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Abstract—Human decision theory focuses on the reasoning be-
hind the choices an individual makes. Human decision modelling
is developed through mental models and can be modelled in
different ways, such as fuzzy logic, deductive logic and proba-
bilistic logic. On the other hand, machine learning techniques use
a variety of statistical, probabilistic, and optimization methods
to learn and detect useful patterns. In this context, this study
investigates the complexities of human and machine randomness,
utilizing two distinct datasets: one representing the perceived
randomness of humans through the selection of nine numbers
and the other encapsulating algorithmically generated random
numbers from machines. The comparison of these datasets aims
to understand the similarities and divergences between human
(brain) randomness and machine randomness, primarily through
the lens of fairness, neurocomputational, and decision-making
simulations.

Index Terms—Neuromathematics, Randomness, Ensemble
learning, Human–machine comparison, Neurocomputing

I. INTRODUCTION

The ability to make human decisions is not perfect, and even
with the same information, different decisions can be reached.
This is called variability [1], and it occurs both between a
group of experts in an area and between decisions made by
a single expert. Human decision theory is concerned with
the reasoning behind an individual’s choices, whether it is
a simple choice between whether to sweeten the coffee or
not, or a deeper choice, such as whether to marry or not, or,
considering the story of Ulysses, whether to return to Ithaca
by the simplest and safest route or to take the risk to hear
the sirens’ song before returning, and submit to a plan that
just one slip could be fatal, which is as complex to explain as
deep machine learning models. The modelling of decision-
making is developed through mental models and, as with
machine learning algorithms, there are distinct approaches
such as fuzzy-logic, deductive logic and probabilistic for its
modelling, each with effectiveness, although the approach can
be common in both scenarios.

However, these choices can find a ”noise”: the random.
Randomness, in the common understanding, occurs when
outcomes transpire haphazardly, unpredictably, or by sheer
chance. Though these three concepts are distinct, they all
bear a close relationship to probability. Notably, probability
comes in various forms: subjective probabilities (or ’degrees of
belief’), evidential probabilities, and objective chances, among
others. One might explore the ties between randomness and

any of these types of probability. In this context, the focus of
this work is on the possible connections between randomness
and chance, also referred to as physical probability. The
typical usage of the word ’random’ tends to be more or less
synonymous with ’chancy’ daily. [2]

Decision-making is a cognitive process of central impor-
tance. Increasing evidence indicates that behavioral variability
is crucial in the way humans balance the trade-off between ex-
ploration and exploitation. In making these decisions, a slight
amount of variability can assist humans in resisting the urge
to exploit known rewards, instead prompting them to explore
other options at random [3]. Determining when to continue
exploring or when to halt and utilize what is available is a vital
component in many decisions, grasping what governs random
exploration can enhance decision-making across various facets
of human life.

Complementary, human randomness perception is com-
monly described as biased [4] once it occurs because when hu-
mans create random sequences, they often consistently under-
represent or over-represent specific subsequences, compared to
what would be anticipated from a genuinely unbiased random
process. Randomness is indifferent to history and humans have
one, constantly flirting with their subjectivity. The search for
”true” randomization is something old, since in Athens, around
300 BC, right at the beginning of what is called democracy
today, elections did not involve votes in the way popularized
today, but rather there was the use of the kleroterion, a device
of randomization consisting of a carved stone plate with rows
of slits and an attached tube. [5] This study used a sequence
of numbers created by a Random Number Generation (RNG)
algorithm. For a number in a sequence or distribution to be
truly random, it must be independent. The independence of
numbers means there is no correlation between successive
numbers. In addition, these numbers should occur in the
distribution with approximately the same frequency. [6]

However, one point that approximates the absence of true
randomness between machines and humans is that computers
currently also lack true randomization and RNG actually
deals with pseudorandomization, which is intrinsic to the
deterministic nature of computers. [7]

While software-generated random sequences are not gen-
uinely random, viable alternatives can be found in fast entropy
sources like quantum systems or classically chaotic systems,
as long as they can create high-quality random sequences at
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a sufficient speed. The unearthing of spontaneous chaos in
semiconductor superlattices at room temperature has given
rise to a valuable option in the field of nanotechnology,
emphasizing that the machines and computational structures
used nowadays do not have the idealized random process. [8]

In this context, the goal of this study is to perform an investi-
gation on the complexities of human and machine randomness.
This study uses two distinct datasets: one representing the
perceived randomness of humans through the selection of nine
numbers and the other encapsulating algorithmically generated
random numbers from machines. Aiming to understand the
similarities and divergences between human (brain) random-
ness and machine randomness, these datasets are compared
with neurocomputational, and decision-making simulations.

