
Characterization of CEC Single-Objective
Optimization Competition Benchmarks and

Algorithms
Mustafa Mısır

Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
mustafa.misir@dukekunshan.edu.cn

Abstract—The present study provides an analysis on the char-
acteristics of single-objective optimization benchmark problems
as well as the algorithms used to solve them. The target opti-
mization domain involves the CEC competitions, each consisting
a set of mathematical functions. Concerning the optimization
tasks, the idea is to investigate the dis/-similarities between
different competition scenarios and individual benchmarks. For
the solvers, the goal is to detect the dis/-similarities between
the algorithms applied to the CEC benchmarks. Those analysis
missions are carried out by using the features directly and
automatically extracted from the performance data, the quality
of the solutions achieved by each algorithm on the benchmarks.
The feature extraction process is realized through Singular Value
Decomposition. Following the analysis on the algorithms, the
potential of algorithm selection has been evaluated to see the
performance improvement without actually developing a new
algorithm, against those 20 algorithms.

Index Terms—Single-objective Optimization, Singular Value
Decomposition, Algorithm Selection

I. INTRODUCTION

Algorithmic design is one of the major tasks both in research
and practice. In combinatorial optimization, there have been
immense design efforts, resulting in many new algorithms
being introduced at a fast pace, claiming to surpass the existing
ones. Alongside that, new optimization problem instances
have been brought for experimentally evaluating those al-
gorithms. For the latter aspect, commonly used benchmarks
have been built and utilized by the researchers to demonstrate
their designs are better than others concerning certain per-
formance criteria. Similarly, various academic competitions,
some yearly, have been organized, offering new benchmark
sets. Such benchmark sets, especially the hand-made/picked
ones, are usually shaped by maintaining diversity referring to
the characteristics of the benchmarks. The aim is to assess the
distinct capabilities of the algorithms devised for the target
problem domains. The diversity in the benchmark sets tend
to be determined by considering problem specific traits. For
instance, in function optimization, different modalities might
be taken into account for maintaining diversity.

This paper aims at examining the existing benchmark sets
from a popular, yearly competition series, i.e. the IEEE
Congress on Evolutionary Computation (CEC) competitions

The research results of this publication are sponsored by the Kunshan
Municipal Government research funding.

on single objective optimization of mathematical functions.
The complete setting used for evaluation is originated from [1].
To be specific, 9 competition sets, totalling 182 benchmarks
are accommodated. 20 algorithms are performed, including
10 Particle Swarm Optimization (PSO) and 10 Differential
Evolution (DE) variants. The referenced work [1] already
offers a comprehensive performance analysis between those
algorithms on the CEC competition benchmarks. Beyond
that work, the present study examines both the benchmark
sets and the algorithms. In the matter of benchmarks, the
benchmark sets are compared against each other to determine
how dis/-similar they are. Next, the dis/-similarities among
the benchmark problems have been investigated. The same
approach is replicated on the algorithms for identifying their
dis/-similarity levels. Additionally, Algorithm Selection (AS)
[2] is considered to calculate the performance gain that can
achieved without devising a new algorithm but simply ben-
efiting those existing 20 algorithms. AS, in this case per-
instance AS, essentially refers to automatically choosing an
algorithm for solving a particular problem instead. All these
procedures are mainly conducted via a set of features extracted
from the algorithms’ performances on the benchmarks, instead
of using some hand-picked features. Following [3], Singular
Value Decomposition (SVD) [4] was used to extract a number
of latent / hidden features to represent both the algorithms
and problem instances in [5]. Concerning the effectiveness of
those SVD driven latent features, similarly they have been used
to identify substantially smaller representative instance sets
compared to a large instance set in [6]. This allowed testing an
algorithm on a small benchmark set, portraying the algorithm’s
performance on the actual, large set without running it.

In the remainder of the paper, Section II details the method-
ology. Section III provides the corresponding computational
analysis and discussion. The paper is summarized while point-
ing out the follow-up research in Section IV.

