2023 IEEE Symposium Series on Computational Intelligence (SSCI)

Mexico City, Mexico. December 5-8, 2023

Semi-supervised and Incremental Sequence
Analysis for Taxonomic Classification

Adriana Fasino
Electrical and Computer Eng.
Rowan University, Glassboro, NJ, USA
fasino97 @students.rowan.edu

Bahrad A. Sokhansanj
Electrical and Computer Eng.

Gail Rosen
Electrical and Computer Eng.

Emrecan Ozdogan
Electrical and Computer Eng.
Rowan University, Glassboro, NJ, USA
ozdoga67 @rowan.edu

Robi Polikar
Electrical and Computer Eng.

Drexel Univ., Philadelphia, PA, USA Drexel Univ., Philadelphia, PA, USA Rowan University, Glassboro, NJ, USA

bahrad @molhealtheng.com
ORCID ID: 0000-0002-5050-5926

Abstract—Metagenomic analysis is vital in determining what
organisms are present in a microbial sample and why they are
present. In this study, we explore the utility of MMseqs2, a
bioinformatics pipeline, for taxonomic classification in metage-
nomics, focusing on 16S rRNA gene sequences. We evaluate the
algorithm’s performance in full dataset as well as batch-by-batch
incremental processing, and more importantly, we add the capa-
bility of semi-supervised classification to this otherwise clustering-
only algorithm. Incremental updating is important because it
allows seamless integration and processing of new data, whereas
semi-supervised classification allows taxonomic identification of
previously unknown organisms. We also evaluate the different
clustering modes offered by MMseqs2, and compare MMseqs2 to
our previously developed semi-supervised incremental algorithm
SSI-VSEARCH. We show that MMseqs2’s built-in clusterupdate
function works well, and our semi-supervised classification ca-
pability adds new functionality to this bioinformatics processing
pipeline.

I. INTRODUCTION

Metagenomic samples contain genetic information from
many organisms, including samples that have not previously
been identified, or could not be grown in a lab. While metage-
nomic sequences can include all of an organism’s genes,
the 16S ribosomal RNA (rRNA) gene is one of the most
useful biomarkers for taxonomic classifications of prokary-
otes (Bacteria and Archaea). These genes consist of multiple
conserved regions, which have extremely few mutations over
prokaryotes, as well as variable regions, which slowly accrue
mutations over the millions/billions years of evolution that
can then be used to distinguish prokaryotic lineages. The
16S rRNA gene’s slow mutation rate can make it difficult
to distinguish between 16S rRNA genes of closely related
organisms [1], [2], for example, organisms that may have
diverged evolutionarily only tens of thousands of years ago
(true for some species). However, 16S rRNA sequence can be
used to distinguish upper-level taxonomic classes (genera and

This work is supported by U.S. National Science Foundation under grants
#1936782 & #1936791.

978-0-7381-4408-5/23/$31.00 ©2023 IEEE

glr26 @drexel.edu
ORCID ID: 0000-0003-1763-5750

polikar @rowan.edu
ORCID ID: 0000-0002-2739-4228

above, which have diverged hundreds of thousands/millions
years ago and for phyla, up to billions of years ago), and thus
it is commonly used as a marker for taxonomic classification.
Databases of 16S rRNA sequences are rapidly being expanded
as new organisms and microbiomes are being sequenced.
These samples are collected from many different locations,
including soil, water, and the human gut, and have variety
of organisms living together. The genetic material directly
obtained from environmental metagenomic samples — when
analyzed — allows the study of entire microbial communi-
ties without the need for individual isolation or cultivation.
Therefore, there is a need to predict the taxonomic labels of
organisms in a metagenomic sample, as well as to identify
novel (previously unknown) organisms.

Bioinformatics pipeline suites such as MG-RAST [3] [4],
U/VSEARCH [5], [6], DIAMOND [7], or MMseqs2 [8], can
be used to analyze and sort genetic sequences, however, these
programs generally use unsupervised clustering to sort the
genetic information, and then compare the results to large
repositories through BLAST [9] to match to known sequences.
There are two main shortcomings with these approaches: 1)
they generally process the data in a single batch, expecting the
entire data to be available all at once, yet in practice genomic
data only become available in small batches over long periods
of time; and 2) as purely clustering algorithms, they lack the
ability of taxonomic classification without cross-referencing
with BLAST (another widely used bioinformatics suite for
searching, aligning and comparing DNA and RNA sequences
against a known database of sequences [9]).

