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Abstract—This paper offers an investigation into leveraging
computational intelligence (CI) for the assessment of stroke-
induced motor weakness in post-stroke survivors, serving as an
indicator of neurological function. The proposed methodology
deploys deep learning algorithms to analyze video recordings
obtained during the post-stroke hospitalization phase. The
model effectively categorizes the degree of stroke-induced weak-
ness in the patient’s left arm across two and three distinct classes
aligned with the National Institutes of Health Stroke Scale. This
study was motivated by the limitations of existing monitoring
technologies, such as using pressure-sensing mattresses (low res-
olution and low accuracy). Our long-term strategy is to deploy
several means for monitoring the patients’ motor function. This
study demonstrated a binary classification model using video
data collected from a cohort of 23 post-stroke patients in a
clinical setting for 48 hours. Employing a 3-fold cross-validation
methodology, the developed model showcases an accuracy rate
of 92.10 ± 4.08% for the binary classification, distinguishing
between mild and severe stroke-induced weakness in the left
arm. In the case of three classes, the model achieves an accuracy
of 89± 4.95%.

Index Terms—deep learning, stroke diagnosis, motion impair-
ment, human motion analysis.

I. INTRODUCTION AND OBJECTIVES

A stroke is a life-threatening cerebrovascular disease that
can cause long-term disabilities. Timely identification and
early intervention are crucial in preventing permanent brain
damage, motor function impairment, or fatal outcomes. The
initial hour following stroke onset is particularly critical,
as it presents the optimal window for administering med-
ication and increasing the likelihood of favorable patient
outcomes. Moreover, hospitalized stroke patients are at risk
of recurrence, with approximately 50% of recurrent strokes
occurring within the first two weeks of the initial stroke [1].
Throughout stroke treatment, a patient’s motor function can
recover or deteriorate.

The results from study [2] demonstrate a potential 14%
rate of missed diagnosis of ischemic stroke in the USA,
while another study [3] reports a 12% rate of delayed stroke
diagnosis in Japan. These findings emphasize the importance
of enhancing diagnostic accuracy and timeliness in stroke
across diverse healthcare settings. Delayed diagnoses can
lead to prolonged hospitalization duration and undesirable
outcomes for stroke patients.

A fundamental manifestation of stroke is motor weak-
ness, often accompanied by compromised limb mobility.

A substantial majority, approximately 77%, of individuals
afflicted by stroke encounter some degree of upper extremity
weakness [4]. The conventional approach to assessing stroke-
associated weakness involves motor assessments. Unfortu-
nately, this bedside evaluation method remains partly subjec-
tive, can disrupt patients, and may lack consistent sensitivity
to capture noteworthy alterations. The frequent and routine
hourly monitoring of patients at the bedside burdens both pa-
tients and healthcare providers, contributing to inefficiencies
in medical resource use and increasing fatigue in patients.

Consequently, there is a need for a non-intrusive com-
putational intelligence (CI) tool that can consistently gauge
the extent of stroke-induced motor weakness at the patient’s
bedside. Such a system would effectively overcome the
constraints associated with subjective bedside evaluations.
It would also streamline the laborious process of frequent
monitoring, thereby improving patient care.

The rest of the paper is organized as follows. We formulate
the problem in Section II, and discuss the related research in
the field in Section III. The proposed approach is explained
in Section IV, and the results are reported in Section V,
followed by discussion, conclusions, and suggestions for
future work (Section VI).

II. PROBLEM FORMULATION AND IDEA OF APPROACH

Medical practitioners anticipate the technology that can
non-invasively track body motion to monitor the neurological
status of hospitalized stroke survivors. This status changes
dramatically in the first 72 hours after admission and usually
manifests via reduced body movements affecting one side
of the body. The requested technology must complement
the capabilities of medical practitioners in accurately, consis-
tently, and continuously detecting neurological deterioration
or improvement and any changes in motor function during
the post-stroke period or longer periods, and at times when
the continuous practitioners’ supervision is not present or
possible. This will lead to faster diagnosis, personalized
treatments, better outcomes, and net savings in the healthcare
system.