II. METHOD

Singular Value Decomposition (SVD) [4] is applied to
the rank performance matrix, R, consisting of the rank of
each algorithm on each benchmark. R is produced from the
benchmark-algorithm performance matrix, P , having the aver-
age fitness values achieved over a particular number of trials.
The best performing algorithm gets the best rank, so the lowest

2023 IEEE Symposium Series on Computational Intelligence (SSCI)
Mexico City, Mexico. December 5-8, 2023

978-0-7381-4408-5/23/$31.00 ©2023 IEEE 369

value, while the worst rank, so then highest value, is assigned
to the worst performing algorithm on each benchmark. Thus,
when n algorithms are available, the ranks ranging between
1 and n are assigned to the algorithms. When the same
performance is delivered by more than one algorithm on a
particular benchmark, their ranks are averaged. For instance,
if top 3 algorithms have the same performance, instead of
putting the rank of 1 for these 3 algorithms, (1+2+3)/3 = 2 is
assigned to each. The resulting rank matrix, R, is decomposed
into 3 matrices as follows:

R = UΣV T ≈ UrΣV T
r

where U is the matrix representing the benchmarks, V is the
matrix representing the algorithms and Σ is a diagonal matrix
with singular values denoting the importance of each latent
feature, i.e. the matrix columns of U and V . In other words,
each row of U involves the features characterizing a bench-
mark and each row of V involves the features characterizing
an algorithm. For eliminating the noise and maintaining the
most critical and representative features, only top r features
are used. These features are then exploited to

• identify the benchmark instances that are substantially
dis/-similar via clustering,

• specify the benchmark sets that are most in/-comparable
with clustering and correlation analysis,

• investigate the diversity and fairness in terms of algorithm
performance evaluation, of the benchmarks sets,

• determine the algorithms with un/-alike problem solving
behaviour through clustering,

• outperform all the available algorithms without designing
any new one by the help those same algorithms in an
algorithm selection setting.

III. COMPUTATIONAL RESULTS

The data and experimental setting is from [1], where 20
algorithms and 182 benchmark problems were accommodated.
Table I shows the algorithms used. Referring to [1], the
algorithms are essentially belong to two families of Dif-
ferential Evolution (DE) and Particle Swarm Optimization
(PSO). These are well-known meta-heuristic methods, espe-
cially in combinatorial optimization. Table II lists the utilized
CEC competition benchmarks of single-objective optimization,
composed of various mathematical functions. Each algorithm
was applied to every benchmark 51 times. The average of the
fitness values is recorded as the performance indicator.

Dataset # Benchmarks
CEC 2011 22
CEC 2014_10 30
CEC 2014_50 30
CEC 2017_10 30
CEC 2017_50 30
CEC 2020_5 10
CEC 2020_10 10
CEC 2020_15 10
CEC 2020_20 10

TABLE II: The CEC competition benchmarks (the numbers
following an underscore indicates the functions’ dimensions)

Figure 1 shows the performance of the employed 20 algo-
rithms across all the CEC benchmarks, in terms of average
ranks. As also discussed in [1], the DE variants, in general,
outperforms the PSO variants. That being said, it is possible
to notify benchmarks where certain PSO algorithms offer
better performance than the DE algorithms. This outcome is

Differential Evolution (DE) Particle Swarm Optimization (PSO)
DE [7] PSO [8]
Self-Adaptive DE (SADE) [9] Comprehensive Learning PSO (CLPSO) [10]
Adaptive Population Tuning Scheme for DE (APTS-DE)
[11]

PSO with Aging Leader and Challengers (ALC-PSO) [12]

DE with an Individual-dependent mechanism (IDE) [13] Heterogeneous CLPSO (HCLPSO) [14]
Adaptive DE with Multiple sub-populations (MPADE) [15] PSO with Inter-swarm Interactive Learning (IILPSO) [16]
Hybrid Memetic Composite DE (CoDE) and JADE
(HMJCDE) [17]

Genetic Learning PSO (GLPSO) [18]

Ensemble Sinosoidol Parameter Adaptation, Success-
History based Adaptive DE (SHADE), with Linear popula-
tion size reduction (L-SHADE) (L-SHADE-cnEpSin) [19]

Ensemble PSO (EPSO) [20]

Hierarchical Archive based DE (HARD-DE) [21] Dual-Environmental PSO (DEPSO) [22]
Modified CIPDE with Modified JADE (CIJADE) [23] Triple Archives PSO (TAPSO) [24]
Neighbourhood based, Success-History based Adaptive DE
(SHADE), with Linear population size reduction (N-L-
SHADE) [25]

PSO for single-objective numerical optimization (PSO-
sono) [26]

TABLE I: The tested 20 algorithms

370

aligned with the empirical algorithmic studies where a good
performing algorithm on particular scenarios are expected to
deliver poor performance on some others [27]. Thus, it is
possible to benefit from Algorithm Selection (AS) on this
particular CEC benchmark setting.