Regarding lack of capability to process the data incremen-
tally, current approaches rely on retraining from scratch —
using a combination of old and new data — when faced with
new data that has recently become available. Such an approach
not only requires saving and reprocessing previously processed
data, it also takes extra time and resources, making no use
of the clusters that were previously made. As the amount of
genomic data grow, such a retraining-from-scratch approach

1132

becomes computationally infeasible. An incremental approach,
allowing the algorithm to update existing clusters without
requiring access to prior data, and add new ones as needed
with new batches, is much more efficient [10], [11].

Regarding the second shortcoming, as clustering-only al-
gorithms, these approaches group sequences with similar
characteristics into clusters, based on a sequence similarity
threshold. As such, these algorithms provide information about
organisms that share common features but do not explicitly
reveal their individual identities. To be able to answer these
more complex questions of “what organisms are there?,”
a supervised classification algorithm is needed. Of course,
any supervised training algorithm requires previously curated
training data with known ground truth labels. In real world
metagenomics, curated datasets with correct label information,
i.e., reference datasets, are much smaller in size and less read-
ily available when compared to widely available, unlabeled
experimental and environmental datasets. Taking advantage of
any available labeled training data and combining them with
much larger unlabeled datasets matches the machine learning
communities’ definition of semi-supervised learning, which
allows us to strategically guide an otherwise unsupervised
clustering algorithm in predicting actual labels.

We have previously developed incremental and semi-
supervised versions of VSEARCH (I-VSEARCH and SSI-
VSEARCH) , adding incremental processing and classification
capabilities to VSEARCH, another common bioinformatics
pipeline used to cluster 16STRNA genes [11], [12]. More
recently, a newer bioinformatics pipeline platform, called MM-
seqs2, became available that has a built incremental processing
capability for searching and clustering [8], although it does
not have a supervised classification capability. Due to its
built-in incremental update function, we now focus on this
algorithm: we evaluate its incremental learning module, add
a new semi-supervised learning capability, and compare it to
SSI-VSEARCH. We report our results on the same version of
the Ribosomal Database Project (RDP) full-length 16s rRNA
gene dataset [13] that we used in exploring the proprieties of
SSI-VSEARCH [12].

II. BACKGROUND
A. Genetic Clustering

Several clustering methods have been developed to address
the specific needs of metagenomics. A popular approach is
CD-HIT [14], known for its efficiency, which employs a
sequence similarity threshold to create clusters: if a sequence
is sufficiently similar to the cluster representative (also known
as seed or centroid) of an existing cluster, it is placed in
that cluster, otherwise a new cluster is created with the new
sequence serving as its seed. All other approaches use some
variation of CD-HIT’s clustering framework, and are generally
greedy, i.e., each new sequence is clustered with the first
cluster representative that matches at or above the similarity
threshold. VSEARCH, the open-source version of USEARCH,
adds a slight modification: it aligns sequences globally to de-
termine the similarity, which minimizes memory usage during

clustering. MMseqs2, one of the newest approaches, uses a
cascaded-clustering process in its default mode in order to
refine the clustering results. Another pipeline is BLASTclust,
a program provided by NCBI's BLAST software package.
BLASTCclust also uses a greedy policy with single-linkage
approach [15], which makes it one of the more accurate, but
also the slowest, choices. Overall, choosing the most suitable
clustering method depends on factors such as the size of the
dataset, available computational resources, and the desired
level of sensitivity.

B. MMseqs?2

MMseqs2 (many-against-many sequence searching 2) is a
bioinformatics software suite known for its rapid and effi-
cient sequence analysis and comparison capabilities [8] [16].
MMseqs2 has a similar sensitivity to BLAST, but 400 times
faster. MMseqs2 is the successor to the original MMseqs
algorithm [17] and is specifically designed to address the need
for high-speed and accurate sequence searching in large-scale
datasets. An important distinction of MMseqs2 is that it has
different clustering modes, including a built-in incremental
clustering option, described in more detail below. We note that
all clustering modes of MMSeqs2 are unsupervised clustering
algorithm and do not use any labels, even if they are available.
We therefore add a simple and efficient majority-vote based
semi-supervised approach to MMseqs2 to provide it with the
taxonomic classification capability.

