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Abstract—Augmented reality is a growing technology with 

potential applications in education, medicine, entertainment, 

and tourism, among others. Basically, what this technology 

seeks is to combine information from the real world with virtual 

information, without the user perceiving the difference between 

the two. To achieve this, the augmented reality system must be 

able to dimension the real-world objects in real time, to generate 

realistic virtual scenarios. To carry out this dimensioning, a 

good alternative is to use an artificial vision system that provides 

a good compromise between cost and performance. In this work 

a method is presented to calculate the distances among known 

reference objects in real world and the camera, using a 

monocular artificial vision system.  

Keywords— monocular vision, augmented reality, visual 

odometry 

I. INTRODUCTION  

The term Augmented Reality (AR) refers to a variety of 
technologies, capable of combining a user's view of the real 
world with alphanumeric, symbolic, or graphic information. 
While virtual reality places the user within a completely 
computer-generated environment, AR focuses on presenting 
information from the physical world and computer-generated 
information, so that both appear to be part of the same physical 
world. In this way, AR must combine the physical with the 
virtual objects in real time, keeping a record in three 
dimensions (3D). A fundamental part of an AR system is the 
generation of digital maps of the user's physical environment. 
For this, it is necessary to know pose (rotation and translation) 
of the camera respect to real world objects, in real-world 
coordinates. Thus, the system will be able to dimension real 
world objects and distances among them, to insert feasible 
virtual objects. 

Also, in the last few years, computers processing power 
has increased, and computers cost has dropped. For all the 
above, it is now possible to process high-definition digital 
images in real time. Therefore, interest in developing 
technologies based on image processing and artificial vision 
has grown. These technologies can be used for navigation of 
robots [1,2], localization and mapping of unknown places 
(SLAM) [3,4] virtual (VR), and augmented reality (AR) [5], 
among others. 

Global Positioning Systems (GPS) can be used to 
determine the location of objects and, therefore, estimate 
distance among them in coordinates of the real world. Some 
drawbacks of this technology are: signal interference indoors 
and large error in distance measurement (several decimeters). 

Also, equipment provided with visible light and infrared 
cameras (RGBD) can be used. In this case, drawbacks are the 
high cost and possible interference on infrared sensors due to 
sunlight, limiting its use outdoors, with natural light.  

It is also possible to use only visible light cameras, which 
can be used indoor and outdoor, with some advantages such 
as low cost and low error rate in short distances. The vision 
system can be configurated to operate with a single camera 
(monocular vision) or two cameras (stereoscopic vision). In 
both cases, generally, it is necessary to calibrate each camera 
to obtain its intrinsic and extrinsic parameters.  

In stereo vision one of the cameras is used as reference 
coordinate system. Pose of the other camera respect to 
reference camera is obtained by means of a stereoscopic 
calibration method. Location of three-dimensional objects can 
be obtained by triangulation of each 3D point matched with 
the two cameras. However, stereo vision also has some 
disadvantages. 

Some of them are: 

• Each camera has a different response to the same 
light signal making difficult to match points 
captured with both cameras. 

• With two cameras, more physical space, energy, 
and computational cost is required than with a 
single camera. 

• If stereo calibration is lost due to vibration, 
triangulation will no longer be reliable. 

• The difference between two distant points 
becomes minimal (they can even be confused 
with just one).  

For the reasons stated above, monocular vision could be a 
good alternative. Unfortunately, since only one camera is 
used, it is not possible to use the same triangulation method to 
compute camera pose. Instead, the same camera is moved to 
take images in different positions. Overlapping points in 
different images can be used to estimate the change of pose of 
the camera. The new pose can only be determined up to an 
unknown scale factor. The determination of this scale factor is 
fundamental for this type of applications. 

In this paper, we propose a method to compute the distance 
of a calibrated camera to objects of known dimensions, in real 
three-dimensional world coordinates, for augmented reality 
applications. This distance calculation method is less 
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restrictive than other methods proposed in the literature. For 
this, distance of at least three points of the reference object 
must be known. Unlike other approaches, the proposed 
method does not require additional sensors or the use of 
heuristic techniques to determine the distance. By determining 
the distance of the camera to known objects, it is possible to 
insert new virtual objects of the appropriate size. If none of 
the known objects are detected in a frame, the location is 
estimated using a keyframe-based algorithm. The 
accumulated error of said estimate can be corrected when one 
of the reference objects is found again. 

II. RELATED WORK 

In the literature, two approaches have been shown to be 
successful for pose estimation with monocular systems: 
filtering methods [6,7] and keyframe-based methods [8,9]. In 
the paper of Strasdat et al [10] is showed that keyframe-based 
techniques can be more accurate than filtering methods, with 
a similar computational cost.  

