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Abstract—This paper presents an innovative approach to 

addressing the complex challenges posed by Test Task 

Scheduling Problems (TTSPs) through the utilization of 

Multimodal Multi-objective Football Game Algorithm (MM-

FGA). TTSPs hold significant importance in industries where 

testing plays a critical role in ensuring product quality. This 

study outlines the integration of MM-FGA with the Normalized 

Factor Random Key (NF-RK) encoding scheme, tailored to the 

discrete nature of TTSPs. Four real-world TTSPs are 

investigated with the objectives of minimizing makespan and 

mean workload. Comparative analyses are conducted against 

other prominent multiobjective algorithms, including NSGA-II, 

DN-NSGA-II, Tri-MOE-TA&R, MP-MMEA, and MO-Ring-

PSO-CD. The results exhibit MM-FGA's competitive 

performance, particularly in terms of the diversity of solutions 

obtained in the decision space. This underscores MM-FGA's 

prowess in addressing the multimodality challenges of 

optimization problems. The study further suggests the prospect 

of advancing step-size control strategies through meta-

optimization, aiming to refine the algorithm's exploration and 

exploitation balance for even more potent optimization 

outcomes. Overall, MM-FGA demonstrates promise in solving 

multimodal multiobjective discrete problems like TTSPs, while 

indicating room for future enhancements. 

Keywords—Optimization, Multimodal, Multi-objective, Test 

Task Scheduling Problem, Encoding Scheme 

I. INTRODUCTION 

Amidst a wide array of scheduling predicaments, Test 
Task Scheduling Problems (TTSPs) hold a distinct 
significance within industries where testing stands as a 
cornerstone in ensuring product quality and reliability. These 
problems surface in sectors like automotive, aerospace, and 
electronics, where exhaustive testing is of paramount 
importance. Effectively scheduling test tasks assumes 
criticality in curbing testing duration, steering workload 
distribution, and optimizing resource employment. The 
intricacies within TTSPs arise from their multimodal essence, 
characterized by numerous local and global optimal solutions. 
Simultaneously, the challenge is to strike a balance between 
comprehensive testing and the constraints of resources and 
time [1]. This multimodal complexity emerges from the 
various trade-offs among different objectives, rendering the 
quest for optimal solutions intricate and demanding. 
Furthermore, the design exploration spaces in TTSPs display 
heterogeneous multidimensionality and multimodality, 

introducing an additional layer of intricacy into the 
optimization endeavor [2]. 

Multimodal optimization algorithms work well for 
tackling the challenges of TTSPs. These algorithms can 
explore and make the best use of the different solutions 
available, finding various options that suit different needs. 
This helps decision-makers have more choices, considering 
things that regular design software might not catch. In TTSPs, 
the main objectives are usually to finish tests as quickly as 
possible (Makespan) and to use testing tools efficiently (mean 
workload). Making tests fast covers everything well, while 
lessening the workload uses resources better. These objectives 
can be in conflict, so it's important to find a balance to get the 
best solutions. 

As the contribution of this study a new algorithm is 
developed to solve multimodal multiobjective TTSPs. 
Football Game Algorithm (FGA) first was proposed by the 
author of the current study in 2016 as a simple and efficient 
real valued optimization algorithm [3]. Later in 2022 in 
another study a multimodal version of FGA suitable  was 
developed and applied to solve TTSPs [4]. In this study 
however, a further step is taken and a Multimodal 
Multiobjective (MM-FGA) FGA is developed to solve 
multiobjective TTSPs.  

In the rest of the paper, we first briefly review the related 
work in this area then we discuss the structure of MM-FGA 
as well as the employed encoding scheme. The performance 
of the proposed algorithm is presented and discussed 
afterwards. 

II. RELATED WORKS 

The TTSP is a type of puzzle that holds immense 
significance in complex systems like the automotive industry. 
In such systems, the final product's dependability hinges on 
these tests, while optimal scheduling influences production's 
speed, workload, and flexibility. In TTSP, it's not just about 
arranging tasks in order; there's also the consideration of how 
tasks are assigned to available tools. When certain tasks need 
multiple tools, these tools must work together. However, 
when a tool is used for one task, it can't be used for another at 
the same time. These unique TTSP characteristics set it apart 
from other scheduling problems like Flexible Job Shop 
Scheduling Problems (FJSPs) or Unrelated Parallel Machines 
Scheduling Problems (UPMSPs). The main goals in TTSPs 
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are to finish tests quickly (Makespan) and use tools efficiently 
(Mean Workload) [5, 6]. 