III. METHODS
A. Cluster Modes and Options

MMseqs2 uses the basic clustering mechanism of com-
paring each query sequence to each cluster representative
(seeds, centroids), computes a similarity measure, referred to
as sensitivity, and compares it to a preset threshold. Sensitivity
is the percentage of the k-mers (k-long sequence fragments)
that need to match between the query and the seed. When
MMseqs2 finds a sequences for which the similarity meets or
exceeds the threshold, the query sequence is placed into that
cluster. If no such cluster is found, a new cluster is formed
with the query sequence serving as its seed. MMseqs2 offers
three cluster modes, each slightly modifying the above-stated
basic mechanism to determine how the algorithm forms the
clusters. The default cluster mode is the Greedy Set cover
(also known as cluster mode 0), which works by selecting
the sequences with the most sensitivity matches and creating
clusters around those nodes. The seeds (centroids) of these
clusters are chosen based on the sequences that have the
most similarity matches. Once all clusters are formed, a
reassignment step compares each sequence to each centroid via
an alignment score. Clusters are reformed if any of the outlying
sequences do not meet the predetermined similarity threshold.
The next option is connected component, also known as cluster
mode 1, where clusters are formed by choosing a sequence that
has the most similarity matches in a certain group and making
it the centroid. The cluster is then formed around that centroid.
This approach results in fewer clusters that are both large and

1133

less specific. The main difference between cluster mode 0 and
1 is that the former breaks up a larger group if it can find
another sequence with enough similar sequences to become
its own centroid, whereas the latter does not. The final option
is greedy incremental, cluster mode 2, which is similar to
the original CD-HIT clustering algorithm, as both algorithms
chose their centroids based on the length of the sequence. This
approach takes the next longest sequence, makes it the centroid
and forms a cluster using the sequences that pass the similarity
threshold, and then moves on to the next longest sequence
in the dataset. These three clustering modes are illustrated in
Figure 1. We evaluate and compare these three modes later in
the Results section.

Cluster Mode 1:
Connected Component

Cluster Mode 2:
Greedy Incremental

Cluster Mode 0:
Greedy Set

Fig. 1. Three clustering modes offered by MMseqs2: greedy set, connected
component, and greedy incremental. Here, cluster centroids are red, other
sequences are blue nodes. A line represents a successful similarity match
between nodes. Greedy set chooses centroids based on the nodes that has the
most connections. Connected component also finds the nodes with the most
connections, but will only look for one per group where any connections are
found and will group all nodes together. Greedy incremental clusters based
on the length of the genetic sequences. In this example, the size of the node
represents the length of the genetic sequence, so the larger nodes are the
centroids with the longest sequence, and are clustered with smaller nodes that
meet the sensitivity threshold.

B. Clusterupdate and Evaluation

Of main interest is MMSeq2’s clusterupdate option, which
allows MMseqs2 to process new batches of datasets in an
incremental manner. This function retains existing clusters,
giving preference to sorting new query sequences into existing
clusters before forming new ones. Typical usage is to use one
of the three modes for the initial clustering, then using the
clusterupdate function to add new data.

The algorithm’s performance and behavior are assessed
using a variety of metrics. To truly evaluate its predictive
capability, we relied on the ground truth. For this purpose, we
used a 16S rRNA dataset from Ribosomal Database Project
(RDP) [13], which provided us with the necessary label infor-
mation. In order to mimic scenarios with known and unknown
labels, we partitioned the entire dataset into two subsets: a
training dataset and a test set. To simulate a relatively small
labeled data and a larger unlabeled data, we used %25 of the
total data as training (reference) dataset, while the remaining
%75 represented experimental/testing (unlabeled) data. During
the clustering stage, the algorithm did not use any of the

labels. Recall that MMseqs2 is entirely unsupervised and
any labels that may be available are not used. During our
postprocessing, we attached any available training data labels
to their sequences, based on which cluster labels are obtained
through majority voting (as described below). We deliberately
concealed the labels of the fest data during post-processing
when completing the majority vote to simulate unlabeled data
and to ensure unbiased evaluation. We then utilized these
hidden labels of the test data as the ground truth to calculate
the performance metrics as described below.

