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Abstract—Concept drift detection in noisy data streams is
challenging yet essential. This paper introduces NPRDD, a new
concept drift detection algorithm that is robust to noise and
accurately identifies Real drifts. NPRDD operates on a moving
window of recent data, utilizing predicted class probabilities
and cross-entropy-based surprise measures to weigh real drift
candidates. In line with the Bayesian definition of Real con-
cept drift, NPRDD considers a sample as a drift candidate
when the classifier makes an error but is highly confident in
its judgment. We evaluate NPRDD on synthetic datasets by
varying the noise levels and comparing its performance with
other well-established methods. Our results show that NPRDD
outperforms other methods regarding ROC-AUC and Accuracy
metrics.

Index Terms—Real concept drift, noisy data stream, concept
drift detection, model adaptation, cross-entropy, surprise level.

I. INTRODUCTION

In non-stationary environments, the data-generating
sources may change over time, leading to discrepancies
in the distributions of observations between the training
and deployment of machine learning (ML) models. This
phenomenon, known as Concept Drift (CD), can significantly
lower the prediction quality because the probabilistic rela-
tionships between the input and output variables evolved [7],
[18]. Drifted data, if not adequately accounted for, usually
leads to incorrect classifications and negatively impacts the
performance of ML models in real-world scenarios. For
example, unforeseen events, such as the COVID-19 pandemic
or the introduction of new products and services in the
market, can alter buyers’ spending behavior, causing shifts in
the performance of ML models. As data-generating sources
evolve, continuous monitoring of ML models and frequent
updates become essential to accommodate new emerging
concepts [13]. For instance, adapting existing ML models
using recent samples is crucial for sudden and significant de-
creases in predictive performance. Understanding and detect-
ing these unpredictable data changes is vital for developing
robust model adaptation mechanisms.

The CD is a complex notion that can manifest in various
forms, including its types, Real, Virtual and Mixed, and tran-
sition speeds, such as Abrupt, Gradual and Incremental. This
paper focuses on the Real CD, which represents changes in
the statistical properties of the target class variable [13]. The

presence of noisy data in the data stream poses challenges
for traditional CD detection techniques.

Several research studies have explored the performance of
various CD detection algorithms [8] and [3]. These investiga-
tions reveal that no single approach consistently outperforms
others across all scenarios. The choice of detection method
is closely linked to the specific needs of each application,
including the dataset’s characteristics and the ML models
in use. Furthermore, these past studies identified several
limitations in existing CD detectors, including the sensitivity
to parameters’ tuning, a high running time, and difficulty
tackling complex data streams. Additionally, despite that
noise negatively influences data interpretation and machine
learning performance, the majority of drift detection tech-
niques ignore noise presence, even though they’re often
sensitive to it [17]. Such oversight complicates data stream
mining and demonstrates the need for efficient CD detectors
to deal with noisy data and diverse data types.

Our study aims to address the above limitations by focus-
ing specifically on the Real CD and identifying noise in the
class label. Our supervised method, called NPRDD (Noise-
aware Probabilistic Real Drift Detection), leverages any base
classifier that is capable of providing class probability es-
timates. Our method employs a moving window of recent
samples, maintaining statistics, such as probabilities, surprise
levels and the real drift ratio. NPRDD balances the detection
of genuine drifts with the minimization of false alarms due to
noise by utilizing a combination of predicted class probabil-
ities and cross-entropy-based surprise measures. The relative
surprises, calculated within the current window, are used
to weigh the real drift candidates, facilitating differentiation
between noise and actual changes in the data distribution.
NPRDD offers a quick adaptation of the base classifier to
the detected concept changes, ensuring reliable performance
in dynamic environments. We extensively evaluate the per-
formance of NPRDD and four well-established CD detection
methods on several synthetic Abrupt datasets possessing
different levels of noise (5%, 10%, 15% and 20%), with a
total of 12 datasets.

