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Abstract—Improving buildings’ energy efficiency is an essential
component in the efforts for reducing the carbon footprint. The
design of more accurate machine learning models for forecasting
energy use in buildings can help to reach this goal since these
models can be integrated as part of the management systems. A
variety of machine learning algorithms have been used for differ-
ent classes of building energy predictions problems. In this paper
we investigate two questions related to the use of neural networks
for building energy predictions: The benefits of optimized neural
network configurations that include the architecture and some
hyperparameters, and the impact on the performance of the
amount of data available to train the networks. Our results show
that combine optimization of architectures and hyperparameters
can significantly improve the accuracy of the neural networks in
some problems and that the availability of training data should be
taken into account when deciding to apply neural networks over
other machine learning methods for building energy prediction
problems.

Index Terms—energy efficiency, energy use prediction, neural
networks, machine learning

I. INTRODUCTION

The emergence of climate change has accentuated the

importance of search for efficient uses of energy. Building

energy consumption accounts for an important part of the

total global energy consumption [1] and obtaining precise

models for building energy predictions has become critical

for decreasing energy usage. However, creating such accurate

models remains a significant challenge due to several factors.

Among them are the variety and complexity of the elements

that impact building energy consumption. Aspects such as

the changing behavior of the buildings’ users, the weather

conditions, and the structural characteristics of the building

The authors would like to thank the Misiones Euskampus 2.0 programme
for the financial help received through Euskampus Fundazioa. I. Inza and
R. Santana acknowledge partial support by the Research Groups 2022-2024
(IT1504-22) and the Elkartek Program (KK-2020/00049, KK-2022/00106,
SIGZE, KK-2021/00065) from the Basque Government, and the PID2019-
104966GB-I00 and PID2022-137442NB-I00 research projects from the Span-
ish Ministry of Science.

should be taken into account at the time of defining or learning

the models.

Building energy prediction models can be grouped into

three classes [2]: physical energy models (i.e., white box),

data-driven models (i.e., black box), and hybrid models (i.e.,

gray box). Data-driven models have received an increasing

attention in the literature [1], [3], [4] since they allow to

exploit the advantages of machine learning algorithms and

benefit from the developments in home sensors. Among the

ML approaches, a number of works have reported successful

applications of neural networks for building energy prediction

[5], [6].

One of the known limitations of neural networks is the

difficulty associated to find an optimal set of hyperparameters

and architecture. Usually, the choice of the neural network

components is made by the practitioner based on previous

experience or evaluating a limited number of neural network

configurations. Hyperparameter optimization methods have

been extensively applied in machine learning [7]. Recently,

neural architecture search (NAS) [8], [9] methods have been

proposed as a more sensible way to also search for optimal

network architectures. Among the most used approaches for

NAS are: reinforcement learning [10], Bayesian optimization

[11] and neuroevolutionary algorithms [12]–[14].

In this paper, we propose the application of neuroevolu-

tionary algorithms for searching neural network configurations

(i.e., choice of the architecture and the hyperparameters) that

improve the models’ accuracy for building energy prediction

problems. We build on the works of Tsanas and Xifara [15]

and Candanedo et al. [16] which introduce two different types

of building energy prediction problems. The goal of the first

problem is the prediction of heating and cooling loads for

different building configurations and the goal of the second

is the design of data driven prediction models of energy use

of appliances. In [15], the characterization of the buildings

configurations is used to predict the target variables by means
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of the machine learning algorithms, and in [16], weather data

and information collected from sensors in a low-energy house

are used to create classical machine learning models for the

energy use of appliances.

The rest of the paper is organized as follows: The next

section introduces the energy prediction problem we address

in the paper and reviews related work on the use of ML algo-

rithms for energy use prediction. In Section III, we introduce

the neuroevolutionary approach to learn models for building

energy prediction. Section IV presents the experimental frame-

work and reports the results of the experiments, as well as a

comparison with other regression algorithms. We conclude the

paper in Section V.

II. PROBLEM DESCRIPTION AND RELATED WORK

A. Problem description

There are different ways in which machine learning methods

can be used for enhancing building energy prediction. We

consider two scenarios. In the first, a set of of building designs

is available, and for each design a number of variables that

characterize the design (e.g., surface area, wall area, roof area,

etc.) are also available together with the heating and cooling

loads obtained from simulations of the building specification.

