with islands utilized 10 islands
with each having an island capacity of 10, SIFP utilized a
single island with a capacity of 100. Each EXAMM run
generated and evaluated 10,000 genomes (RNNs). Table I
shows the pre and post burn-in hyperparameter value ranges.
Each of the 54 experimental setups (9 SHO variations
across 2 optimizers across 3 repopulation strategies) were
repeated 20 times to gather enough performance results for
tests of statistical significance. These experiments were run
on Rochester Insitute of Technology’s research computing
cluster [27]. All experiments were run using 16 CPU cores
and 8GB RAM.

C. Effects of Repopulation on SHO Performance

Figure 1 demonstrates the convergence of the varying
SHO variants, with the solid line denoting the performance
of the mean of the best found RNN genome mean squared
error (MSE) across the 20 repeats for the experiments. The
shaded in area presents the range between the best found
RNN of the best performing experiment (overall lowest
MSE) and the best found RNN of the worst performing ex-
periment after generating that many genomes. These results
highlight how well the variants which utilize islands perform
over the single population SIFP variant. Additionally, for
the C172 data, we see an interesting effect where the
MIRIB variant performs worse than other island variants
without repopulation, but the best when repopulation is
added. MIRIB also shows the best performance across the
wind dataset for Adam optimization, however not for the
wind dataset with Nesterov momentum.
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Fig. 1: Search fitness over time corresponding to different variants of SHO tuned EXAMM compared with and without
repopulation with different frequencies for both datasets and varying weight update methods.

Tables II, III, IV and V further summarize the final results
of the experiments with a comparison of SHO with and
without repopulation for the Adam and Nesterov optimizers
on the C172 and wind datasets across all experiments with
(RP) and without (No RP) repopulation. The Average Best
MSE column in these tables presents the average global best
fitness at the end of evolution, across the entire set of 20
repeated runs for each experiment. The Global Best MSE
column presents the best (minimum) MSE value across all
the 20 runs for each experiment. The no repopulation (No
RP) and repopulation (RP) columns compare the methods

with and without repopulation, given a repopulation fre-
quency of 150. MSE values in italic show the best MSE
for the variant, and MSE values in bold show the best MSE
value across all variants, with and without repopulation.
The tables also show the Mann—Whitney U test p-values
comparing the SHO global best validation MSE with and
without repopulation. Values in bold show the variants where
repopulation performed better with a statistically significant
difference with o = 0.1.

For the C172 data, results show that with statistical sig-
nificance across all variants, the variants with repopulation
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C172 Adam

Avg Best MSE Global Best MSE
SHO p-values No RP RP No RP RP
SIFP 0.0003342 0.000234

MIFP 0.000047 | 0.0003165

0.0002818 | 0.000258 | 0.000234

MIRI 0.000066 | 0.0003154

0.0002911 | 0.000253 | 0.000239

MIRIB | 0.000029 | 0.0003208

0.0002773 | 0.000247 | 0.000227

MICI 0.000104 | 0.0003061

0.0002847 | 0.000243 | 0.000231

TABLE II: SHO variant performance significance testing results, with and without repopulation, for the flight dataset and

Adam optimizer.

C172 Nesterov

Avg Best MSE Global Best MSE
SHO p-values No RP RP No RP RP
SIFP 0.0003349 0.000230

MIFP 0.0000052 | 0.0003004

0.0002591 | 0.000254 | 0.000219

MIRI 0.000029 | 0.0002909

0.0002525 | 0.000228 | 0.000215

MIRIB | 0.0000006 | 0.0003112

0.0002327 | 0.000252 | 0.000208

MICI 0.000087 | 0.0002957

0.0002578 | 0.000257 | 0.000224

TABLE III: SHO variant performance significance testing results, with and without repopulation, for the flight dataset

and Nesterov optimizer.

Wind Adam

Avg Best MSE Global Best MSE
SHO p-values No RP RP No RP RP
SIFP - 0.00313 - 0.00303 -
MIFP 0.053 0.003051 | 0.003040 | 0.00300 | 0.00295
MIRI 0.119 0.003076 | 0.003088 | 0.00301 | 0.00303
MIRIB 0.009 0.003039 | 0.002938 | 0.00296 | 0.00238
MICI 0.133 0.002992 | 0.002997 | 0.00285 | 0.00293

TABLE 1IV: SHO variant performance significance testing
results, with and without repopulation, for the wind dataset
and Adam optimizer.

Wind Nesterov
Avg Best MSE Global Best MSE

SHO p-values No RP RP No RP RP
SIFP - 0.00308 - 0.00299 -
MIFP 0.029 0.002937 | 0.002916 | 0.00295 | 0.002891
MIRI 0.457 0.003047 | 0.003095 | 0.002958 | 0.00303
MIRIB 0.006 0.003101 | 0.002867 0.003 0.00244
MICI 0.243 0.003053 | 0.003071 0.00293 | 0.002978

TABLE V: SHO variant performance significance testing
results, with and without repopulation, for the wind dataset
and Nesterov optimizer.

perform better. Additionally, the MIRIB variant for both the
Nesterov and Adam optimizers performed the best. On the
wind dataset, MIRI and MICI did not have a statistically
significant difference with and without repopulation, how-
ever MIFP did, and MIRIB with repopulation, similar to
the flight dataset found the best genomes in the average and
overall cases, again with statistical significance.

Overall, these results are interesting in first confirming
that repopulation of island strategies provides a statistically
significant improvement in performance, or at the very
least does not reduce performance. Additionally, the MIRIB
variant with repopulation was shown to be highly reliable,
performing best across all experiments. With the MIFP
variant performing second best, these results suggest that

utilizing a more global method for SHO optimization, when
coupled with repopulation allows for faster convergence to
better performing hyperparameters, with the MIFIB variant
allowing for the best combination of exploration (using
hyperparameters from across all islands) and exploitation
(using the best hyperparameters from those islands). The
variants which use hyperparameters from a single island
(MIRI and MICT) most likely lack good exploitation in the
case of MIRI, and exploration in the case of MICL.

VII. DISCUSSION

The use of islands in distributed evolutionary algorithms
has been a long used method for improving their per-
formance, as they have been shown to potentially allow
superlinear speedup [5]. More recent work has shown that
utilizing islands with repopulation events can provide addi-
tional significant performance improvement for evolutionary
neural architecture search (neuroevolution) algorithms [6].
This work extends on this with an investigation of how
to combine a recent method for combining hyperparamater
optimization for training of neural networks generated in
a neuroevolution algorithm called simplex hyperparameter
optimization (SHO) [7] with repopulating islands.

Four island based variants of SHO were investigated with
and without repopulation, and compared to a baseline single
population methodology on the challenging task of time
series forecasting using two real world datasets. Results
show that for almost all experiments, utilizing repopulation
provides a statistically significant improvement in perfor-
mance, and when it does not the difference is not statistically
significant. Additionally, we show that a variant which com-
bines a global search of hyperparameters with an exploitative
selection process where the best set of hyperparameters from
each island is selected for SHO to generate new candidate
hyperparameters performed the best across all datasets and
optimization problems.

1841



The methodologies presented in this paper are generic and
can be applied to any population based neuroevolution al-
gorithm. In particular, they provide effective methodologies
for the automatic design and training of neural networks,
while additionally optimizing the hyperparameters to train
those neural networks for further performance benefit. These
methods can significantly simplify automated design of neu-
ral networks, as in combination they effectively automates
most of the design process.
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