Various technologies were proposed to satisfy the condi-
tion of non-invasiveness. The pressure signature provided by
sensory mats was investigated for the ability to capture the
impact of neurological deterioration in 2D space to a certain
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extent affected by body weights, position, etc. Previous
experimental sondage [5] showed that additional sources of
information are needed to extract these features. The negative
effects of the pressure data ambiguity resulted in both the
low resolution and low accuracy. Our strategy to mitigate
and compensate for these limitations of pressure-sensing
mattresses is to use data from multi-spectral monitoring
devices. This strategy is schematically represented as follows:{

Pressure

Signature

}
︸ ︷︷ ︸
Sensing mattress

⇒ Fusion ⇐
{
Skeleton
Signature

}
︸ ︷︷ ︸
Camera monitoring

(This paper)

(1)

where the right side of the diagram represents the contribu-
tion of this paper. The long-term goal is to conduct a fusion
of the two approaches in order to create a more complete
map of the neurological deterioration of a stroke survivor in
the first 72 hours in hospital settings. This map is a guide
for further development of the personalized rehabilitation
process, for example, exoskeleton-based rehabilitation [6],
[7], [8]. Surveillance of a stroke survivor in the infrared
spectrum (at night) is not considered in this work. The privacy
of video records is addressed by extracting and displaying the
body joints, or key points, in lieu of the video images.

III. RELATED WORKS

In the prior research into CI-based action recognition
pertinent to stroke and various neurological disorders, sev-
eral approaches were developed [9], such as analyzing data
captured by wearable devices, analyzing the pressure sensors
data, and video monitoring. The wearable technology-driven
approach has emerged as a widespread method in action
recognition research [10]. It also showed effectiveness in
identifying the early symptoms of stroke [11], [12], [13].
This approach gained popularity through the usage of smart-
watches, fitness trackers, and other devices worn on the body
or integrated into clothing. These devices are equipped to
monitor diverse physiological signals, which enable tracking
of health metrics, movement, and conditions. However, these
devices are useful as additional data sources for pressure-
sensing mattresses.

Pressure sensor arrays positioned a top mattress function
by quantifying alterations in pressure distribution when an
individual assumes a lying or sitting position. Recent studies
attempted to employ the recorded data medical analysis,
such as post-stroke motor function assessment [5], [14] or
sleep apnea events detection [15]. This technology exhibits
significant drawbacks, such as low resolution and high cost.
Other drawbacks include the incapacity to collect data when
the patient is not reclining on the sensor surface or when
extraneous objects, such as a pillow, a book, or a laptop, are
present on the mattress. Hence, an additional source of data is
needed, such as video monitoring. The multi-source approach
is beneficial because it mitigates strong requirements for a
pressure-sensing mattress and does not require high accuracy
of pose recognition from video surveillance data. However,

these benefits must be confirmed in the third phase of the
project, i.e., the fusion of images of a lying patient from
cameras and mattresses.

Significant advancements have been achieved in the last
few decades in the area of biomechanical analysis of human
motion in the context of neurological injuries such as stroke,
cerebral palsy, Parkinson’s disease [16], [17], [18], [19]. A
system for detection of stroke effects has been described in
[20], which aims to assess facial symmetry, arm weakness,
and speech difficulty in real-time using 3D joint coordinates
recorded with depth cameras known as a Kinect-like plat-
form. It is possible to use this platform for the purpose of
our project, but it is a costly solution.

IV. SYSTEM FOR CONTINUOUS MONITORING OF
NEUROLOGICAL STATUS OF STROKE SURVIVORS

The system for continuous monitoring of the neurolog-
ical status of stroke survivors includes pre-processing and
keypoint feature extraction (Figure 1). The features are then
fed into a deep neural network chosen as a model for
the classification of the motor function. We restricted the
analyzed data to the upper body (arms) since bed-ridden
patients usually have their lower bodies covered by a blanket.
Finally, the degree of motor weakness using the data from
the video is identified.

Fig. 1: An approach to data processing and motor function
classification using data from video monitoring of stroke
survivors.

A. Dataset and pre-processing

The dataset was gathered through a collaborative effort of
the Biometric Technologies Laboratory and the Stroke Unit at
the Foothills Medical Centre in Calgary. The research group
obtained ethics approval for data collection in this study
from the Conjoint Health Research Ethics Board. The study
cohort comprised 23 post-stroke individuals. The patients
were not provided with specific instructions. For each patient,
the monitoring process was performed over a period of up to
three days, resulting in a collection of video records. Within
these videos, the subjects were observed lying on the bed
in a clinical setting, with a blanket covering the lower part
of their bodies. Among the patients, 14 exhibited left-sided
weakness, six had right-sided weakness, and three did not
present any signs of stroke-induced weakness upon initial
assessment. The dataset for the study reported in this paper
was collected using the Wyze Cam v2 video camera. The
camera provides 15 frames per second with 1080p resolution
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(1920×1080) at a 110-degree viewing angle. The raw video
data was divided into short fragments of 60 seconds each.