II. RELATED WORK

Within the field of human decision-making, there is strong
behavioral and physiological evidence that the brain represents
probability distributions and performs probabilistic inference
[9]. Some techniques place them as complementary methods
and experimental evidence that supports the notion that hu-
man behavior is highly consistent with Bayesian probabilistic
inference in the sensory as well as motor and cognitive
domain (according to the Bayesian definition, probabilities
are personal beliefs). On the other hand, from the frequentist
point-of-view, the reality of the world is that it will or will
not rain tomorrow: it makes no sense to a human that ”it
will rain 60%.” So, continues the argument, from a realist
point of view, single-case probabilities are meaningless. If one
wants to make sense of probabilities, the only way to do so is
to treat probabilities as frequencies: the subjective, Bayesian
understanding of probabilities is hopelessly subjective and, as
such, should not be considered. [10].

The fuzzy strategy imports topics that flirt with philosophy
and unorthodox lines of understanding machine decision ef-
fectiveness [11], which discusses that if the problem domain
is such that human experts cannot achieve 100% performance.
A computer expert system in this domain should not be
expected to do so; that is: if human experts are allowed to
make mistakes, then it should be allowed a computer expert
system to do so, so that the reasoning is equivalent, even in
the misunderstandings.

More metaphysical issues are those like the comparison
between Bayesian and frequentist means [12]. Bayesian statis-
tics, predating its frequentist counterpart, encapsulates all
necessary information for inference within observed data,
excluding unobserved variables. Historically sidelined due to
its limitations in solving cases without known conjugate priors,
Bayesian methods are witnessing a resurgence. This revival
is fueled by advancements in IT and novel mathematical
methodologies, coinciding with the rise of machine learning,
where the confluence of statistics and computation propels
statistical algorithms’ relevance within this domain.

III. PROBLEM FORMULATION SECTION

This section details the elements of the methodology used
in the problem formulation in the proposed study, i.e., the
datasets and the proposed modelling.

A. Datasets

Two datasets were used, named human decision dataset
and machine − generated dataset. Both consist of 20
columns with 50 rows made up of numbers from 1 to 10
on each register.

The human decision dataset is available on Kaggle [12]
under a Creative Commons license and it was carried out
through a survey of 20 different and anonymous individuals,
worldwide, therefore without the description of age, gender, or
other qualifications. The machine-generated dataset consists of
an algorithm in the software R based on runif(), a function
to generate random values from a uniform distribution in R.

B. Modelling

For preliminary analysis, techniques were used to visualize
normality distribution, followed by probability density func-
tion (PDF) and statistical analyzes, which in the context of this
study will be called preliminary analyzes. To reinforce the ex-
ploration, it was also used the XGBooster [13], RandomForest
[14], Support Vector Regression [15], and Ridge Regression
[16], evaluated by the loss check using Mean Absolution Error.

IV. USED METHODS

This section details the elements of the methodology used
to handle the modelling in addition to statistical analyzes.

1) Normality Distribution: In examining a process where
numbers are randomly selected from the range of 1 to 10 for
a total of nine trials, the underlying statistical distribution that
governs this process can be identified as a uniform distribution.
This is predicated on the assumption that each individual
number within the specified range is equally likely to be
chosen in any given trial, leading to a probability of 1

10 for
each number.

An interesting note, however, is that the Central Limit
Theorem may come into play if one were to repeatedly
take samples of size nine from this uniform distribution and
calculate their means. In such a scenario, as the number
of sample means increases, their distribution would tend to
a normal distribution, irrespective of the original uniform
distribution from which the samples were drawn.