The problem is then to predict the cooling and heating loads

from the variables that describe the buildings designs.

In the second scenario, the analysis is focused on a single

house with multiple rooms, and lights and appliances in each

room. A number of variables describe the recording from

sensors within the house and other variables capture the

weather conditions in the surrounding area. The goal of the

problem is then to predict the energy consumption of lights

and appliances given these variables.

Both problems can be addressed as the regression of two

target variables, and we use the mean squared error (MSE)

as a measure of the prediction accuracy. We focus on neural

networks since they are able to model non-linear relationships

between the variables and have shown good results in pre-

vious work. More specifically, we consider the multi-layer

perceptron model (MLP) that simultaneously predicts the two

target variables of the problem. While other types of neural

networks could be applied (e.g., recurrent neural networks for

the second problem), the choice of MLP is due to its simplicity

and to the second objective of this work, that is to investigate

the capacity of neuroevolutionary algorithms to improve the

results of building energy prediction models.

B. Related work

There have been an increasing number of works that report

different machine learning approaches for building energy

prediction [1], [3], [6]. In this section, we briefly review

some of the works that are related the most to the approach

introduced in this paper.

In [15], Tsanas and Xifara introduced the dataset we used

for the first problem. They made a geometrical exploration

of different building designs, starting from an elementary

cube (3,5m × 3,5m × 3,5m) from which 12 building forms

composed of 18 elements (elementary cubes) were generated.

All the buildings have the same volume but different surface

areas and dimensions. Moreover, for each of the 18 elements

the material used (walls, floors, roofs, and windows) were

the same. Each of the 768 building designs was simulated by

evaluating the effect of eight input variables characterizing the

designs on the heating load (HL) and cooling load (CL). The

authors compared the random forest model to the iteratively

reweighted least squares [17] and concluded that the former

produced better results. Other machine learning algorithms

have been applied to this dataset including multivariate ex-

treme gradient boosting [18], support vector machines and

hybrid approaches [19], and ensembles of trees [20]. Artifi-

cial neural networks optimized using different metaheuristic

methods are proposed for this problem in [21]. However,

the optimization is focused in the parameters of a fixed

architecture, i.e., the weights and biases of the neural network

and not in neural network configurations.

The second dataset used in our paper was introduced by

Candanedo et al. in [16]. In this second scenario, the analysis

is focused on a single house with multiple rooms and several

lights and appliances in each room. Information about differ-

ent data sources and environmental parameters (indoor and

outdoor conditions) was recorded every 10 minutes together

with the energy (Wh) data corresponding to the lights and

appliances. The problem addressed in [16] was limited to

the prediction of the appliances energy consumption. Here,

we tackle the question of simultaneously predicting the light

and appliances energy consumption. In [16], four regression

models were applied: multiple linear regression model, support

vector machine with radial basis function kernel (SVM-radial),

random forests, and gradient boosting machines. Subsequent

works have proposed the application of neural networks that

exploit the temporal component [22], [23].

III. EVOLUTION OF MLP CONFIGURATIONS

The main objective of the optimization problem we address

is to find a neural network configuration that maximizes the

performance. Therefore, a solution representation is needed

for MLPs. The two primary factors that define the MLP

architecture are the number of hidden layers and the number of

neurons in each layer. In addition, we consider two elements

that also influence the behavior of a network: the weight

initialization functions and the activation functions used in

each layer. The MLP weights are initialized by drawing values

from a normal or uniform distribution, or by applying

the xavier [24] variation of the normal initialization. For

the choice of the activation function the following functions

have been considered: Identity, ReLU, eLU, Softplus,

Softsign, Sigmoid, Hyperbolic Tangent. Finally,

for each layer, two Boolean variables define whether dropout

and batch normalization are applied.