The remainder of this paper is organized as follows.
Section II provides a formal definition of Real concept
drift and highlights Abrupt drifts. Section III describes the
CD detection methods used in the experimental comparison.
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Section IV introduces our method, NPRDD, and describes
its algorithmic details and key features. Section V presents
the extensive experimental study and performance results.
Finally, Section VI concludes the paper, summarizing the
contributions of our research and suggesting directions for
future work.

II. DEFINITIONS OF REAL CONCEPT DRIFT

This paper utilizes the formal, probabilistic definitions of
CD presented in [7], [10], [19]. In a data stream setting, data
arrives continuously and often quickly, which is modeled
as a sequence of samples: {(x1, y1), (x2, y2), · · · }, where
xi is the feature vector and yi its target label. Generally
speaking, the goal of a classifier is to define the relationship
between the dependent variables and the independent variable
and then make predictions for new data: ŷi = f(xi) [7].
More precisely, based on the Bayesian Decision Theory, the
classifier predicts ŷ using the equation below [4], [10]:

ŷ = arg max
y∈0,1,..,l

P (y|x) (1)

where P (y|x) denotes the posterior probability of class y
given the input features x, and l is equal to the size of the
label set. This conditional probability is defined as follows
using the Bayes’ theorem:

P (y|x) = P (x|y)P (y)

P (x)
(2)

where P (x|y) is the likelihood distribution of the input
features given the class label, P (y) is the prior distribution of
the target label, and P (x) is the marginal distribution of the
features. Hence, a classification problem can be represented
as the joint probability distribution of the class and feature
variables, P (y,x).

When CD occurs, the two probability distributions P (x|y)
and P (y) have changed, leading to a shift to the posterior
distribution P (y|x) [6]. Therefore, the Bayesian framework
is a strong solution for CD representation and detection, as
it captures the shifts in the joint distribution P (y,x) and
classifies samples accordingly [10]. Based on the notations
given in [7], [19], the arriving data up to time t can be defined
as follows [19]:

Concept[t] = P[t](x, y) (3)

We assume the learned concept at time t remains stable
for a period, and then it may turn into a new concept at time
u. The latter is a time after t when the concept has shifted:

Conceptt ̸= Conceptu <=> Pt(x, y) ̸= Pu(x, y) (4)

In the literature, two types of CD have been defined: (1)
Real drift, where only the decision boundary has changed,
and (2) Virtual drift, where only the input-feature distribution
has changed. This study focuses on the Real drift, which
means the probability distribution P (y|x) shifted, while there
is no change in the distribution probability P (x) [13]:

Pt(y | x) ̸= Pu(y | x) such that Pt(x) = Pu(x) (5)

Another characteristic of CD is the drift transition (i.e.,
the speed of change), which has often been categorized as
Abrupt, Gradual, and Incremental to express whether the
change levels are small or significant. These aspects carry
essential information that can be utilized to develop drift-
handling mechanisms. This study focuses on the Abrupt
(sudden) changes for real CD. In abrupt drifts, a learned
concept Ct switches suddenly to another concept Cu, and
the progression of change is very rapid. In real-world envi-
ronments, this abrupt shift can happen for several reasons,
such as the outage of an essential service, degradation of
a sensor, failure of equipment, and an unexpected weather
event.

III. CD DETECTION METHODS

CD detection has been a topic of considerable interest in
the ML community, with numerous methods proposed to
identify changes in data streams [11], [20]. Among these
methods, supervised detection approaches, which rely on
monitoring predictive performance or error rates, have gar-
nered significant attention. These methods typically employ
statistical tests or data distribution monitoring to capture sig-
nificant changes in a learner’s performance. These methods
focus on identifying CD in general, regardless of its type
(Real or Virtual), and also they are sensitive to noisy data.

In this section, we describe some of the most promi-
nent supervised CD detection methods, including statistical
process control techniques and error-distribution monitoring
approaches:

• EDDM (Early Drift Detection Method): EDDM [1] is
a statistical detector and an estimator that monitors
the distribution of distances between consecutive
classification errors. It utilizes an exponentially
weighted moving average approach to track changes by
assigning decreasing weights to old samples and giving
more weights to recent samples. It is designed to detect
both gradual and abrupt changes while maintaining low
false positive rates. EDDM is particularly effective at
detecting early signs of drifts.