In conclusion, the process of randomly selecting a number
from 1 to 10 for nine trials aligns with the uniform distribution,
reflecting the equal probability for each potential outcome
within the defined range.

2) Probability Density Functions: In continuous random
variables, density is articulated via a probability density func-
tion (PDF), indicating the probability of a variable taking
certain values. Despite the discrete appearance of selecting
numbers 1 to 10, examining density here is enlightening.

In our uniform distribution, the probability mass function
(PMF) remains constant, visualized as equal-height bars in

141



a histogram, reflecting distribution uniformity. Transitioning
this to a continuous context, we encounter the constant-
density PDF of a continuous uniform distribution.This density,
constant across the interval, is akin to a ”discrete density” in
our scenario, represented by the PMF.

In summary, density, embodied in continuous distributions’
PDF and discrete ones’ PMF, is crucial for comprehending
random phenomena, revealing outcome likelihoods and distri-
bution structure. For our process, constant density emphasizes
uniformity, while a shift to bell-shaped density would indicate
intriguing large-sample dynamics.

3) XGBooster: XGBoost, an advanced ensemble learning
technique, is pivotal in predictive modeling, leveraging se-
quential construction of weak learners, typically decision trees,
and integrating L1 (Lasso) and L2 (Ridge) regularization to
curb overfitting by penalizing model complexity.

In contexts of inherent randomness in datasets, traditional
linear models may falter due to the absence of discernible
patterns. However, XGBoost’s ensemble approach and gradi-
ent boosting capabilities excel at uncovering latent structures
within such data. The method’s progressive learning from
weak learners refines predictions, while its regularization
avoids noise adherence, favoring genuine pattern recognition
and overfitting prevention.

4) Random Forest: Random Forest, an ensemble method
used for classification and regression, builds multiple deci-
sion trees during training and averages their predictions for
regression tasks, inherently embracing randomness via its
mechanisms.

This randomness is twofold: first, through Bootstrap Ag-
gregating (Bagging), each tree trains on a unique random
data subset, ensuring diverse tree formation. Second, random
Feature Selection at each node during tree construction brings
additional variability, reducing overfitting. In scenarios involv-
ing random numbers, Random Forest’s stochastic nature may
offer enhanced compatibility with the data’s randomness, facil-
itating effective modeling. Its capacity for capturing non-linear
complexities in seemingly chaotic random number data lies in
aggregating diverse tree predictions, each based on different
data and feature subsets, thereby achieving a comprehensive,
robust data representation.

5) Support Vector Regression: Support Vector Regression
(SVR), a variant of Support Vector Machine (SVM), addresses
regression problems by identifying an optimal hyperplane
within a specified error margin, using a distinctive feature:
the kernel function. This function enables non-linear mapping
of data, enhancing SVR’s adaptability to complex patterns,
crucial for randomness-inherent data.

SVR’s resilience to randomness and noise stems from
its emphasis on support vectors—data points defining the
hyperplane—minimizing sensitivity to outliers. In random
number datasets, SVR’s versatility shines; the kernel (linear,
polynomial, RBF) can be tailored to the data’s randomness
nature, accurately modeling complex, non-linear patterns.

Additionally, SVR’s hyperparameters control error tolerance
and penalties, crucial for balancing fit and overfit prevention in

random data modeling. This balance is vital; overly stringent
models might overlook inherent randomness patterns, while
excessively lenient ones might overfit to random noise.

6) Ridge Regression: Ridge Regression, known for L2
regularization, addresses multicollinearity and overfitting in
high-dimensional data by adding a penalty proportional to
the squared L2 norm of its coefficients to the ordinary least
squares (OLS) loss function. This addition, regulated by a hy-
perparameter λ, biases the model towards smaller coefficients,
balancing data fit and coefficient magnitude.

In the context of random numbers, Ridge Regression is
advantageous. Randomness can introduce noise, instability,
and potential collinearity, all mitigated by Ridge Regression’s
regularization. The L2 focus evenly distributes predictor in-
fluence, fostering a stable model that captures randomness
subtleties. The λ hyperparameter fine-tunes sensitivity to ran-
domness, discerning genuine patterns amidst noise—a balance
achieved through methods like cross-validation.