1) Semi-supervised Learning Through Majority Voting:
The core clustering process for all genomic pipeline al-
gorithms is purely an unsupervised procedure. We add a
semi-supervised learning (SSL) functionality to this pipeline
through a simple majority voting algorithm. Once the clusters
are formed (during which no labeled information is used), we
check which sequences in any given cluster actually come
from the labeled training data. Given that the dataset consists
of both labeled (few) and unlabeled (many) sequences, each
cluster may include a set of labeled or unlabeled sequences.

If there is only one labeled sequence in a cluster, that label
becomes the label of that cluster and that of all sequences
in that cluster. If there are multiple labeled sequences in the
cluster, we compute the majority vote of the known labels, and
the label with the most associated sequences in that cluster
becomes the cluster label, and the label of all of its unlabeled
(test) sequences. Previously known labels of the training data
in that cluster are not changed, even if the cluster gets a
different label based on majority voting. Rare ties are broken
randomly. All such sequences labeled by this approach are then
considered as predicted sequences and their overall accuracy is
computed as predicted accuracy. If a cluster is populated with
only unlabeled sequences, we refer to it as an unlabeled clus-
ter, and assign a temporary label. Unlabeled clusters are given
their own accuracy metric, unlabeled accuracy, as defined
below. The sequences in an unlabeled cluster are considered
novel sequences. If a reference sequence with a known label
is later added to a previously unlabeled cluster in the future
(through the incremental processing), the temporary label is
replaced with new the true label. This approach provides a
mechanism for any truly novel organism to be identified and
properly labeled when that organism is sequenced, given a
name, and later appear in a future sample.

2) Prediction Accuracy: Prediction accuracy is the accu-
racy applied to labeled clusters. This metric is only computed
on the test dataset within labeled clusters, so that it is
not artificially inflated due to known labels of the training
data. Majority voting using training data is employed to
predict the overall label for the cluster, and any unlabeled
sequences are given this predicted label. This predicted la-
bel is then compared to the ground truth, and the ratio of
correct predictions is computed as the prediction accuracy:
PA = PScorrect/(PScorrect+PSincorrect) where, PScor'r‘ect
and PSincorrect are the number of predicted sequences in
the test dataset whose labels are determined to be correct or
incorrect, respectively, compared to ground truth.

1134

Labeled Cluster: A
Prediction Accuracy: 4/6

Unlabeled Cluster: Temp 01
Unlabeled Accuracy: 3/6

Fig. 2. Labeled (left) and unlabeled (right) clusters. Each small circle
represents a genetic sequence with a different label. Solid filled circles
represent labeled (reference) sequences, and the unfilled circles are unlabeled
(experimental/test) data (known ground truth indicated in the circles are
hidden from the algorithm). After majority voting, the left cluster is labeled
as A. When computing predicted accuracy, we only consider samples from
unlabeled test dataset, so the predicted accuracy is 4/6. The unlabeled cluster
receives a temporary label, but the ground truth labels are used in post-
processing to calculate the unlabeled accuracy. The majority vote of the
ground truth labels gives the cluster and overall label of B, so the unlabeled
accuracy is 3/6, since three of the sequences in this cluster are of label “B”.

3) Unlabeled Accuracy: Recall that unlabeled clusters con-
tain no reference data, and therefore are assigned a temporary
label by our SSL algorithm. In a real world scenario, the
experimental test sequences may come from truly unknown
novel organsims. Our incremental SSL algorithm allows such
scenarios, and leaves the cluster with its temporary label until
such time a sequence with a known label is placed into that
cluster - perhaps at some time in the future when that novel
organism is sequenced, given a name, and then appears in a
future reference dataset. For the purpose of this experiment,
we do have the ground truth labels for all data, but we
hide them from the algorithm. Therefore, we can actually
compute the accuracy of these “unlabeled” testing sequences
in being placed into clusters during post-processing. We do
so by reassigning the ground truth labels to the test sequences
during evaluation, and invoking the majority vote to assign the
cluster with a label. This label is then compared to the ground
truth labels and an accuracy metric is calculated. We refer to
this metric as unlabeled accuracy, which can be calculated as
UA = UScorrect/(UScorrect+USinco7‘rect) Where’ UScorrect
and US;,correct are the number of (unlabeled) test data
sequences in an unlabeled cluster whose labels are determined
to be correct or incorrect, respectively, compared to ground
truth data. Unlabeled accuracy is an important metric, because
it captures and measures the underlying ability of the algorithm
to form correct clusters.