All the factors that define the neural network configuration

are encoded as a list. This type of declarative representation

which exclusively contains the specification of the neural

network has been previously used to address other prediction
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problems [25]–[28]. The evaluation of a network configuration

implies the creation of a network architecture by decoding the

specification in the list. Once the network configuration have

been decoded from the list, a train dataset is used to learn

parameters of the MLP (weights and biases). These parameters

are learned from data using a variant of batch gradient descent,

for given batch size and number of epochs. After training have

been concluded, the fitness of the neural network is the MSE

computed on a validation dataset.

While the list representation is easy to interpret and suitable

for the application of genetic operators, is has as a drawback

that every time that an MLP configuration is evaluated it has

to be trained in order to learn its parameters.

The neuroevolutionary algorithm works by applying dif-

ferent types of mutation operators to the selected solutions.

The selection method applied is truncation selection and the

mutation operators implemented as part of the algorithm are

the following:

• layer change: Randomly reinitializes the description of a

layer chosen at random, e.g., its weight initialization and

activation functions; and the number of neurons.

• add layer: Introduces a new (randomly initialized) layer

in a random position of the network.

• del layer: Deletes a randomly chosen layer.

• activ change: Changes the activation function of a ran-

dom layer to another randomly chosen function.

• weight change: Similarly to activ change, it changes the

weight initialization function of a layer.

The neuroevolutionary approach are shown in Algorithm 1.

Algorithm 1: Neuroevolutionary algorithm for MLPs.

Set t ⇐ 0. Create a population D0 by generating N

random MLP descriptions;

while halting condition is not met do

Evaluate Dt using the fitness function;

From Dt, select a population DS
t of Q ≤ N

solutions according to a selection method;

Apply mutation with probability pm to DS
t and

create the offspring set Ot. Choice of the

mutation operator is made uniformly at random;

Create Dt+1 by using the selection method over

{Dt, Ot};

t ⇐ t+ 1;

end while

Algorithm 1 has been implemented using the deatf library
1, an extension to Tensorflow2 of the Evoflow library 2 [26],

originally conceived to evolve neural networks implemented

in tensorflow [29], and based on the DEAP library [30].

IV. EXPERIMENTS

The goal of the experiments is to evaluate the performance

of the neuroevolutionary approach for obtaining more accurate

1Available from https://github.com/IvanHCenalmor/deatf
2Available from https://github.com/unaigarciarena/EvoFlow

models. We compare the optimized architectures with a set of

neural networks with a random choice of the architectures.

Notice that, in general, there is no information that can guide

the choice of the architecture for these problems. We also

investigate the behavior of the algorithm along generations and

present a comparison with other machine learning approaches.

A. Experimental framework

For each of the two problems, we define a similar procedure

for splitting the data into train, validation and test datasets.

First, we define the percent of the total examples that will

be included in the test dataset. We use percent values in

{20, 40, 60, 80}. After separating the test dataset, the remain-

ing data is split in equal parts for the train and validation

datasets. The aim of considering different percent values was

to assess the sensitivity of the neuroevolutionary algorithm to

the amount of training data. For the first problem, the train,

validation and test datasets have been randomly selected. For

the second problem, and taking into consideration the temporal

component of this data, the test dataset will always correspond

to the last registers of the time series.

The batch size and number of epochs used for the Heating

and cooling problem are 10 and 30, respectively; while for

the Energy consumption problem these values are 50 and

10. These settings have been determined taking into account

the different size of the data for these two problems: 768

and 19735 examples, respectively. For both problems, the

maximum number of hidden layers was set to 8 and the

maximum number of neurons in each layer was also set to

8. The gradient descent method used to learn the parameters

of the neural network is Adam [31].

The population size of the algorithm is 50 and the number

of generations is 40. The mutation probability was 0.8 and the

best solution in each population is kept for the next population.

For each problem, 20 runs are executed and the statistics are

computed using the average of these runs.

B. Evolution of the algorithm

We start our analysis by examining the evolution of the

algorithm in terms of the best fitness value achieved in each

generation. Notice that these fitness values are calculated using

the validation set. The quality of the final solutions will be

evaluated using the test dataset that is not used during the

evolution.

Figure 1 shows the best MSE values achieved in each

generation, computed as the average of 20 runs, for the

Heating and cooling load prediction problem and different

sizes of the train and test datasets. Figure 2 shows similar

information but in this case the fitness values have been

normalized by dividing them by the best fitness value in the

initial population. This normalization allows us to compare the

improvements along the evolution for different percent values.