Research on optimizing Test Task Scheduling Problems is 
expanding, but there's a lack of diversity in approaches, 
particularly in multimodal optimization. However, similar 
scheduling problems like Job Shop Scheduling Problems 
(JSSPs) and Parallel Machine Scheduling Problems (PMSPs) 
have been explored [6, 7]. Techniques from these studies can 
be adapted with slight adjustments for TTSPs [7]. Therefore, 
we not only delve into TTSP studies but also briefly review 
research on other related problems, particularly those aiming 
for multimodal optimization. 

Perez et al. [8, 9], among the few, focused on identifying 
multiple solutions for Job Shop Scheduling Problems (JSSPs), 
which are typically multi-modal. They found that niching 
methods not only help locate multiple good solutions but also 
maintain diversity better than standard single-optimum 
genetic algorithms. In another recent study by Pan Zou et al. 
[10], a new algorithm was proposed for multimodal 
optimization of JSSPs. This algorithm combines k-means 
clustering with genetic algorithms (GA). The k-means 
algorithm clusters individuals based on machine sequence-
related features, and then adapted genetic operators 
independently search for global optima within each cluster.  

A recent study by Lu Hui et al. [11]introduced the Multi 
Center Variable Scale (MCVS) search algorithm for solving 
single and multi-objective problems, utilizing the multimodal 
property to design a new optimization strategy. MCVS 
emphasizes searching centers and neighborhoods. The study 
highlights the multimodality of scheduling problems [11]. 
Another study suggests that local search algorithms dependent 
on landscape smoothness are unsuitable for scheduling 
problems [12]. 

A Multi-strategy Fusion niching method has been 
proposed and used for solving several scheduling problems,  
including TTSP, FJSP, and PMSP [13]. Notably, this is 
among the few resources that presented results for solving 
TTSPs using the same multimodal single-objective 
optimization algorithm proposed in the paper. 

In multiobjective scheduling optimization, notable studies 
include Zhang et al.'s hybrid PSO algorithm for solving the 
multi-objective FJSP [14]. This approach combines PSO's 
global exploration with a simulated annealing-based local 
search to enhance solution quality and convergence speed. 
The PSO explores the search space for global optima, and the 
SA algorithm refines these solutions, resulting in improved 
algorithm performance. 

The hybrid TS algorithm discussed in [15] combines TS 
and a local search technique using the Pareto dominance-
based neighborhood search (PDNS) algorithm. TS explores 
the search space and finds quality solutions, while PDNS 
refines these solutions to exploit the search space effectively. 

Lu et al. introduced a method for solving the multi-
objective automatic test task scheduling problem (ATTS) 
using a chaotic non-dominated sorting genetic algorithm 
(CNSGA) [7]. CNSGA, derived from NSGA, incorporates a 
chaotic map to enhance exploration and exploitation. This 
map generates random numbers for genetic operations, 

promoting diversity and randomness in selection, crossover, 
and mutation. This approach aims to prevent early 
convergence and improve the search process. 

The Multi-Objective Test Task Scheduling Problem 
(MTTSP) is a complex challenge in software testing, 
involving the scheduling of test tasks on resources to optimize 
objectives like minimizing test time and maximizing resource 
use. Lu et al. [16]propose a variable neighborhood multi-
objective evolutionary algorithm based on decomposition 
(MOEA/D) to solve this problem. This algorithm adapts by 
dynamically selecting different neighborhood structures for 
subproblems, catering to the evolving problem landscape and 
exploring diverse search areas. 

However, in a subsequent work [17], Lu et al. argue that 
for discrete problems like TTSPs, Pareto-based methods are 
more fitting. They introduce a multi-objective evolutionary 
algorithm based on Pareto prediction (PP-MOEA) for solving 
the Automatic Test Scheduling Problem (ATSP). This method 
involves two stages: in the first, a prediction model is trained 
using high-quality solutions from a conventional MOEA, 
guiding the search. In the second stage, a guided search 
operator is devised to create solutions based on the predicted 
Pareto front, and a modified NSGA-II algorithm selects 
solutions. Results demonstrate the proposed algorithm's 
superior convergence and diversity, outperforming MOEA/D 
and NSGA-II, by generating a more diverse and well-
distributed set of solutions along the Pareto front. 