The dataset utilizes the National Institutes of Health Stroke
Scale (NIHSS) as the ground truth (the annotation metric)
for evaluating the severity of motor weakness, with a single
value recorded per day. The NIHSS is utilized by healthcare
providers to objectively quantify the degree of stroke-induced
impairment based on a manual patient assessment. NIHSS
comprises 11 items that score abilities on a scale of 0
to 4. The list of instructions for the NIHSS includes but
is not limited to an assessment of the ability to hold the
left/right and upper/lower extremities without any movement
drift after 5 seconds for legs and after 10 seconds for
arms. It also includes a limb ataxia test using the finger-
nose-finger and heel-shin tests. In addition, NIHSS includes
specific non-motoric-related tests that reflect the patient’s
neurological function. Higher NIHSS scores indicate more
severe impairment, while 0 signifies normal function. The
total NIHSS score is obtained by adding the item scores; the
total score values range from 0 to 42.

The stroke severity index is classified into five distinct
classes, determined by the NIHSS score. Among the com-
plete cohort of 23 stroke patients, the distribution of these
classes unfolded as follows: 14 patients classified as ’mild
stroke’, 9 patients classified as ’moderate stroke’, and no
patients in the remaining categories. Table I provides details
of the initial data used in the experiment

TABLE I: The number of patients and the number of frames
collected for each of the stroke severity classes.

Severity Total NIHSS # Frames # Patients
Mild stroke 1-4 665 000 14
Moderate stroke 5-15 576 000 9

A data-cleaning procedure is essential before applying any
classification model. The dataset preprocessing involved the
exclusion of specific fragments to enhance the data quality
for subsequent analyses and model development. These frag-
ments consisted of instances where patients were not visible
in the video frames and periods characterized by minimal
or no movement, typically during sleep, as these segments
were deemed irrelevant for subsequent data processing. By
removing these segments, the dataset was refined to focus on
informative data, thus ensuring the reliability of subsequent
analyses and model development. Given the presence of
temporal gaps within the recording, the dataset lacks com-
plete continuity and is partitioned into sequential segments
(sessions). When assessing motor weakness severity using
fixed-sized, non-overlapping, and consecutive time intervals
(tumbling windows), we obtained a number of time windows,
which could be insufficient for deep learning techniques
usage. To overcome this limitation and to enrich the data, we
utilized a sliding window approach with a window length of
500 rows and a step of 100 rows. By doing this, we generated
a temporal windows quantity that was increased by an order
of magnitude.

As indicated in Table II, it becomes evident that the
instances of left arm NIHSS values are not uniformly dis-

tributed. As a result, we have established discrete groupings
according to the ranges of NIHSS values specific to the left
arm.

In our study, two types of models were investigated: a 2-
class classification (categorized by motor component of the
NIHSS values: 0-2 with 33.34% of all data, 3-4 with 66.66%
respectively) and a multi-class classification (categorized by
NIHSS values: 0-1 with 20.55%, 2-3 with 34.34%, 4 with
45.11%).

B. Deep learning of motor functions

At the data preparation stage, face blurring of the individ-
uals involved in the study was applied to maintain compli-
ance with ethical guidelines and data protection regulations.
The prepared dataset consists of body keypoint coordinates
(skeleton joints) and elbow and shoulder joint relative angles
and does not contain any sensitive information. This study
utilized a Python-based deep-learning pipeline to address
the classification task. The data pipeline consists of several
key steps, including pre-processing raw video surveillance
data, extracting human pose features, and training time series
algorithms.

Videos were downsampled to one frame per second to
maintain a manageable dataset size. Frames were extracted
and saved as separate images from each one-minute video
segment. A region of interest with the patient’s location was
identified with the object detection model faster RCNN R-
50-FPN [21]. Due to the presence of blankets covering the
lower extremities of most patients, the study focused on
the estimation of upper body skeletal joints’ coordinates.
This was accomplished using the state-of-the-art pre-trained
human pose estimation model, the High-resolution network
(HRNet) [22].

Subsequent to this initial phase, a data smoothing process
was undertaken to address inherent limitations in the skeleton
point recognition algorithm, which fails to achieve absolute
precision. The Savitzky–Golay filter [23], recognized for its
capacity to enhance data precision without compromising
underlying signal trends, was employed to achieve this. After
a series of experimental iterations employing diverse window
sizes, a window size of 13 was determined as optimal. Then,
shoulder and elbow angles were calculated for both sides
of each subject body. The resulting dataset comprises 24
columns, including 20 values representing coordinates for 10
pose keypoints and four relative joint angles (left and right
elbow, left and right shoulder).