In reference [3], the authors proposed a SLAM algorithm 
with monocular techniques that exploits the stiffness 
constraints of objects, to find their true scale. They used a 
binary descriptor based on the Oriented FAST and Rotated 
BRIEF (ORB) functions. Once an object is observed at 
various camera positions, the scene features obtained from 
consecutive images are triangulated, allowing an estimation of 
the object's location in three dimensions. Furthermore, in 
reference [11], the authors proposed a support vector machine 
(SVM) combined with a bag of binary words and a Robust 
Accelerated Feature (SURF) descriptor, for the recognition 
stage. However, the last two approaches require a large 
amount of memory to maintain previous location maps and 
the dictionary for binary word bags; Unfortunately, memory 
and other hardware resources are limited on many AR 
systems. 

Another major issue of monocular vision is determination 
of the known scale factor. This factor should be estimated 
using some initial fit technique. Several methods have been 
proposed to compute it: in [12], an inertial measurement unit 
(IMU) is used as an auxiliar sensor to determine the scale. In 
[13], authors use a convolutional neural network to estimate 
depth at each frame; however, many frames are required to 
finally reduce the estimation error. In reference [14] authors 
suppose that the field of view of the camera is always 
perpendicular to the ground; under such supposition, the 
camera is positioned at a known distance from a person. Then, 
the number of pixels detected on the face of the person is 
computed; Finally, a ratio of pixels and distance is established; 
such ratio allows to estimate the distance of the same person 
in other images, even if they are taken from different distances 
from the camera. 

 

III. BASICS 

A. Camera Model 

the simplest way to represent the operation of a camera is 
using the pinhole model. This model supposes that a beam of 
light enters the by the pinhole and is projected onto the camera 
formation image plane. Figure 1 shows this principle. In the 
figure, a point P (x, y, z) in real world is projected to the point 

P' (x', y ', f) of the camera plane () in the chamber. Here, f 
represents the perpendicular distance from the pinhole to the 
camera’s plane (focal distance). From figure 1, we can obtain 
the following equalities [15]: 

 
𝑥′

𝑥
=

𝑦′

𝑦
=

𝑓

𝑧
=  () 

In this case,  is the scale factor. When f and  are known, 
we can compute the real-world coordinates of P, from the 
pixels coordinates of the point projected on the image plane. 
Usually, the focal length and other intrinsic and extrinsic 
parameters can be obtained in the process of camera 
calibration. 

Fig. 1. Representation of camera (pinhole model). 

B. Camera Calibration 

Calibration provides a model of camera’s geometry. This 
information is used to define its intrinsic and extrinsic 
parameters. Let P' be the projection on the plane of the camera 
of the three-dimensional point P. Using homogeneous 
coordinates, we can define P = [X Y Z 1]T and P' = [x y 1]T. 
In matrix notation, the mapping from P to P' can be expressed 
as  

 𝑃′ = 𝐴[𝑅 𝑡]𝑃 () 

Where [R t] is the augmented matrix of extrinsic 
parameters. This augmented matrix includes rotation matrix R 
and translation vector t. Besides, A is the matrix of intrinsic 
parameters, defined by: 

 𝐴 = [
𝑓𝑥 𝑠 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] () 
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Here, fx, fy give information (depending on the pixel size) 
of the focal length in the x and y direction, respectively; cx and 
cy are the coordinates of the principal point of the image; s is 
known as skew and represents the angle of inclination of the 
pixel.  

Zhang [16] proposed a calibration technique based on the 
observation, from various positions, of a flat, checkerboard-
like pattern. The advantage of this calibration method is that 
it allows the camera parameters to be easily obtained from the 
reference system, solving a system of equations, without the 
need to know the position of the reference points or the 
camera. 

IV. METODOLOGY 

Figure 2 shows the general operation of the proposed 
method. The system captures each image and searches for the 
reference object. Reference object detection is based on corner 
finding. Due to corners are invariant to translation, rotation, 
and illumination, they are robust features to detect the objects 
of interest. In this work the method proposed by Harris [17] 
was used. The main idea of Harris algorithm is to search for 
strong derivatives in two orthogonal directions of the image. 
If the reference object is found, its distance is calculated using 
the method described in the next section; otherwise, the 
distance is estimated with a keyframe-based algorithm. The 
basic keyframe-based algorithm used is: 

• Extract features of interest from each image 
using the SURF algorithm [18]. 

• Match features between consecutive images. 

• Triangulate between the coincident points 
applying the calibration parameters and estimate 
the distance. 

• Optimize estimation with algorithm proposed in 
reference [19]. 

 

Fig. 2. General proposed method.  