III. PROBLEM DEFINITION 

TTSPs fall within the realm of combinatorial optimization 
problems, a subset of discrete optimization problems. The 
decision variables involve permutations or combinations 
selected from a finite set of discrete options. The 
mathematical representation of TTSP is drawn from [6, 17] , 
and readers seeking further details are directed to these 
sources for brevity in focusing on the paper's main 
contribution. 

IV. MULTIMODAL SINGLE-OBJECTIVE FOOTBALL GAME 

ALGORITHM 

The baseline in the development of MM-FGA would be 
the proposed Multimodal FGA (M-FGA) in [4]. So, we briefly 
review the main components of the M-FGA here and based on 
that develop and discuss the enhancements for MM-FGA.  

The main algorithmic steps in the M-FGA are as follows: 

1. Initialization using uniform rejection sampling 

2. Elitism using Phenotypic Distributed Elitism (PDE) 

3. Positioning (analogous to random walk/evolution) 

a. Substitution 

b. General positioning 

4. Evaluation and ranking  

5. Check for termination criteria  

a. Not met: go to step 2 

b. Met: continue to step 6  
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6. Postprocessing and subset selection from the Coach 
Memory (CM) 

We employ Uniform Rejection Sampling as the 
initialization step for the algorithm. Unlike a basic uniform 
sampling, this approach rejects new individuals that are 
positioned very closely to already sampled points. An initial 
rejection radius is defined, which can be computed by 
dividing the available search volume by 𝑁𝑝  hyper-spheres 

around each sampled point. The volume of a D-dimensional 
hyper-sphere can be calculated using the formula [18]: 

 𝑉ℎ𝑠 =
2𝜋

𝐷
2

𝐷𝛤(𝐷/2)
𝑟𝐷  () 

Therefore, the initial rejection radius 𝑟0 based on available 
search volume can be found using (2) and (3) respectively. 

 𝑟0 = (
𝐷

2

𝛤(𝐷/2)

𝜋
𝐷
2

𝑉𝑎

𝑁𝑝
)

1

𝐷

 () 

 𝑉𝑎 =  ∏ (𝑈𝐵𝑖 − 𝐿𝐵𝑖)𝐷
𝑖=1  () 

Where UB and LB representing upper and lower bound of 
each variable respectively. In the M-FGA the step-size will be 
reduced based on an exponential decay by 𝜃 decay rate and  
𝑟0  as the initial step-size. 

 𝛼(𝑡) = 𝛼0(𝜃)𝑡 () 

In the M-FGA a distant CM strategy has been used to 
increase the diversity and the stability of the found solutions 
up to the end of the run. For this purpose, a decreasing 
pairwise Mahalanobis distance metric between the CM 
positions is considered. It means that there would be a 
decreasing limitation for the distance between every 2 
positions in the CM list. Using evolutionary algorithm 
analogy and in comparison to the greedy elitism in classic 
FGA we call this mechanism the Phenotypic Distributed 
Elitism (PDE). It helps the algorithm to have a better coverage 
over the search space in the exploration phase and 
consequently demonstrates an effective implicit basin 
identification and improves the algorithm's performance. This 
distance limit resembles niche radius in other methods 
however its functionality is different here. In M-FGA the 
niche radius refers to the distance that can be covered by 
random walks from the previous position considering a certain 
confidence level. So, in order to minimize the search overlaps 
between two adjacent niches, pairwise distance limit between 
to CM samples is considered to be double the niche radius. 
This approach enables the population to allocate a greater 
search effort towards exploring challenging basins 
characterized by smaller or complex shapes, which are 
comparatively more difficult to uncover than larger, smoother 
basins. In PDE, the maximum distance between elite samples 
is determined as a multiple of the step-size and dynamically 
decreases as the optimization iteration progresses. This 
distance parameter should be fine-tuned to ensure optimal 
coverage of random walks around each CM sample. More 
detailed information can be found in [4]. 

M-FGA differs from classic FGA by removing the ball 
owner effect and attacking strategy, which enhance solution 
instability and local search intensity. In Modified FGA, player 
movements are simplified to Brownian motion around their 
prior positions for positioning or around a chosen CM position 
using Fitness Proportionate Selections for substitutes. 