A. Mean Absolute Error

The Mean Absolute Error (MAE) is a straightforward error
metric, averaging the absolute discrepancies between actual
and predicted data points. Unlike the Mean Squared Error
(MSE) with its quadratic penalty for errors, MAE linearly
penalizes deviations, providing an intuitive gauge of aver-
age error magnitude, thereby simplifying model performance
interpretation. Crucially, MAE’s robustness against outliers
due to its linear nature makes it apt for random number
modeling, preventing disproportionate influence of extreme
values inherent in MSE. By penalizing errors linearly, MAE
ensures equitable treatment of all deviations, large or small,
aligning well with contexts of unpredictability in random
datasets. Moreover, if a model’s optimization hinges on an
absolute error framework, using MAE for evaluation maintains
methodological coherence, streamlining both training and as-
sessment processes by unifying objectives and performance
metrics. This uniformity fosters transparency and enhanced
reliability in modeling trajectories.

V. HUMAN DATASET RESULTS ON PRELIMINARY
ANALYZES

In the provided context, the first three numbers were quite
close to a normal distribution as can be seen in Fig 1.
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Fig. 1. Normality Analyzes

However, upon further examination of the remaining num-
bers in the sequence, the characteristics changed, suggesting
that these numbers were not following a normal distribution,

Then, the analysis involved the evaluation of densities is
presented in Fig. 2. This analysis likely refers to the probability
density functions associated with the different parts of the
sequence. A non-normal distribution might display skewness
(lack of symmetry) or kurtosis (presence of heavy tails or
outliers) that would distinguish it from a normal distribution.

In this specific context, the highlighted that the individual
seemed to exhibit a behavior of avoiding the repetition of the
same number. The visualization likely demonstrated that the
numbers were not repeated consecutively or perhaps even at
regular intervals within the series, reinforcing the hypothesis
that there was an intentional or systematic avoidance of
number repetition.

Fig. 2. Density Analyzes

This pattern could indicate a non-random process at play,
as avoiding repeating numbers might suggest a conscious
decision-making process rather than a truly random selection.

VI. MACHINE GENERATED DATASET RESULTS ON
PRELIMINARY ANALYZES

A. Data Distribution

The analysis revealed that the second dataset was not so
different in its behavior from the first one, with a distinction
of similarity on ”central numbers”, as can be seen in Fig. 3.

In this case, initial and final numbers have a bit more of
density than human choices. This finding might indicate that
while there was a specific pattern or bias in the selection of
central numbers, the underlying stochastic process generating
these numbers was still predominantly random and followed
the typical properties of a normal distribution. Therefore, the
analysis of the second dataset revealed a pattern where the
behavior was not entirely typical of a normal distribution, yet
not so different that it could be classified as another type of dis-
tribution, as can be seen in Fig. 4. The nuanced characteristics,
particularly the underrepresentation of central numbers, could
provide valuable insights into the underlying mechanisms or
biases at play, and may warrant further investigation using
more specialized statistical techniques or models tailored to
the specific context of the study.
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Fig. 3. Normality Analyzes

Fig. 4. Density Analyzes

VII. STATISTICAL ANALYZES

This section delves into a comprehensive statistical exami-
nation conducted to decipher inherent patterns and variances in
the dataset concerning human choices and machine-generated
responses. Utilizing an array of statistical methodologies,
including descriptive statistics, hypothesis testing, and variance
analysis, this segment aims to elucidate significant disparities
or similarities between human and algorithmic behaviors in
randomness generation.