It can be seen in Figure 1 that in comparison to the initial

random configurations there is an improvement in the fitness

for all percent values. The MSE values at the end of the

evolution are lower when the percent of solutions in the test
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dataset is smaller. This seems to indicate that the algorithm

takes advantage of having a higher number of examples in

the training and validation sets. However, when considering

the normalized results shown in Figure 2, it is clear that the

relative fitness improvement is similar for all percent values.

There is a five-fold decrease in the error in comparison with

the random architectures. Also, it is apparent from figures 1

and 2 that the main improvement to the fitness function

occurs in the initial generations and a relatively small number

of evaluations is required in order to find well-performing

configurations.
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Fig. 1. Best MSE value in each generation for the Heating and cooling load
prediction problem and different proportions of examples in the test dataset.
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Fig. 2. Best (normalized) MSE value in each generation for the Heating and
cooling load prediction problem and different proportions of examples in the
test dataset.

We conduct a similar analysis for the Energy consumption

problem. The results are shown in figures 3 and 4. For this

problem, there are more significant differences in the quality of

the final solutions according to the amount of examples used

for training and validation. Using a high number of training

solutions is more critical in this scenario. This might be due to

the fact that there is a temporal component in this problem and

the patterns that relate the features with the target variables are

more complex and difficult to capture by the models. However,

an inspection of Figure 4 reveals an interesting phenomenon:

The performance of the neuroevolutionary algorithm is better

when the percent of test data is 60%, and not, as in the

previous scenario, when this percent is 20. It is also clear that

for this problem more generations are required in order to

find optimized configurations. The improvements to the MSE

achieved by the algorithm are between 13 and 23 percent.
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Fig. 3. Best MSE value in each generation for the Energy consumption
problem and different proportion of examples in the test dataset.
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Fig. 4. Best (normalized) MSE value in each generation for the Energy
consumption problem and different proportion of examples in the test dataset.

C. Quality of the final solutions

To compute the quality of the neural networks evolved

by the algorithm, we first retrain the neural networks for all

the configurations in the final population using the train and

validation data. Then, these networks are used to predict the
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test dataset and the MSE is computed from these predictions.

Figure 5 shows the average MSE computed from the 20 runs

for each combination of problem and percent of test data.

It can be seen in the figure, that the predictions improve

as the size of the test dataset increases. This is a somewhat

unexpected behavior since we would expect that the accuracy

of the model will improved with the data. Therefore, we

carefully analyzed the predictions produced by the models

on the test data. The effect seems to be due to the fact that,

in the test dataset, there are more examples in those regions

where the model produces accurate predictions, and therefore

the MSE is better. However, there is a limit for this pattern,

as the difference between the percent values of 80 and 60 is

much smaller than the difference between 40 and 20.

20 40 60 80
Percent values

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
S
E

0.553499

0.366719
0.316382

0.280914

0.742947

0.581227

0.472865

0.428648

Mean MSE found for each problem

Heating and cooling load

Energy consumption

Fig. 5. Mean MSE for the solutions in the final population.

We also computed the best absolute neural networks ob-

tained out of the 20 runs. To determine which is the best

solution in the final population, we use the predictions made

on the train+validation datasets. Then, we identified the MSE

value obtained by this network on the test data. This means that

the test dataset is not used to decide which of the networks in

the final population is the best. The MSE values corresponding

to the best solutions found by the neuroevolutionary algorithm

are shown in Figure 6 for the combination of problems and

percent value. The same trend observed in Figure 5 can be

appreciated in this figure. It can be seen that the algorithm is

able to obtain very accurate neural networks.

D. Comparison with other methods

Finally, we compare the results achieved by the evolved

networks to five regression methods previously used for these

problems [15], [16], [18], [20]. To implement the regressors,

we used the scikit-learn library [32] with the values defined

by default in the library. We only selected regressors whose

implementation allows for simultaneously predicting the two

target variables. The MSE values obtained by the algorithms

for each problem and percent values are shown in Table I,

where the best values of each column are underlined.