• KSWIN (Kolmogorov-Smirnov Windowing): KSWIN
[15] utilizes the Kolmogorov-Smirnov (KS) test, a
non-parametric method used to compare two samples
to check if they are drawn from the same distribution.
Within this framework of a sliding window, KSWIN
continuously compares the distribution of the latest
data with previous ones. If the KS test yields a value
exceeding a predefined threshold, it signals a potential
drift. One of the advantages of this method is that it can
detect distribution changes without any assumptions
about the specific distributions in play. Moreover, as
data arrive, older data are naturally phased out from
the window, ensuring adaptability to the most recent
data trends.
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• HDDM (Hellinger Distance Drift Detection): HDDM,
introduced in [5], is a change detection method that
measures the dissimilarity between two probability dis-
tributions by harnessing the Hellinger distance. Com-
pared to other metrics, like the Kullback-Leibler di-
vergence, the Hellinger distance provides a bounded
metric, making it more interpretable in many contexts.
Furthermore, HDDM incorporates Hoeffding’s bounds
to provide statistical guarantees on the detected drifts,
making it robust against false alarms. HDDM offers
two variants: HDDM A, which is fine-tuned to detect
abrupt changes by being more sensitive to sudden shifts,
and HDDM W, optimized for detecting gradual drifts
by accumulating evidence over time before signaling a
change.

Recent trends in the field of CD detection have seen
a growing interest in leveraging probabilistic methods and
model uncertainty insights. A study by Baier et al. [2]
highlighted the use of uncertainty in neural network models
to detect concept drift, identifying changes in data patterns
using specific uncertainty metrics. Moreover, another im-
portant contribution in this domain is the study by [14],
which introduced the SPNCD algorithm. This algorithm uses
a Sum-Product Network (SPN) model to gain a clear under-
standing of the data stream’s probability distributions. More
specifically, SPNCD leverages predicted probabilities from
the SPN model and combines them with the base ML model’s
prediction results to detect drifts effectively. However, the
SPNCD’s dependence on the SPN as a distinct model has
added computational demands, which can be a concern in
streaming settings where quick processing is essential.

Building on such insights, we introduce the NPRDD
algorithm in this paper. Unlike the above methods, NPRDD
uses the predicted probabilities from the classifiers directly,
eliminating the need for additional models. This method
helps us understand the confidence level of the classifier as
well as distinguish between actual data changes and noise
effectively. As a result, NPRDD appears as a reliable method
for detecting real concept drift in noisy data streams, which
will be elaborated on in the subsequent sections.

IV. THE PROPOSED METHOD FOR REAL CD DETECTION

Our CD detection algorithm NPRDD is designed to operate
robustly under noisy data streams, leveraging any base clas-
sifier that is capable of providing class probability estimates.
The algorithm employs a moving window of recent samples,
maintaining statistics, such as probabilities, surprise levels,
and the real drift ratio. Our new approach emphasizes bal-
ancing the detection of genuine drifts with minimizing false
alarms due to noise, utilizing a combination of predicted class
probabilities and cross-entropy-based surprise measures. The
relative surprises, calculated within the current window, are
used to weigh real drift candidates, facilitating differentiation
between noise and actual changes in the data distribution.

Under the prequential evaluation framework, the classifier
incrementally learns from consecutive samples, maintaining

stability as long as the underlying concept remains stable.
Upon detecting a conceptual shift, the algorithm trains a new
classifier to adapt to the change, ensuring a more precise and
responsive adaptation. In the following sections, we present
the main steps of the proposed algorithm. The algorithm
detects drifting samples, known as real drift candidates,
computes their proportions within the recent window, and
weighs them using the surprise measure. A drift alarm will
be triggered if the proportion surpasses a given threshold
(called Talarm).