4) Singletons: Singletons are sequences that are not similar
enough to any other sequence to be placed into a cluster.
Singletons, labeled or not, are not included in our accuracy
calculations to ensure that our accuracy results are not artifi-
cially increased. However, we do keep track of — and report
— the number of singletons.

IV. EXPERIMENTAL SETUP
A. RDPI8 Dataset

We used the RDP18 dataset, the 18" (2020) release of the
16S rRNA dataset provided by the Ribosomal Database Project
[13]. The dataset consists of 21,195 16S rRNA sequences
from Bacteria and Archaea. 20,198 of these have six levels
of taxonomic rank information (Kingdom, Phylum, Class,
Order, Family and Genus), so we further curated the dataset to
include just these sequences for our testing purposes. We also
removed 6 phyla that had fewer than four total samples. The
final curated dataset had 20,186 samples from 32 phyla. We
partitioned this dataset into two subsets, with 25% to be used
as labeled (reference/training) data and the remaining 75% to
be used as unlabeled (experimental/test) data. The training data
was then further divided into five equal batches to simulate
incremental learning.

B. Experiments

We compared the ability of the MMseqs2 algorithm -
with the added semi-supervised learning capability - to learn
incrementally and provide taxonomic classification for novel
sequences. We used all three clustering modes (cluster mode
0 - greedy set, cluster mode 1 - connected component, and
cluster mode 2 - greedy incremental) run with full data in
a single batch as well as incrementally with five batches.
The percent identity similarity threshold is the primary free-
parameter of the algorithm, and determines how similar the
genetic sequences must be to be clustered together when
compared to a cluster centroid. We performed a parameter
sweep, by testing a range of eight similarity threshold values
in the commonly used interval of 0.75 to 0.97 (i.e., 0.75,
0.78, 0.81, 0.84, 0.87, 0.90, 0.93, 0.97) for both the full and
incremental runs. Each one of those 16 runs was performed
10 times in order to prove repeatability and accuracy.

Clustering algorithms, due to their nature, are usually very
sensitive to the order in which the data are presented. To
test the robustness of our approach against the order of data
presentation, we have also added another experiment, where
the entire dataset was shuffled before splitting into labeled
(training) / unlabelled (test) datasets, as well as partitioning
into five batches.

V. RESULTS AND DISCUSSION
A. Default Cluster Mode 0 - Full vs. Incremental

Figures 3 and 4 show predicted and unlabeled accuracy,
respectively, when MMseqs2 is run in cluster mode 0, both
using the entire dataset in a single run (full) and using each of
the batches one at a time (incremental). We note that neither
predicted nor unlabeled accuracy count singletons, as majority
voting on clusters of a single sequence is meaningless, and
counting them would unfairly inflate the performances.

In Figs. 3 and 4, the solid and dashed lines represent the
full and incremental runs, respectively. For incremental runs,
the results are those obtained after the processing of the 5"
batch. The different colors represent the different levels of

1135

Prediction Accuracy (%)

Sensitivity
== GenusInc. = Genus Full == FamilyInc. == Family Full == Order Inc
= Order Full Class Inc. Class Full == PhylumInc. = Phylum Full

Fig. 3. Cluster Mode 0 Prediction Accuracy Incremental vs. Full

0.50

Unlabeled Accuracy (%)

75 80 a5 a0 95

Sensitivity
== GenusInc. = Genus Full == FamilyInc. == Family Full == Order Inc
= Order Full Class Inc. Class Full == PhylumInc. = Phylum Full

Fig. 4. Cluster Mode 0 Unlabeled Accuracy Incremental vs. Full

taxonomic depth — from the most specific (genus) to most
general (phylum). The main observation here is that at each
taxonomic level, both the full and incremental runs perform
similarly, and follow the same trends. This is critical, because
it demonstrates that we can achieve the same accuracy even
when we have to process only a faction of the data at a time,
and when we do not have the luxury of having the entire
dataset at once for processing. We also observe that the algo-
rithm’s SSL module work as intended, providing taxonomic
classification whose accuracy improves — as expected and
desired — with sensitivity and with taxonomic level. Note that
when sensitivity is increased, the sequences need to be more
similar to be placed in the same cluster. Of course, the cost of
higher accuracy at higher sensitivity thresholds is the longer
run times. We also note in Fig 4 that we do not have unlabelled
accuracy results for low sensitivity levels in incremental runs;
this is because at low sensitivity the clusters are large enough
that there is at least one labeled sequence in each cluster, so
only a predicted accuracy can be computed.