The analysis of Table I indicates that for the Heating and

cooling load prediction problem the best results are achieved

20 40 60 80
Percent values

0.0

0.2

0.4

0.6

0.8

M
S
E

0.195177
0.159514

0.135016 0.130917

0.69075

0.515463

0.43396

0.374646

Absolute lowest MSE found for each problem

Heating and cooling load

Energy consumption

Fig. 6. Best (absolute) MSE of the neural networks found by the neuroevo-
lutionary algorithm.

Load prediction E. consumption prediction

Percent 20 40 60 80 20 40 60 80

ENN 0.20 0.16 0.14 0.13 0.69 0.52 0.43 0.37
LR 0.19 0.13 0.16 0.20 0.69 0.53 0.53 0.53

RFR 0.05 0.06 0.08 0.09 1.59 0.90 0.62 0.61
KNNR 0.11 0.09 0.10 0.10 0.75 0.56 0.46 0.41
DTR 0.06 0.06 0.08 0.09 1.91 1.44 0.89 0.77
ETR 0.06 0.06 0.08 0.09 1.12 0.65 0.52 0.52

TABLE I
COMPARISON OF THE BEST EVOLVED NEURAL NETWORKS (ENN) TO

OTHER FIVE REGRESSION APPROACHES COMMONLY APPLIED IN THE

LITERATURE. LR: LINEAR REGRESSION, RF: RANDOM FOREST

REGRESSOR, KNNR: KNN REGRESSOR, DTR: DECISION TREE

REGRESSOR, ETR: EXTRATREES REGRESSOR.

using a linear regression approach. For this problem, for which

a limited amount of data is available, the neural networks are

not competitive with the other machine learning approaches.

The situation is reversed for the Energy consumption predic-

tion problem. In this case, the evolved neural networks produce

the best results and significantly outperform the RFR. It should

be emphasized that the complexity of the neural networks was

limited to 8 hidden layers with a maximum of 8 neurons each.

This means that there is room for improvement in the evolution

of the neural networks if more representation capacity were

needed for dealing with the second problem.

V. CONCLUSIONS

There is an urgent need for accurate predictive models

that could contribute to energy conservation. In the context

of building energy predictions, learning such models is very

difficult due to the multiple and heterogeneous factors that

influence the energy consumption. Therefore, efforts are re-

quired to investigate how to improve the accuracy of these

models in order to support better decision-making. In this

paper we have looked into the ability of neuroevolutionary

algorithms to enhance the neural network accuracy. We have

tackled two building energy prediction problems with different

characteristics. For these problems, we have also analyzed the

role played by the amount of training data in the performance

of the neuroevolutionary algorithms.
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Our results show that important gains can be achieved

in the accuracy of the models. However, these gains are

not of the same magnitude for all the problems. Moreover,

as seen in our experiments, for some problems, improving

the models may require a higher number of generations.

While neuroevolutionary and other neural architecture search

algorithms can be costly in terms of computational time, once

the best performing models have been learned they can be

used multiple times. Their application is therefore justified if

the building energy models are going to be used on a regularly

basis and if the gains in accuracy are translated into remarkable

energy savings. Future work could consider the application

of neuro-evolutionary approaches with partially labeled data

[28], extracting valuable problem information from evaluated

solutions [33], and the combination of neuroevolution with

surrogate of the problem fitness functions [34].
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et al., “DEAP: Evolutionary algorithms made easy,” The Journal of

Machine Learning Research, vol. 13, no. 1, pp. 2171–2175, 2012.
[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg,
“Scikit-learn: Machine learning in Python,” The Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.
[33] U. Garciarena, N. Lourenço, P. Machado, R. Santana, and A. Mendiburu,

“On the exploitation of neuroevolutionary information,” in Proceedings

of the Genetic and Evolutionary Computation Conference Companion,
2021, pp. 279–280.

[34] R. Santana, A. Mendiburu, and J. A. Lozano, “Critical issues in model-
based surrogate functions in estimation of distribution algorithms,”
in Proceedings of the 4th Conference on Swarm, Evolutionary, and

Memetic Computing (SEMCCO-2013), ser. Lectures Notes in Computer
Science. Chennai, India: Springer, 2013, pp. 1–13.

806