A. Identification of Real Drift Candidates

In our algorithm, we introduce a new criterion for identify-
ing real drift candidates, in line with the Bayesian definition
of real CD [13]. Specifically, when the classifier makes an
error but is highly confident in its judgment, we consider the
sample as a real drift candidate. This mechanism reflects an
underlying change in P (y | x), distinguishing real concept
drift from noise and other variations in the data stream. A
drift candidate for a given sample is defined as:

d =

{
1 if ypred ̸= ytrue and max(q) ≥ Treal

0 otherwise
(6)

where ypred is the predicted label, ytrue is the true label,
and q is the predicted probability of ypred. The threshold
Treal denotes the Exponential Moving Average (EMA) of the
prediction probabilities of the classifier, offering a balance
between recent and historical prediction performance. It is
updated continuously to ensure the algorithm distinguishes
genuine drifts from the noise.

B. Evaluation of Surprise Level

The surprise level in our CD detector is quantified using
the cross-entropy H(p, q), calculated between the true prob-
ability distribution p and the predicted distribution q. Cross-
entropy is widely employed in information theory and ML
and assesses the dissimilarity between the true and predicted
distributions. The binary classification form of the cross-
entropy is defined as follows [9]:

H(p, q) = −p0 · log(q0)− p1 · log(q1) (7)

where p0 and p1 represent the true probabilities of class
0 and 1, respectively, and q0 and q1 denote the corre-
sponding predicted probabilities. We apply the cross-entropy
to compute the relative surprise, representing the sample’s
unexpectedness compared to the recent window of samples:

S(p, q) = H(p, q)− 1

l

l∑
i=1

H(pi, qi) (8)

where l denotes the size of label set.
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C. Weighting the Real Drift Candidates

The proportion of drift candidates is computed and
weighted based on the relative surprise within the sliding
window of size n. The weighted drift ratio Dw is formulated
as below:

Dw =

∑n
i=1 wi · di∑n

i=1 wi
(9)

with the weight for the i-th sample as:

wi =
1

1 +
√
|S(pi, qi)|

(10)

Our approach ensures precise adaptation to concept
changes, accounting for localized anomalies within the data
stream. The nuanced handling of real drift candidates, de-
noted by (di), ensures the detection mechanism remains
sensitive to true underlying changes while being resilient
to noise. Our algorithm efficiently computes Dw without
exhaustive re-calculations. Rather than iterating through the
entire sliding window for each new data point, we maintain
a running sum. With each new sample, we adjust this sum
by subtracting the oldest value and adding the new one,
achieving O(1) time complexity. This streamlined process
ensures rapid updates, making our method ideal for real-time
applications that demand immediate response.

D. Drift Detection: Alarming Drift

The real drift ratio (Dw) is calculated based on the real
drift candidates within a sliding window. A drift alarm is
triggered if Dw surpasses a predefined threshold Talarm. This
threshold is used to identify when the real drift rate within
the window has surpassed a level that justifies the declaration
of a real CD.

Drift Alarm =

{
1 if Dw ≥ Talarm

0 otherwise
(11)

E. Algorithm Design

Our Real CD Detector, presented in Algorithm 1, en-
compasses the essential aspects of drift detection, including
the precise adaptation to concept changes and the nuanced
handling of real drift candidates, denoted by d. The remaining
parameters include the warmup threshold, allowing the model
to acclimate to the data stream, and the static threshold Talarm,
empirically set to 0.47. The value for Talarm and the window
size have been set to ensure a balance between sensitivity to
genuine drifts and robustness against noise. The adaptive real
drift threshold Treal is updated using α = 0.3, facilitating the
algorithm’s effective adjustment to CD in the data stream.