As mentioned earlier, clustering algorithms are sensitive to
the order in which the data are presented. To determine the ro-
bustness and repeatability of our semi-supervised MMseqs?2 to
order of data presentation, we repeated the above experiment,
but with a completely and randomly shuffled dataset. Figures
5 and 6 show the results of the randomized experiment.

We observe that the results and the trends remain the
same, demonstrating that the incremental use of MMseqs2

Predicted Accuracy (%)

75 a0 85 90 a5

Sensitivity
== Genusinc. = GenusFull == Familylnc. == Family Full == Orderinc
= QOrder Full Class Inc Class Full == PhylumInc. = Phylum Full

Fig. 5. Randomized Cluster Mode 0 Prediction Accuracy Incremental vs. Full

025

Unlabeled Accuracy (%)

0.00

75 80 B85 80 a5

Sensitivity
== Genusinc. = Genus Full == Familyinc. == Family Full == Qrderinc.
= Order Full Class Inc Class Full == PhylumInc. = Phylum Full

Fig. 6. Random Cluster Mode 0 Unlabeled Accuracy Incremental vs. Full

with the semi-supervised classification performs very well, and
similarly to running the algorithm on the full dataset at once.
Since real world data can only be obtained incrementally in
batches over a period of time, these results show that MMseqs2
with semi-supervised classification is now a viable option for
real world processing of metagenomic sequences.

B. Comparing Cluster Modes

In its default mode (cluster mode 0), MMseqs2 performed
very well, but we also wanted to evaluate the other cluster-
ing modes to determine whether they offer any advantages.
Clustering mode 1 is also of interest to us, as it is similar
to the clustering approach used by VSEARCH, providing us
with a more fair comparison against SSI-VSEARCH. Figures
7 and 8 illustrate the predicted and unlabeled accuracy of semi-
supervised MMseqs2 when used in cluster mode 1 (connected
component) in full and incremental settings. As in prior
experiments, we show the results at all taxonomical levels and
similarity thresholds.

Cluster mode 1 produces fewer and larger clusters compared
to cluster mode O, resulting in faster run times, but slightly
lower accuracy of sequence matching. The results reflect this
expectation primarily at the less specific taxonomic depths
such as phylum and class and generally at lower sensitivity
thresholds (where we would normally expect less accuracy). A
pleasant surprise here was that the incremental runs performed
better than full (single batch) runs, producing higher predicted

1136

Prediction Accuracy (%)

Sensitivity
== GenusInc. = Genus Full == FamilyInc. == Family Full == Order Inc
= Order Full Class Inc. Class Full == PhylumInc. = Phylum Full

Fig. 7. Cluster Mode 1 Predicted Accuracy Incremental vs. Full

=
=
I
e
5
8 050
<<
o
@
S o
©
=
>
0.00
75 80 85 a0 95
Sensitivity
== Genusinc. = Genus Full == Familyinc. == Family Full == OrderInc
= Order Full Class Inc Class Full == PhylumInc. = Phylum Full

Fig. 8. Cluster Mode 1 Unlabeled Accuracy Incremental vs. Full

accuracy throughout every sensitivity and taxonomic level. The
results were more mixed for the unlabeled accuracy, but this
metric tends to have a higher variance as there are usually
a lower number of clusters - particularly with any unlabeled
sequences - when the clusters themselves are larger. Regardless
of the specific accuracy numbers, however, the trends observed
with cluster mode 0 were generally observed with cluster mode
1 as well.