 

A. Distance Calculation 

From equation (1) the following relationships can be set: 

 
𝑥 =

𝑥′

𝑓
𝑧

𝑦 =
𝑦′

𝑓
𝑧

 () 

Now, suppose that in 3D space there are three points P1(x1, 
y1, z1), P2(x2, y2, z2), and P3(x3, y3, z3). Also assume that d1, d2, 
and d3 are the distances between P1 – P2, P1 – P3 and P3 – P2, 
respectively. Using the equalities in (4), computation of the 
quadratic Euclidean distance between pairs of points can be 
stated as: 

 

𝑑1 = (
𝑥′1

𝑓
𝑧1 −

𝑥′2

𝑓
𝑧2)

2

+ (
𝑦′1

𝑓
𝑧1 −

𝑦′2

𝑓
𝑧2)

2

+ (𝑧1 − 𝑧2)2

𝑑2 = (
𝑥′1

𝑓
𝑧1 −

𝑥′3

𝑓
𝑧3)

2

+ (
𝑦′1

𝑓
𝑧1 −

𝑦′3

𝑓
𝑧3)

2

+ (𝑧1 − 𝑧3)2

𝑑3 = (
𝑥′3

𝑓
𝑧3 −

𝑥′2

𝑓
𝑧2)

2

+ (
𝑦′3

𝑓
𝑧3 −

𝑦′2

𝑓
𝑧2)

2

+ (𝑧3 − 𝑧2)2

 () 

This system of equations (5) can be solved with any 
iterative method to obtain the unknown coordinates zi, in real-
world units. With these coordinates it is possible to calculate 
the Euclidean distance from the camera to each of these 
points, in three-dimensional space. Furthermore, if two 
consecutive images are taken with the same camera in 
different positions, applying the proposed method, it is 
possible to estimate the relative displacement (rotation and 
translation) between both positions. 

 

Fig. 3. Example of images used to compute distance. 
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V. RESULTS 

A. Initial Setup 

In this section, we illustrate the performance of the 
proposed method (depth calculation and frame-based 
estimation) by means of computer simulations. 

The distance calculation was tested using our own images 
acquired with a low-cost webcam. The results were compared 
with a Kinect device. Kinect is an RGBD system that provides 
the 3D coordinates of points in the real world. It contains a 
visible light camera with a resolution of 1920x1080x3 and an 
infrared light system to provide depth information. To test the 
proposed algorithm, a set of 150 images were taken from 
different distances. Each image containing a chessboard as 
reference object, as shown in figure 3. Each square of the 
chessboard is 27x27 millimeters long. RGB images were 
acquired with low-cost Microsoft USB webcam at a resolution 
of 640x480x3 pixels. The light source provided 
inhomogeneous illumination from a set of alternating current 
lamps. 

To test the frame-based distance estimation of the system, 
600 images from the 00 sequence of the KITTI dataset [20] 
were used. This data set contains images acquired with 
PointGray Flea2 grayscale cameras. Each grayscale image has 
a resolution of 376x1241 pixels. The data set includes real 
references obtained with a high precision GPS/IMU inertial 
navigation system. Figure 4 is an example of images used, 
which were acquired in a residential setting. 

 

Fig. 4. Example of a image of KITTI dataser. 

Fig. 5. Comparison of keyframe-based estimated distance and groundtruth. 

B. Distance Computation 

At this stage, the camera was first placed at different 
distances from the pattern. Then, the distance was calculated 
with the proposed algorithm and compared with the readings 
obtained from the Kinect sensor. Table I shows a part of the 
results obtained. From the data collected, a correlation of 
98.4163% is obtained between the Kinect distances and those 
measured with our method, with a 9% average percentage 
error. When objects are three meters (or more) apart from the 
camera, results are less reliable. 

TABLE I.  COMPARISON OF RESULTS 

Distance 

(cm) 

with 

proposed 

method 

Distance 

(cm) 

with 

Kinect 

97.93 97.5 

105.08 105 

112.29 112.5 

120.14 120 

127.9 127.5 

135.45 135 

141.8 142.5 

148.94 150 

C. Distance Estimation 

Because the frame-based algorithm requires initial scaling, 
such scaling was performed using the first two rows of the 
ground-truth file provided with the dataset. From each image 
we detected and matched the SURF features. Subsequently, 
triangulation and distance estimation were carried out. These 
last results were compared with the reference file included in 
the data set. Figure (5) shows the results of the comparison 
between real and estimated data. A correlation of 0.9996 was 
obtained between both graphs with a 5.88% average 
percentage error. 

When the reference object is not detected for a long time 
(more than 600 frames), the frame-based estimation error 
increases considerably. Said error due to drift can be corrected 
when the reference object is detected again. Another 
alternative is to use various reference objects that can be found 
in the scene; this involves using a robust multi-object 
detection technique, such as a convolutional neural network. 

VI. CONCLUSIONS AND FUTURE WORK 

In this article, a method to calculate the three-dimensional 
distance between a known object and the camera was 
presented. The system uses monocular vision for application 
in augmented reality. However, this method can also be used 
for applications in industrial control systems, SLAM or 
autonomous robot navigation, using a single camera. Points 
can be obtained from any known reference object. If the 
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reference object is not detected at any time, the distance can 
still be estimated using a keyframe-based algorithm. 

The experimental results were promising, even using low-
quality images taken with a webcam, under uncontrolled 
illumination conditions.  

Future work includes the design of robust multiclass 
classifiers, such as convolutional neural networks, to 
recognize common objects expected to be found in the 
environment. Besides, the development of specialized parallel 
processing hardware, to reduce the time of some algorithms 
such as SURF, matching, and pose estimation. 
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