The Multivariate Imputation by Chained Equations
(MICE) [24] algorithm was applied to handle missing data
points. This was followed by data normalization. Features
were normalized to rescale the values in each column within
the range [0,1].

In this study, we investigated two deep learning time-
series processing architectures: Long Short-Term Memory
(LSTM [25]) and Temporal Convolutional Network (TCN
[26]) trained on skeletal key points and joint angles to classify
the severity of stroke-induced weakness
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TABLE II: The data distribution shows the prevalence of left arm motor weakness in stroke survivors dataset, categorized
by severity levels.

NIHSS value Duration (seconds) Fraction of all data, % Description
0 67500 19.40 No drift, limb bends for 5 seconds
1 4000 1.15 Drift down before full 5 seconds; does not hit the bed
2 44500 12.79 Drift; limb hits the bed, some effort against gravity
3 75000 21.55 No effort against gravity, limb falls
4 157000 45.11 No movement

Fig. 2: The proposed deep learning model architecture clas-
sifies the severity of stroke-induced motor weakness into two
classes: ”mild stroke” or ”moderate stroke”.

These models were trained using 500-second long win-
dows and mini-batch gradient descent with a batch size of
64 samples using AMSGrad optimizer with an initial learning
rate of 0.002. The latter was the variability parameter, which
decreased using learning rate decay to 0.000001. A loss
function for two classes is a binary cross-entropy, and for
three classes, it is a categorical cross-entropy.

The investigated architecture options consist of two and
one LSTM layer or one TCN module applied to process
time-series data, followed by one or three dense layers
with a dropout rate of 0.3. The output layer employs a
sigmoid activation function and has a single node for binary
classification or three nodes (applying one-hot encoding)
for multi-classification (three classes). Using the proposed
model, a 3-fold cross-validation was performed using Group
k-fold to avoid leaking the same data to both train and test
datasets. The dataset was split into a training set (33.3%) and
a test set (66.7%). The network was trained on GPU NVIDIA
Tesla T4 on the Google Colaboratory platform.

The pre-trained on COCO dataset, Faster R-CNN model
with a ResNet-50-FPN backbone is applied to detect a region

in the frame containing the image of the subject. Then, pre-
trained High-resolution network HRNet [27] W48 is used
to detect body joints and extract features related to posing.
The coordinates of the joints are used for relative joint
angle calculation and further movement analysis. We repeat
this procedure for one frame per second and quantify the
amount of movement made by each upper extremity of the
subject. The sequence of calculated values is used to estimate
the overall motor skill dynamic and to calculate a ratio of
movement between the right/left sides of the body. During
the next step, the LSTM and TCN were trained to classify
the severity of subjects’ motor weakness.

Figure 2 illustrates the proposed approach to stroke-
induced weakness severity monitoring by analysis of the
subject pose using LSTM.

The system’s primary objective is to accurately classify
the patient video data into distinct categories representing
different levels of motor weakness severity that are based on
the corresponding NIHSS scores. A human movement track-
ing system detects a box containing a person and analyzes
changes in its pose, movements of joints, and relative joint
angles over time.

For the assessment of model accuracy, we employed the
subsequent metrics: True Positives (TP) – the number of cor-
rectly labeled subjects with no to mild motor weakness symp-
toms; False Negatives (FN) – the number of subjects with
severe motor weakness symptoms incorrectly labeled as no to
mild motor symptoms; True Negatives (TN) – the number of
correctly labeled subjects with severe motor weakness symp-
toms; and False Positives (FP) – the number of subjects with
no to mild motor weakness symptoms incorrectly labeled as
severe motor weakness. Using these measures, the ensuing
performance indicators were calculated using the follow-
ing equations: Accuracy=(TP+TN)÷(TP+FN+TN+FP);
Recall=TP÷(TP+FN); Precision=TP÷(FP+TP).

V. EXPERIMENTAL ASSESSMENTS OF MOTOR FUNCTIONS

This section describes the performance evaluation of the
deep learning architecture under diverse hyperparameter con-
figurations. The dropout rate (0.3 or 30%), the initial learning
rate (0.002), the final learning rate (0.000001), and L2
regularization (0.001) after each Dense layer were determined
experimentally. A comparative analysis was conducted to as-
sess the performance of models utilizing LSTM and TCN for
different depths of layers processing the temporal information
and a different number of the following dense layers.