Prediction Accuracy (%)

Sensitivity
== GenusInc. = Genus Full == FamilyInc. == Family Full == Order Inc
= Order Full Class Inc. Class Full == PhylumInc. == Phylum Full

Fig. 9. Cluster Mode 2 Predicted Accuracy Incremental vs. Full

We have then evaluated cluster mode 2, whose results
are shown in Figures 9 and 10. These results also followed
similar trends as cluster mode 1, where our incremental
semi-supervised approach performed generally better than the

1.00

R T T L L L

Unlabeled Accuracy (%)

75 a0 85 90 a5

Sensitivity
== Genusinc. = GenusFull == Familylnc. == Family Full == OrderInc
= QOrder Full Class Inc Class Full == PhylumInc. == Phylum Full

Fig. 10. Cluster Mode 2 Unlabeled Accuracy Incremental vs. Full

regular full data runs.

5000
4000
3000

2000

MNumber of Singletons

1000

75 80 85 a0 a5

Sensitivity
== Inc. Mode 0 == Inc. Mode 1 == Inc. Mode 2 = Full Mode 0
= FullMode 1 == Full Mode 2

Fig. 11. Number of Singletons

Finally, we also looked at the number of singletons - clusters
that consist of a single sequence. As shown in Figure 11, the
number of singletons increase with sensitivity, an expected
outcome. More importantly, however, the number of such
singletons is virtually the same whether the algorithm is run
in full with the entire dataset, or incrementally in batches.
In general, then, despite some minor differences in absolute
numbers, all clustering modes generally show similar trends,
with cluster mode 0 providing slightly better accuracies at all
taxonomic levels.

C. MMseqs2 vs. SSI-VSEARCH

Since MMseqs2 is a newer algorithm with a built-in cluster
update feature (but without a semi-supervised component),
we wanted to compare its results to those of our previously
introduced SSI-VSEARCH [12]. SSI-VSEARCH is a semi-
supervised and incremental version of the original VSEARCH
algorithm, which itself is a purely clustering algorithm that
lacks the ability to incrementally process the data.

Figures 12 and 13 show the prediction and the unlabeled
accuracy for SSI-VSEARCH for the incremental runs (addi-
tional results can be obtained in [12]).

When comparing these results to MMseqs?2 results shown in
the previous sections, we observe that the results and the trends
are indeed very similar, but have a few main distinctions.

1137

10 cem=e— oo — - o am——Co=a== = = Genus
.7 e ”, Incremental
. s s ’
. -, R = == Family |
0.75 ’/ I’ ,, Incremental
e ’z' ’ = = Order
PR S Incremental
P -
- s ’ Class Incremental
050 ’ e ’
=7 . ,' = == Phylum
,\\/’ //’ i Incremental
1 s e
035 1 e L=
[e
d
lp I
’ -7
0.00 =
075 0.80 0.85 0.50 055
Sensitivity
Fig. 12. Predicted Accuracy for Incremental Runs Processed by SSI-

VSEARCH

- = GENUS
Incremental

w— Genus Full

- Family
Incremental

— Family Full

w= w= Order Incremental

Order Full
Class Incremental
Class Full

- Phylum
Incremental

s Phylum Full

075 0.80 0.85 0.90 095

sensitivity

Fig. 13. Unlabeled Accuracy for Full and Incremental Runs Processed by
SSI-VSEARCH

SSI-VSEARCH tends to perform better at less specific taxo-
nomic depths, i.e. phylum and class, but the incremental runs
have higher variability. MMseqs2, across all cluster modes,
follows smoother patterns, but overall the results and trends
are (pleasantly) surprisingly similar. The main takeaway from
comparing these results is that both approaches perform well,
particularly in an incremental semi-supervised environment.

VI. CONCLUSIONS

In this study, we explored the use of MMseqs2, a bioinfor-
matics pipeline suite for the taxonomic classification of 16S
rRNA genes. We evaluated its ability to learn incrementally,
and also with the added semi-supervised learning capability
to provide taxonomic classification — a capability the original
MMseqs2 lacks. Using 16S rRNA genetic sequences, our mod-
ified MMseqs2 showed that it can provide high accuracy in
taxonomic classification; its incremental processing performs
as well as - and sometimes even better than — the full single
batch processing. Both the incremental learning ability and the
semi-supervised classification ability are important capabili-
ties for processing metagenomic sequences: the incremental
processing ability allows processing the data in batches, a
scenario that reflects real world data collection constraints. The
semi-supervised processing allows taxonomic classification,
answering the all-important question “what organisms live
here?”