General positioning: 

 𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 1) + 𝛼(𝑡)𝒩(0, 𝐼𝐷);  ∀ 𝑖 = 1,2, … , 𝑁𝑝 − 𝑁𝑠

 () 

Players' substitution: 

𝑥𝑖(𝑡) = 𝐶𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑗

+ 𝛼(𝑡)𝒩(0, 𝐼𝐷); 

  𝑗 ∈𝑅 [1, 𝑁𝑡] , ∀ 𝑖 = (𝑁𝑝 − 𝑁𝑠) + 1, … , 𝑁𝑝   () 

Where  𝑁𝑝  is the number of the population, D is the 

problem's dimension,  𝑁𝑡 is the number of tactics or CM-size 
while 𝑁𝑠 is the number of substitutions in each iteration, and 
𝒩(0, 𝐼𝐷) is a D-dimensional random vector drawn from the 
standard normal distribution. 

V. MULTIMODAL MULTI-OBJECTIVE FOOTBALL GAME 

ALGORITHM 

Building upon the foundational structure of M-FGA, 
additional elements are introduced into the algorithm to 
effectively handle the multiobjectivity challenges within 
multiobjective TTSPs. The initialization strategy remains 
unchanged, employing the same rejection sampling method. 
However, in contrast to M-FGA, solutions are ranked using 
the non-dominated sorting method. The presence of multiple 
solutions in each rank aligns well with FGA's elitism strategy 
of storing diverse solutions in the CM. Solutions of the same 
non-dominated rank hold equal priority, eliminating the need 
for measures like crowding distance in TTSPs. These 
solutions are sorted in the CM based on their frequencies in 
the objective space. To ensure a balanced distribution of 
frequencies among solutions, lower frequency CM samples 
are prioritized as base vectors for substitution. It worth noting 
that solution frequency in the objective space refers to the 
count of distinct solutions in the decision space with the same 
objective values. 

Elite solutions are stored in the CM using PDE, with 
distinctions from M-FGA. In MM-FGA, the Hamming 
distance, due to the discrete search space's nature, replaces the 
Mahalanobis distance metric in PDE. The size of the CM (𝑁𝑡) 
is adaptive, ranging from a user-set minimum to the maximum 
number of rank-one non-dominated solutions. 

It is discussed in [4] that how the IES and Normalized 
Factor Random Key (NF-RK) encoding scheme will partition 
the search space to a discrete set of decision tiles each 
representing a unique combination of tasks and machines. 
Considering the clear distinction between continuous and 
discrete landscapes, the normal distribution used for random 
walks is replaced by a uniform distribution. This change 
aligns better with the decision tile shapes. Similarly, for base 
vectors in substitution, a frequency proportionate selection 
method is employed. Solutions with lower frequencies are 
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given higher chances for selection as base vectors. This 
transformation also extends to general positioning, where 
uniform distribution replaces the previous normal distribution. 
These adjustments enhance the compatibility of the algorithm 
with discrete search spaces. 

To prevent the step-size from becoming too small, which 
could hinder effective mutation power for escaping converged 
decision tiles, we introduce a minimum step-size to the 
algorithm. This minimal value is derived from the decision 
tile's size and shape. It's important to note that this minimum 
step-size doesn't serve as an algorithm termination criterion. 
The search process is divided into two phases: the Exploration 
phase initiates with initialization and continues until the step-
size reaches its minimum, followed by the Exploitation phase, 
encompassing the remaining search iterations. Throughout the 
Exploitation phase, the step-size maintains its minimum 
value. The user determines the balance between Exploration 
and Exploitation by specifying when the search should 
transition to the Exploitation phase, thus influencing the step-
size reduction rate calculation. Our observation indicates that 
when the algorithm reaches the minimum step-size, it 
proceeds to exploit the local region, generating new local 
solutions. This phase significantly enhances the final search 
outcome. This behavior can be attributed to the randomness 
introduced by direction vectors drawn from a uniform 
distribution and the highly noisy landscape of the TTSPs. 

Table 1 is to elucidate the distinctions and resemblances 
between the proposed MM-FGA and M-FGA. 