V. EXPERIMENTAL SETUP

a) Datasets with Different Noise Levels: We uti-
lize three synthetic Abrupt datasets for our experi-
ments, Mixed 0101, RandomTree 2563789698568873 and
Sine 0123, which are publicly available on the Harvard
Dataverse platform. These datasets were produced using

Algorithm 1 Weighted Real CD Detection Algorithm
Require: dataStream (continuous), windowSize = 20, Talarm

= 0.47, warmupThreshold = 20, α = 0.3
Ensure: Drift detection and classifier update

1: Initialize classifier and window parameters
2: sampleCount = 0, Treal = 0, Dw = 0, Psum = 0
3: Initialize windowProbs as empty
4: for each sample xi in dataStream do
5: sampleCount += 1
6: Predict the label ypred for xi

7: Calculate probability q associated with ypred
8: Update the classifier using the true label ytrue
9: Psum += q

10: Append q to windowProbs
11: if sampleCount > windowSize then
12: Psum -= windowProbs[0]
13: Remove windowProbs[0]
14: end if
15: if sampleCount > warmupThreshold then
16: Compute relative surprise S(p, q) (*eq. 8*)
17: Calculate weight wi of xi (*eq. 10*)
18: if (label is incorrect) and (max(q) ≥ Treal) then
19: di = 1 (*real drift candidate*)
20: Update weighted real drift ratio Dw (*eq. 9*)
21: end if
22: Qavg = Psum/min(windowSize, sampleCount)
23: if label is incorrect then
24: Treal = (1− α)×Qavg + α× Treal
25: end if
26: if (window is full) and (Dw > Talarm) then
27: Signal drift
28: Reset window parameters and Psum
29: Re-initialize classifier
30: sampleCount = 0
31: end if
32: end if
33: end for

existing stream generators: Mixed, Random Tree and Sine.
Each dataset comprises 40,000 samples and is designed for
binary classification tasks [12]. These datasets encompass
four distinct concepts and incorporate three Abrupt drifts
located at positions 10,000, 20,000, and 30,000 within the
data stream. To investigate the influence of label noise on
the models’ performance, we introduce artificial noise by
flipping labels in accordance with the predetermined noise
levels: 5%, 10%, 15%, and 20%, with a total of 12 datasets.

b) Concept Drift Detection Algorithms: In addition to
our method NPRDD, we evaluate four renowned CD detec-
tors, namely HDDM A, HDDM W, KSWIN and EDDM.
We also consider the baseline scenario without any drift de-
tection part (called NoDetector) to elucidate the influence of
drift detection on models’ efficiency. With regard to KSWIN
method, it possesses a degree of non-determinism stemming
from its built-in sampling process. To accommodate this non-
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TABLE I
MODEL PERFORMANCE (ROCAUC, ACCURACY AND NUMBER OF DRIFT POINTS) ACROSS ABRUPT DATASETS

Model NoDetector KSWIN EDDM HDDM W HDDM A NPRDD
Dataset ROCAUC. ACC #drifts ROCAUC. ACC #drifts ROCAUC. ACC #drifts ROCAUC. ACC #drifts ROCAUC. ACC #drifts ROCAUC. ACC #drifts
Mixed 05% 0.6208 0.5709 0 0.9228 0.8713 3 0.7544 0.6798 701 0.7771 0.6678 3 0.8321 0.7372 11 0.9233 0.8717 3
Mixed 10% 0.6238 0.5710 0 0.8699 0.8242 4 0.7208 0.6583 640 0.7933 0.7134 5 0.7570 0.6700 4 0.8710 .8254 3
Mixed 15% 0.6070 0.5557 0 0.8214 0.7828 4 0.7905 0.7539 14 0.8219 0.7814 9 0.8210 0.7812 5 0.8229 0.7823 4
Mixed 20% 0.5841 0.5471 0 0.7446 0.7037 6 0.7447 0.7104 10 0.7733 0.7385 13 0.7723 0.7398 7 0.7748 0.7419 4
Sine 05% 0.6805 0.6023 0 0.9244 0.8757 3 0.8992 0.8516 15 0.9243 0.8739 3 0.9240 0.8747 3 0.9244 0.8754 3
Sine 10% 0.6692 0.6042 0 0.8678 0.8223 4 0.8429 0.7989 7 0.8714 0.8274 4 0.8712 0.8267 3 0.8720 0.8279 3
Sine 15% 0.6471 0.5950 0 0.8150 0.7735 4 0.7862 0.7485 14 0.8187 0.7783 5 0.8183 0.7763 4 0.8201 0.7785 4
Sine 20% 0.6138 0.5804 0 0.7700 0.7343 5 0.7365 0.7039 20 0.7641 0.7318 10 0.7704 0.7342 3 0.7713 .7353 4
RT 05% 0.7565 0.6983 0 0.8017 0.7381 5 0.7946 0.7502 6 0.7944 0.7485 13 0.8243 0.7672 3 0.8116 0.7667 5
RT 10% 0.7181 0.6702 0 0.7388 0.6988 4 0.7433 0.7054 23 0.7541 0.7192 18 0.7837 0.7402 4 0.7803 0.7371 4
RT 15% 0.6777 0.6453 0 0.7201 0.6862 4 0.7057 0.6760 16 0.7121 0.6868 19 0.7333 0.6982 5 0.7321 0.6948 8
RT 20% 0.6420 0.6205 0 0.6763 0.6516 6 0.6614 0.6426 11 0.6771 0.6585 17 0.6989 0.6749 3 0.6910 0.6676 7
Average 0.653 0.605 0.000 0.806 0.764 4.333 0.765 0.723 123.083 0.790 0.744 9.91 0.801 0.752 4.583 0.816 0.775 4.33