Our future work will continue to focus on finding the
best and most useful clustering algorithms for sorting and
classifying metagenomic data. There is still more to be done
with MMseqs2, as there are other metrics that we would like
to use to compare clustering methods. These metrics include,
but are not limited to, completeness, homogeneity, v-measure,
adjusted rand index, and timing statistics. Another important
task is to evaluate the approach on larger datasets to see
the scalability of our findings. Additional tasks we have for
future work include using datasets that are more realistic,
meaning they are less complete or use other variable regions,
or changing the distribution of training and testing data to see
how these variables can influence the results.

REFERENCES

[1] Y. Lan, G. L. Rosen, and R. Hershberg. “Marker genes that are less
conserved in their sequences are useful for predicting genome-wide sim-
ilarity levels between closely related prokaryotic strains,” Microbiome,
vol. 4, no. 1, pp. 1-18, 2016.

[2] Y. Lan, J. C. Morrison, R. Hershberg, and G. L Rosen. “POGO-
DB—a database of pairwise-comparisons of genomes and conserved
orthologous genes,” Nucleic Acids Research, Vol. 42, No. DI, pp.
D625-D6322014, 2014.

[3] F. Meyer, D. Paarmann, M. D’Souza, et al. “The metagenomics RAST
server—a public resource for the automatic phylogenetic and functional
analysis of metagenomes,” BMC Bioinformatics, vol. 9, no. 1, pp. 1-8,
2008.

[4] K. P. Keegan, E. M. Glass, and F. Meyer, “MG-RAST, a metagenomics
service for analysis of microbial community structure and function,” in
Microbial Environmental Genomics, 1st Ed. New York City, NY, USA:
Springer, 2016, pp. 207-233.

[5] R. C. Edgar, “Search and clustering orders of magnitude faster than
BLAST,” Bioinformatics, vol. 26, no. 19, pp. 2460-2461, 2010.

[6] T. Rognes, T. Flouri, B. Nichols, et al. “VSEARCH: a versatile open
source tool for metagenomics,” PeerJ, vol. 4, pp. €2584, 2016.

[7]1 B. Buchfink, C. Xie, D. H. Huson, “Fast and sensitive protein alignment
using DIAMOND,” Nature Methods, vol. 12, no. 1, pp. 59-60, 2015.

[8] M. Steinegger and Soding, Johannes, "MMseqs2 enables sensitive
protein sequence searching for the analysis of massive data sets,” Nature
Biotechnology, vol. 35, no. 11; pp. 1026-1028, 2017.

[9] S. F. Altschul, W. Gish, W. Miller, et al. “Basic local alignment search
tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403-410, 1990.

[10] Z. Zhao, A. Cristian, and G. Rosen, “Keeping up with the genomes:
efficient learning of our increasing knowledge of the tree of life, "BMC
Bioinformatics, vol. 21, no. 1, pp. 1-23, 2020.

[11] E. Ozdogan, N. C. Sabin, T. Gracie, et al. “Incremental and Semi-
Supervised Learning of 16S-TRNA Genes For Taxonomic Classifica-
tion,” in IEEE Symposium Series on Computational Intelligence, 2021,
pp. 1-7.

[12] E. Ozdogan, A. Fasino, R. Nguyen, et al. ”Semi-supervised and Increm-
netal VSEARCH for Metagenomic Classification” in IEEE Symposium
Series on Computational Intelligence, 2022, pp 1-8.

[13] J.R. Cole, Q. Wang, J. A. Fish, et al. “Ribosomal Database Project: data
and tools for high throughput rRNA analysis,” Nucleic Acids Research,
vol. 42, no. D1, pp. D633-D642, 2014.

[14] W. Li and A. Godzik. 2006. “Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences,” Bioinformatics,
vol. 22, no. 13, pp. 1658-1659, 2006.

[15] National Center for Biotechnology Information (NCBI) Documentation
of the BLASTCLUST-algorithm. Available online at
ftp://ftp.ncbi.nih.gov/blast/documents/blastclust.html. Last accessed 15
August 2023.

[16] M. Steinegger and Soding, Johannes, “Clustering huge protein sequence
sets in linear time,” Nature Communications, vol. 9, no. 1, pp. 2542,
2018.

[17] M. Hauser, M. Steinegger, J. Soding, "MMseqs software suite for fast
and deep clustering and searching of large protein sequences sets, ”
Bioinformatics, vol. 32, no. 9, pp. 1323-1330, 2016.

1138