Statistic Human Machine
Mean Range 4.66 - 6.50 5.02 - 6.20
Standard Deviation Range 2.29 - 3.22 2.64 - 3.35
T-test P-value 0.97 0.10
ANOVA F-value 1.26 81.57
ANOVA P-value 0.29 <0.0001
Sample Size Required 64 64

TABLE I
COMPARATIVE SUMMARY OF STATISTICAL ANALYSIS

A. Descriptive Statistics

The human participants’ mean responses hovered between
4.66 (R16) and 6.50 (R20), whereas the machine-generated
numbers presented a tighter cluster, with means ranging from
5.02 (R16) to 6.20 (R1). The human data showcased a broader
range, hinting at possible cognitive biases or decision-making
heuristics affecting number selection. The standard deviations,
signifying response variability, were comparably distributed in
both sets, albeit slightly higher in the human data, indicative
of greater inconsistency and potential bias in human choices.

B. T-test

A T-test comparison between two randomly selected
columns from the machine data resulted in a P-value of
0.09717545660261137, indicating no significant mean differ-
ence, suggesting a consistent distribution across selections.
This consistency underscores the algorithm’s efficacy in main-
taining uniform randomness, just like humans.

C. ANOVA

However, the Analysis of Variance (ANOVA) painted a
different picture. While the ANOVA on human data suggested
no significant mean differences across groups (F=1.257941,
P=0.28728), the machine data exhibited a stark contrast. With
an F-value of 81.572661 and a P-value reaching statistical
significance at 1.471565e-24, the test implied a substantial
difference in at least one of the group means. This disparity
between groups in the machine data underscores the algo-
rithm’s proficiency in simulating true randomness, surpassing
the ”human randomness”.

VIII. COMPARING MAE

The results of the metric to evaluate both human and
machine prediction accuracy.

Despite the slight difference between the MAE values on the
human dataset and the generated dataset, the first being less
than the second, indicating a better accuracy and, therefore,
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Model Human MAE Machine MAE
XGBoost 0.269 0.288
Random Forest 0.271 0.289
SVR 0.320 0.334
Ridge 0.260 0.291

TABLE II
COMPARISON OF MEAN ABSOLUTE ERROR FOR DIFFERENT MODELS

greater predictability (that is, the generated dataset presented
a higher level of ” randomness” or, at least, difficult to predict).
The XGBoost model exhibited a commendable performance,
characterized by a nominal disparity between human and
machine error rates. This modest discrepancy underscores the
model’s capacity to align machine predictions closely with
human judgment, thus making it an attractive option for appli-
cations requiring human-like reasoning. Similar to XGBoost,
the Random Forest model demonstrated a consistent predictive
performance, evidenced by a near-equal human and machine
MAE. On the other hand, the SVR model manifested a higher
MAE, suggesting a reduced alignment with human judgment.
This divergence may necessitate a closer examination of model
parameters, hyperparameter tuning, or exploration of alterna-
tive kernel methods to enhance predictive fidelity. Tuning was
not used in this study. Finally, achieving the lowest human
MAE among the examined models, Ridge Regression revealed
a more pronounced gap between human and machine errors.
The marginal disparities observed in the Mean Absolute Error
(MAE) values between human and machine-based decisions
across the deployed models bear significant implications for
the interpretability and reliability of machine learning (ML)
algorithms, particularly under conditions infused with inherent
randomness. These discrepancies, albeit slight, serve as critical
indicators of the models’ robustness and their ability to emu-
late human cognitive processes within uncertain environments.

IX. CONCLUSION

This work proposed a comparative study on human-based
and machine-based decision-making in randomness. This is
an important subject as the advance of emerging technologies
relying on machine-based decisions, it is important to under-
stand in which circumstances decisions taken by computers
can be similar, or not, to those taken by humans.

The study submitted two different datasets, one representing
decisions taken by humans and another by a computer, for
comparative analysis. The results demonstrate that sequential
human decisions have some level of dependence on each other,
thus canceling out a completely random choice. However,
machines also do not operate in true randomness. The distance
between human and computational randomness is not so long,
thus allowing explorations in the field of neurocomputing and
brain simulation that flirt with human reality and behavior.

As future work, it is possible to explore more complex
datasets, representing decisions related to more complex sit-
uations, such as those found, for instance, in situations like
driving a car or manipulating goods in a warehouse, typical
tasks that are being delegated to computers (robots) in emerg-
ing applications. Thus understanding the differences between

decisions taken by human operators and a computer is of
crucial interest to the designers of such applications.
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