determinism, we conduct a series of 10 independent runs
for each dataset when assessing with KSWIN. The reported
results for this method represent the average outcomes of
these multiple runs, offering a more reliable measure of its
performance.

c) Base Learner: We employ the HoeffdingTreeClassi-
fier as the base classifier for the five CD detection methods.
We adopt the prequential learning approach, where each
unseen sample from the data stream is utilized for testing the
current classifier. Subsequently, this sample is incorporated
into the training phase to update the classifier incrementally.
The online learning paradigm ensures the model’s continuous
adaptation to evolving data.

d) Evaluation Metrics: We employ Accuracy and the
Area Under the Receiver Operating Characteristic Curve
(AUC-ROC) as our primary evaluation metrics. These metrics
gauge the classifiers’ performance across different noise
levels and drift detection methodologies. Additionally, we
record the number of drift points (locations) detected by each
algorithm.

VI. EVALUATION

A. Performance Results and Interpretation

Table I presents the outcomes derived from evaluating
six CD detection algorithms across 12 synthetic datasets
with different noise levels. As anticipated, increasing noise
levels corresponded to a notable decline in the models’
performance across all scenarios. The NoDetector method
is the least performing across all datasets, demonstrating
the necessity of CD detection and classifier adaptation.
On the other hand, our drift detection algorithm showed
resilience to noise, delivering, most of the time, a superior
performance in terms of ROC-AUC and Accuracy.

Our experimental results reveal that our proposed
method, NPRDD, outperforms other well-established CD
detection methods across most datasets regarding ROC-AUC
and Accuracy. Specifically, NPRDD emerged as the top
performer in 8 out of 12 datasets in terms of ROC-AUC and
achieved a very satisfactory Average ROC-AUC of 0.816
across all datasets. In the case of the RT dataset, NPRDD
was the second-best performer, trailing only HDDM A.
Regarding Accuracy, NPRDD achieved the highest overall

average and secured the top spot in 5 out of 12 datasets.
KSWIN was the second-best overall performer, although
it only ranked first in the Mixed dataset with 15% noise.
HDDM A dominated the Accuracy metric in 4 datasets,
with NPRDD closely following with comparable results.

The superior performance of NPRDD can be attributed to
its robustness to noise and its ability to accurately identify
true concept drifts. Unlike other methods such as EDDM,
KSWIN, and HDDM W, both NPRDD and HDDM A ex-
hibit lower sensitivity to noise. However, in the Mixed
dataset, HDDM A demonstrated significantly lower perfor-
mance in ROC-AUC and Accuracy at 5% and 10% noise
levels compared to NPRDD.