Fig. 1: The ranks of the algorithms across all the CEC
competition benchmarks

Figure 2 shows the utilized algorithms in a sorted manner with
respect to their average ranks. In addition to those 20 tested
algorithms, Oracle, a.k.a. Virtual Best Solver (VBS), reveals
the optimal AS. Oracle is essentially the best possible AS
performance when the best algorithm, out of the 20 constituent
algorithms, is applied for each benchmark. The overall /
single-best algorithm, i.e. HARD-DE, delivers the average
rank of 5.29 while Oracle comes with the average rank of 2.32.
This clear performance difference suggests that utilizing AS
instead of developing new algorithms could be more beneficial
and effective. Going into the details of the Oracle’s behavior,
Figure 3 shows the selection frequencies of each algorithm. L-
SHADE-cnEpSin has been the most frequently selected one,
by 48 times, despite having the average rank of 5.68 which
is slightly lower than the overall best algorithm, HARD-DE.
On the contrary, the 4 PSO variants1, i.e. PSO, ALC-PSO,
EPSO and TAPSO, are never picked while PSO-sono with a
significantly poor performance, resulting in the average rank
of 14.73, is utilized 7 times. Following the earlier AS claim, an
inferior algorithm like PSO-sono can still be benefited from.

Continuing from the algorithm space, Figure 4 shows the
dis/-similarity between the 20 tested algorithms through hierar-
chical clustering. The clustering is achieved by using the latent

1They could have been actually selected though for the benchmarks where
all the algorithms deliver the same performance. In those cases, the first
occurring, best algorithm is picked.

Fig. 2: The average ranks of all the competing algorithms
besides Oracle across all the CEC competition benchmarks

Fig. 3: The frequency of the algorithms being selected under
the Oracle algorithm selector

features extracted via SVD (r = 10) on the CEC benchmark-
algorithm performance data. Thus, each algorithm is repre-
sented by automatically specified 10 features. The most similar
algorithms are explored as (L-SHADE-cnEpSin, HARD-DE),
(PSO, ALC-PSO), (HCLPSO, EPSO) and (GLPSO, TAPSO).
Despite the differences between the algorithms and the dates

371

Fig. 4: The hierarchical clustering of the algorithms on the CEC competition benchmarks by the SVD (r = 10) latent features

they were introduced, there are no drastic performance and
behavioural distinctions. For instance, GLPSO and TAPSO
as two PSO algorithms were introduced in 2016 and 2020
respectively with distinct designs. However, they achieved the
average ranks of 14.86 and 14.97 and showed similar behavior
across the target CEC benchmark problems. As earlier pointed
out, these findings raise the question of whether so many new
algorithm designs are really needed. Still, it is possible to
identify scenarios where those similar algorithms significantly
diverge. Beyond that, since all the algorithms come with a
wide range of parameters and design choices, it is likely
to change the way they work by tweaking them through
parameter optimization / tuning [28].

Going to the CEC benchmark space, Figure 6 illustrates the
benchmark problems from each dataset, referring to different
CEC competitions and their sub-scenarios. The visualization is
prepared by using 10 latent features by SVD (r = 10) but now
for the benchmark problems. All the benchmarks are clustered
using k-means with k = 9. This k value is chosen to match
with each dataset or benchmark type as there are 9 different
competition scenarios. Those features are then reduced to 2
by using t-distributed stochastic neighbor embedding (t-SNE)
[29] and the discovered clusters are shown. It is possible to
see resemblances between different competition scenarios. To
have a clearer view, Figure 7 shows the rounded ratio of the
benchmarks falling into each cluster and their memberships
to the benchmark types. Figure 8 further reports Pearson
correlation coefficients based on those ratios from Figure 7.
The calculated coefficients help to identify similar competition
scenarios, such as CEC 2014_10 and CEC 2017_10. Thus, the
rankings of the tested algorithms on those similar scenarios
are comparable. From this perspective, it is critical to build
dissimilar test sets in competition settings compared to the
earlier ones. Additionally, especially from Figure 7, it might be
possible to determine the diversity of a particular benchmark

set. For example, CEC 2014_50 benchmarks span across all
the clusters so likely to be rather diverse while CEC 2020
benchmarks offer comparably less diversity.

Beyond the dis/-similarities between different benchmark
types, Figure 5 illustrates dis/-similarities between the indi-
vidual CEC benchmarks. To exemplify, CEC 2014_50_9 and
CEC 2017_50_5 are detected as highly similar benchmarks
from the CEC 2014 and CEC 2017 benchmark sets.