TABLE I.  CONTRIBUTION OF THE MM-FGA IN COMPARISON TO M-FGA 

Algorithms M-FGA MM-FGA 

Initialization Uniform Rejection 

Sampling 

Uniform Rejection 

Sampling 

Sorting Ascending order of the 

population's fitness 

values (minimization 
problem) 

Non-dominated sorting 

Elitism - PDE with Mahalanobis 

distance limit 
- Maximum CM-size of 

𝑁𝑡 

- PDE with Hamming 

distance limit 
- Adaptive CM-size with 

minimum of 𝑁𝑡 

Substitution - Normal distribution 

drawn random walk 

- Fitness proportionate 
selection of the base 

vector 

- Step-size reduction up 
to the end of run  

- Uniform distribution 

random walk 

- Frequency 
proportionate selection 

of the base vector 

- Minimum step-size 
strategy for a distinct 

exploitation phase  

General 

positioning 

- Normal distribution 

drawn random walk 
 

- Uniform distribution 

random walk 
- Minimum step-size 

strategy for a distinct 

exploitation phase 

VI. MULTIMODAL MULTI-OBJECTIVE OPTIMIZATION OF TTSP 

In this part of the study the final implementation of MM-
FGA on the large scale real-world TTSPs is presented. These 
specific TTSPs involve varying scales: 20t-8m, 30t-12m, 40t-
12m, and 50t-15m. Following the precedent set by other 
investigations dealing with the same problem set [7, 17], we 
adopt the search budgets detailed in Table 2 for each case. 

 

TABLE II.  ALLOCATED SEARCH BUDGET TO EACH PROBLEM 

TTSP Population Generation 

20t-8m 70 120 

30t-12m 100 250 
40t-12m 100 250 

50t-15m 100 250 

For the purpose of comparison study Four powerful 
algorithms for Multimodal Multiobjective Optimization 
Problems (MMOPs) are selected: Tri-MOE-TA&R [19], MP-
MMEA [20], MO-Ring-PSO-SCD [21], DN-NSGA-II [22]. 
Additionally, we included NSGA-II [23] as a legacy 
algorithm among the EMOAs. We use the standard version of 
the algorithms in PlatEMO and keep the parameter settings as 
default [24]. 

The algorithm's performance is assessed using the HV 
indicator to identify the dominant Pareto set and gauge 
convergence in the objective space. Additionally, the count of 
distinct solutions (N) in the decision space is employed as an 
effective metric to measure and compare the algorithms' 
capability in addressing the problems' multimodality.  

The algorithm's performance is assessed using the HV 
indicator to identify the dominant Pareto set and gauge 
convergence in the objective space. Additionally, the count of 
distinct solutions (N) in the decision space is employed as an 
effective metric to measure and compare the algorithms' 
capability in addressing the problems' multimodality.  

The search budget is balanced between Exploration and 
Exploitation, allocating 70 percent for Exploration and 30 
percent for Exploitation. The step-size reduction aims to reach 
the minimum step-size within 84 generations for the 20t-8m 
TTSP and within 175 generations for the other problems. 
Consequently, reduction rates of 𝜃 = 0.8 for 20t-8m TTSP 
and 𝜃 = 0.91 for the remaining cases are calculated. 𝑁𝑡 =
0.9  is uniformly chosen across all scenarios to maximize the 
population's spread over the search landscape.   

we solve each problem for 51 times using each of the 
algorithms. The results of solving these practical large scale 
TTSPs by MM-FGA and five other algorithms are reported in 
Table 3 to Table 6. 

The results for the 20t-8m TTSP indicate that MM-FGA 
demonstrates acceptable performance based on the HV 
measure compared to the other algorithms. While it may not 
have the highest mean HV, it shows significant overlap in 
performance with NSGA-II and MP-MMEA. It's important to 
note that HV measures the spread of non-dominated solutions 
in the objective space, reflecting the algorithm's capability in 
finding quality multiobjective solutions. On the other hand, N 
assesses an algorithm's ability to discover diverse solutions in 
the decision space. The obtained N values clearly demonstrate 
MM-FGA's superiority over the other five algorithms. The 
mean N value of 45.47 in Table 3 exceeds the third quartile of 
any other algorithm, showcasing MM-FGA's excellence in 
uncovering varied solutions in the decision space, while 
maintaining HV values within a comparable range with the 
other algorithms. 