Through experimentation, some models exhibited erratic
behavior, displaying instances of highly variable results when
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subjected to training on different fractions of the dataset.
To address this issue, 3-Fold Group cross-validation was ex-
plored as a potential solution. Group k-fold cross-validation
is used when specific groups or clusters within the data must
be kept together to avoid information leakage. We ensure the
model will learn inter-patient patterns by choosing patient
ID as the group. However, as illustrated in Table III for
the 2-class and Table IV for the 3-class classification, spe-
cific models exhibit these deviations across folds, implying
potential imbalances in data distribution or deficiencies in
representation within the subject population for each class.

TABLE III: Binary classification (NIHSS 0-2 against NIHSS
3-4 for a left arm motor drift): the effect of time series
processing architecture and a number of dense layers on
classification accuracy, macro precision, and macro recall.
The values in bold represent the best performance.

Temporal № Dense Accuracy Precision Recall
Layers Layers (macro) (macro)
1 LSTM 3 69.40 ±15.30 50.25 ±13.63 54.34 ±6.13
2 LSTM 1 56.32 ±13.57 54.49 ±24.56 57.01 ±5.18
2 LSTM 3 70.83 ±26.02 79.60 ±15.60 67.58 ±25.75
1 TCN 1 92.10 ±4.08 89.08 ±5.62 92.12 ±4.37
1 TCN 3 83.05 ±14.49 83.91 ±13.63 87.71 ±7.27

TABLE IV: 3-class classification (NIHSS 0-1 against NIHSS
2-3 against NIHSS 4 for a left arm motor drift): the effect
of the architecture of time series processing layers and the
number of dense layers on classification accuracy, macro
precision, and macro recall.

Temporal # Dense Accuracy Precision Recall
Layers Layers (macro) (macro)
1 LSTM 3 37.36 ±14.79 32.60 ±16.23 27.67 ±7.90
2 LSTM 1 41.38 ±22.57 41.09 ±8.09 37.56 ±15.14
2 LSTM 3 58.62 ±14.66 37.79 ±16.79 47.65 ±14.64
1 TCN 1 74.71 ±22.29 81.87 ±13.10 73.39 ±20.55
1 TCN 3 89.00 ±4.95 90.21 ±5.27 85.35 ±6.87

In both 2-class and 3-class tasks, LSTM-based models
generally underperformed compared to TCN-based models.
Despite its faster training speed, the LSTM model was prone
to overfitting. The optimal binary classification performance
was achieved by a model featuring a single TCN layer
followed by a single Dense layer, as shown in Figure 3
depicting its corresponding confusion matrix. Similarly, the
best performance in the 3-class classification scenario was
exhibited by a model comprised of a single TCN layer
followed by three Dense layers, as reflected in Figure 4
depicting its associated confusion matrix.

VI. DISCUSSION, CONCLUSION AND FUTURE WORK

This work contributes to the study of non-invasive ap-
proaches according to the strategy (1) proposed by the co-
authors to assist the medical practitioners in assessing the
changes in stroke-induced motor weakness of stroke sur-
vivors in a hospital environment. The urgency in developing
and improving such technology is motivated by the number

Fig. 3: The confusion matrix for the two-class model with
500-long input sequence, one TCN layer, one dense layer,
dropout rate of 0.3, sigmoid output function, and binary
cross-entropy loss function.

Fig. 4: The confusion matrix for the three-class model with
500-long input sequence.

of strokes registered every year (for example, there were 13.7
million strokes in 2019 [28] in the USA).

Our ongoing investigation aims to prove the feasibility of
a classification tool based on deep learning for evaluating
the severity of neurological functions in post-stroke patients
over time using video data. The system uses human pose
estimation algorithms to retrieve skeleton joint coordinates
and calculate joint relative angles. This data is used by
time series deep learning models to classify the severity of
stroke-induced weakness. We tested two models: LSTM and
TCN, with different numbers of layers and found that TCN
performed better. The conclusion is that in both 2-class and
3-class tasks, LSTM-based models generally underperformed
compared to TCN-based models.

Limitations: There are several limitations to the reported
results. The sample of stroke patients was small, and some
video frames were unusable due to obstruction, location, and
low-light conditions. These factors, as well as biases of pre-
processing, impacted the performance of the deep learning
model.
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Conclusion: The key conclusion from our study is that
the CI-based processing of video data is a feasible yet
insufficient source for performing an accurate assessment
of the stroke patient’s motor function in a clinical setup.
Other challenges arise from potential occlusions and reliance
on camera positioning, which may impede effective data
processing.

Future work: Next steps according to our strategy (1)
include a) an extension of the approach by using infrared
videos (night-time monitoring), and b) a fusion of video data
with pressure sensory data. Another suggestion for improving
the model by providing the data sufficient for training the
models [29] is generating the synthetic video frames, body
joint points, and pressure maps.
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