IV. CONCLUSION

This study focuses on the characterization of the CEC
single-objective numerical optimization benchmarks from the
corresponding CEC competitions. The evaluation targets dis/-
similarities between the CEC competition scenarios and the
individual benchmark problems. The other focus is on the
algorithms’ side, concerning a suite of 20 algorithms. Their
dis/-similarities are realized while evaluating the potential of
Algorithm Selection (AS) for managing those algorithms for
solving the CEC benchmarks. The complete evaluation and
analysis is performed by using the Singular Value Decomposi-
tion (SVD) driven features from the algorithms’ performances
on those CEC benchmarks.

Following this work, the presented analysis will be ex-
panded by actually performing Algorithm Selection (AS),
using the existing AS methods. Aligned with this addition, a
feature set representing the single-objective optimization math-
ematical functions will be determined, referring to the relevant
literature. Then, the characterization discussion will be en-
hanced by those hand-picked features, for a deeper assessment
matching the behaviour of the algorithms. Furthermore, as the
current algorithm set consists of only Differential Evolution
(DE) and Particle Swarm Optimization (PSO) algorithms, the
state of the art algorithms, including the ones attended the CEC
competitions, will be incorporated. On this aspect, Algorithm
Portfolios [30] will be built for having a candidate algorithm

372

Fi
g.

5:
A

hi
ea

rc
hi

ca
l

cl
us

te
ri

ng
of

th
e

C
E

C
co

m
pe

tit
io

n
be

nc
hm

ar
ks

th
ro

ug
h

th
e

la
te

nt
fe

at
ur

es
ex

tr
ac

te
d

fr
om

th
e

pe
rf

or
m

an
ce

da
ta

,w
ith

SV
D

(r
=

1
0)

Fig. 6: The t-SNE 2-dimensional visualization of the CEC
competition instances based on the latent features derived with
SVD (r = 10)

set involving diverse algorithms with respect to their problem
solving capabilities. This idea will be realized by selection
and tuning, considering that all the algorithms come with
parameters and design choices.

REFERENCES

[1] A. P. Piotrowski, J. J. Napiorkowski, and A. E. Piotrowska, “Particle
swarm optimization or differential evolution—a comparison,” Engineer-
ing Applications of Artificial Intelligence, vol. 121, p. 106008, 2023.

[2] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated
algorithm selection: Survey and perspectives,” Evolutionary Computa-
tion, pp. 1–47, 2018.

[3] M. Mısır and M. Sebag, “ALORS: An algorithm recommender system,”
Artificial Intelligence, vol. 244, pp. 291–314, 2017.

[4] G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” Numerische mathematik, vol. 14, no. 5, pp. 403–420,
1970.

[5] M. Mısır, “Matrix factorization based benchmark set analysis: a case
study on HyFlex,” in the 11th International Conference on Simulated
Evolution and Learning (SEAL), ser. LNCS, vol. 10593. Springer, 2017,
pp. 184–195.

[6] M. Mısır, “Benchmark set reduction for cheap empirical algorithmic
studies,” in IEEE Congress on Evolutionary Computation (CEC). IEEE,
2021, pp. 871–877.

[7] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[8] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in IEEE
International Conference on Evolutionary Computation (CEC). IEEE,
1998, pp. 69–73.

[9] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE transactions on Evolutionary Computation, vol. 13, no. 2, pp.
398–417, 2008.

373

Fig. 7: The percentage of the CEC competition benchmarks
from each cluster when k-means is applied with k = 9, based
on the latent features derived with SVD (r = 10) (the vertical
axis denotes the clusters)

[10] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE transactions on evolutionary computation, vol. 10,
no. 3, pp. 281–295, 2006.

[11] W. Zhu, Y. Tang, J.-a. Fang, and W. Zhang, “Adaptive population tuning
scheme for differential evolution,” Information Sciences, vol. 223, pp.
164–191, 2013.

[12] W.-N. Chen, J. Zhang, Y. Lin, N. Chen, Z.-H. Zhan, H. S.-H. Chung,
Y. Li, and Y.-H. Shi, “Particle swarm optimization with an aging
leader and challengers,” IEEE transactions on evolutionary computation,
vol. 17, no. 2, pp. 241–258, 2012.