The number of detected drifts further supports the effec-
tiveness of NPRDD. The ideal number of detected drifts for
each dataset is 3, and NPRDD achieved the lowest average
number of detected drifts (4.33) across all datasets, tied with
KSWIN. The high classification performance of NPRDD
underscores the quality of the detected drifts, making it the
top performer in this regard.

B. Ranking Analysis of Concept Drift Detection Methods

Table II presents the ranking analysis of various CD
detection methods based on the ROCAUC metric across dif-
ferent datasets. The evaluated methods include No Detector,
KSWIN, EDDM, HDDM W, HDDM A, and NPRDD. The
ranks are assigned based on the ROCAUC values, with lower
ranks indicating better performance.

Table II shows that the NPRDD method consistently
achieves the best performance, as indicated by its lowest
average rank of 1.35. NPRDD effectively detects CD across
various datasets. The standard deviation of the ranks for
NPRDD is as low as 0.47, indicating consistent ranking per-
formance across various datasets. Among the other methods,
HDDM A and KSWIN show relatively better performance
with average ranks of 2.54 and 3.12, respectively. On the
other hand, the ’No Detector’ method received the highest
average rank, consistently placing it last among all methods
evaluated in our experiments. Overall, the results indicate that
NPRDD is a promising method for detecting CD under noisy
data stream.
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TABLE II
RANKING ANALYSIS OF CD DETECTION METHODS BASED ON ROCAUC

Model NoDetector KSWIN EDDM HDDM W HDDM A NPRDD
Mixed 05% 6.0 2.0 5.0 4.0 3.0 1.0
Mixed 10% 6.0 2.0 5.0 3.0 4.0 1.0
Mixed 15% 6.0 3.0 5.0 2.0 4.0 1.0
Mixed 20% 6.0 4.0 5.0 2.0 3.0 1.0
Sine 05% 6.0 1.5 5.0 3.0 4.0 1.5
Sine 10% 6.0 4.0 5.0 2.0 3.0 1.0
Sine 15% 6.0 4.0 5.0 2.0 3.0 1.0
Sine 20% 6.0 3.0 5.0 4.0 2.0 1.0
RT 05% 6.0 3.0 4.0 5.0 1.0 2.0
RT 10% 6.0 5.0 4.0 3.0 1.0 2.0
RT 15% 6.0 3.0 5.0 4.0 1.0 2.0
RT 20% 6.0 4.0 5.0 3.0 1.0 2.0
Average 6.00 3.12 4.85 3.15 2.54 1.35
Std Dev 0.00 1.04 0.38 0.99 1.20 0.47

VII. CONCLUSION AND FUTURE WORK

Our findings have important implications that extend
beyond the scope of the experimental study. The robustness
of NPRDD to noise and its ability to detect CD accurately
make it an ideal candidate for real-world applications
where the precise identification of CD is crucial. In various
domains, such as banking fraud detection, network intrusion
detection and healthcare diagnosis, NPRDD can improve
the overall effectiveness of those systems by providing
accurate responses to emerging threats or changes in system
behavior. By employing predicted class probabilities and
cross-entropy-based surprise measures, NPRDD effectively
distinguishes between noise and genuine changes in the
data distribution, addressing the challenges posed by noisy
data streams. Furthermore, our research contributes to the
advancement of CD detection by introducing NPRDD for
noisy data streams.

Despite the promising results, our study has some limita-
tions. We only tested NPRDD on synthetic datasets, and its
performance on real-world datasets remains to be evaluated.
Additionally, our experimental setup did not consider gradual
or incremental drifts. Future research could extend NPRDD
to handle different types of drifts and assess its performance
on real-world and synthetic datasets. Moreover, further stud-
ies could explore the integration of NPRDD with other ML
algorithms and evaluate its performance in a broader range of
applications. Exploring the impact of different window sizes
and thresholds on the performance of NPRDD could also
provide valuable insights into its adaptability and robustness.
Also, we aim to compare our active adaptive learning method
to past passive methods that adjust continuously as data arrive
[16].
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