[13] L. Tang, Y. Dong, and J. Liu, “Differential evolution with an individual-
dependent mechanism,” IEEE Transactions on Evolutionary Computa-
tion, vol. 19, no. 4, pp. 560–574, 2014.

[14] N. Lynn and P. N. Suganthan, “Heterogeneous comprehensive learning
particle swarm optimization with enhanced exploration and exploita-
tion,” Swarm and Evolutionary Computation, vol. 24, pp. 11–24, 2015.

[15] L. Cui, G. Li, Q. Lin, J. Chen, and N. Lu, “Adaptive differential evolution
algorithm with novel mutation strategies in multiple sub-populations,”
Computers & Operations Research, vol. 67, pp. 155–173, 2016.

[16] Q. Qin, S. Cheng, Q. Zhang, L. Li, and Y. Shi, “Particle swarm optimiza-
tion with interswarm interactive learning strategy,” IEEE transactions on
cybernetics, vol. 46, no. 10, pp. 2238–2251, 2015.

[17] G. Li, Q. Lin, L. Cui, Z. Du, Z. Liang, J. Chen, N. Lu, and Z. Ming,
“A novel hybrid differential evolution algorithm with modified code and
jade,” Applied Soft Computing, vol. 47, pp. 577–599, 2016.

[18] Y.-J. Gong, J.-J. Li, Y. Zhou, Y. Li, H. S.-H. Chung, Y.-H. Shi,
and J. Zhang, “Genetic learning particle swarm optimization,” IEEE
transactions on cybernetics, vol. 46, no. 10, pp. 2277–2290, 2015.

[19] N. H. Awad, M. Z. Ali, and P. N. Suganthan, “Ensemble sinusoidal
differential covariance matrix adaptation with euclidean neighborhood
for solving cec2017 benchmark problems,” in IEEE congress on evolu-
tionary computation (CEC). IEEE, 2017, pp. 372–379.

Fig. 8: The Pearson correlation coefficients between each
benchmark set pair with respect to their cluster distributions
provided in Figure 7, where +1 denotes strongly positive
correlation, −1 shows the strongly negative correlation, 0
indicates no correlation

[20] N. Lynn and P. N. Suganthan, “Ensemble particle swarm optimizer,”
Applied Soft Computing, vol. 55, pp. 533–548, 2017.

[21] Z. Meng and J.-S. Pan, “Hard-de: Hierarchical archive based mutation
strategy with depth information of evolution for the enhancement of
differential evolution on numerical optimization,” IEEE Access, vol. 7,
pp. 12 832–12 854, 2019.

[22] J. Zhang, X. Zhu, Y. Wang, and M. Zhou, “Dual-environmental particle
swarm optimizer in noisy and noise-free environments,” IEEE transac-
tions on cybernetics, vol. 49, no. 6, pp. 2011–2021, 2018.

[23] J.-S. Pan, N. Liu, and S.-C. Chu, “A hybrid differential evolution
algorithm and its application in unmanned combat aerial vehicle path
planning,” IEEE Access, vol. 8, pp. 17 691–17 712, 2020.

[24] X. Xia, L. Gui, F. Yu, H. Wu, B. Wei, Y.-L. Zhang, and Z.-H. Zhan,
“Triple archives particle swarm optimization,” IEEE transactions on
cybernetics, vol. 50, no. 12, pp. 4862–4875, 2019.

[25] A. Ghosh, S. Das, A. K. Das, R. Senkerik, A. Viktorin, I. Zelinka, and
A. D. Masegosa, “Using spatial neighborhoods for parameter adaptation:
An improved success history based differential evolution,” Swarm and
Evolutionary Computation, vol. 71, p. 101057, 2022.

[26] Z. Meng, Y. Zhong, G. Mao, and Y. Liang, “Pso-sono: A novel
pso variant for single-objective numerical optimization,” Information
Sciences, vol. 586, pp. 176–191, 2022.

[27] D. Wolpert and W. Macready, “No free lunch theorems for optimization,”
IEEE Transactions on Evolutionary Computation, vol. 1, pp. 67–82,
1997.

[28] M. Feurer and F. Hutter, “Hyperparameter optimization,” Automated
Machine Learning: Methods, Systems, Challenges, pp. 3–33, 2019.

[29] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. 11, 2008.

[30] C. Gomes and B. Selman, “Algorithm portfolio design: Theory vs.
practice,” in Proceedings of the 13th Conference on Uncertainty in
Artificial Intelligence (UAI), Providence/Rhode Island, USA, August 1–3
1997, pp. 190–197.

374