The statistical outcomes presented in Table 4 for the 30t-
12m TTSP demonstrate comparable performance between 
MM-FGA and the other algorithms. In this case, there's a 
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slight advantage in the mean HV for MM-FGA, falling within 
the same range as NSGA-II and MP-MMEA. MM-FGA 
stands out with a mean N value of 48.94, outperforming the 

other algorithms in this metric. DN-NSGA-II also remains 
competitive, securing the second position with a mean N of 
43.82 and a noticeable overlap. 

TABLE III.  PERFORMANCE OF MM-FGA ON 20T-8M TTSP IN COMPARISON TO THE OTHER ALGORITHMS 

 HV N 

Algorithm Mean Var. Min Max Mean Var. Min Max 

MM-FGA 2.4955e4 3.6641e4 2.4528e4 2.5410e4 45.4706 320.4541 22 97 

NSGA-II 2.5024e4 3.2056e4 2.4691e4 2.5448e4 27.0980 31.5702 16 40 

DN-NSGA-II 2.4854e4 4.5736e4 2.4415e4 2.5305e4 29.6078 52.6431 17 45 

Tri-MOE-TA&R 2.4795e4 5.9239e4 2.4269e4 2.5379e4 29.3333 96.1067 13 51 

MP-MMEA 2.5026e4 2.4822e4 2.4692e4 2.5406e4 20.1765 11.8282 12 29 

MO-Ring-PSO-SCD 2.5093e4 2.2783e4 2.4434e4 2.5093e4 24.8627 24.7608 14 38 

TABLE IV.  PERFORMANCE OF MM-FGA ON 30T-12M TTSP IN COMPARISON TO THE OTHER ALGORITHMS 

 HV N 

Algorithm Mean Var. Min Max Mean Var. Min Max 

MM-FGA 6.7504e4 2.2197e5 6.6549e4 6.8929e4 48.9412 224.6965 28 119 

NSGA-II 6.7539e4 2.3809e5 6.6458e4 6.8580e4 39.8431 56.6949 24 56 

DN-NSGA-II 6.7327e4 2.5672e5 6.6243e4 6.8461e4 43.8235 98.7882 28 69 

Tri-MOE-TA&R 6.7162e4 2.5093e5 6.6058e4 6.8291e4 38.6863 153.2196 21 85 

MP-MMEA 6.7423e4 2.1866e5 6.6608e4 6.8841e4 32.9216 37.0737 26 50 

MO-Ring-PSO-SCD 6.6895e4 1.1105e5 6.6124e4 6.7726e4 40.0000 56.5200 27 57 

TABLE V.  PERFORMANCE OF MM-FGA ON 40T-12M TTSP IN COMPARISON TO THE OTHER ALGORITHMS 

 HV N 

Algorithm Mean Var. Min Max Mean Var. Min Max 

MM-FGA 1.2017e5 3.2266e5 1.1887e5 1.2131e5 54.0874 224.6337 30 102 

NSGA-II 1.1996e5 3.5898e5 1.1872e5 1.2141e5 51.0588 103.6965 25 74 

DN-NSGA-II 1.1921e5 3.0285e6 1.1134e5 1.2114e5 48.4706 164.6941 8 70 

Tri-MOE-TA&R 1.1980e5 4.2707e5 1.1865e5 1.2167e5 39.0196 103.8596 20 59 

MP-MMEA 1.1980e5 6.7636e5 1.1814e5 1.2152e5 42.5490 35.3725 28 51 

MO-Ring-PSO-SCD 1.1875e5 2.3520e5 1.1787e5 1.1976e5 42.0588 21.9365 31 51 

TABLE VI.  PERFORMANCE OF MM-FGA ON 40T-12M TTSP IN COMPARISON TO THE OTHER ALGORITHMS 

 HV N 

Algorithm Mean Var. Min Max Mean Var. Min Max 

MM-FGA 1.8185e5 1.3044e6 1.7866e5 1.8436e5 66.2745 580.8431 36 135 

NSGA-II 1.8312e5 1.6417e6 1.8009e5 1.8571e5 57.1176 111.9859 35 78 

DN-NSGA-II 1.8216e5 2.0885e6 1.7794e5 1.8461e5 55.0980 158.9702 32 82 

Tri-MOE-TA&R 1.8261e5 1.6560e6 1.7831e5 1.8573e5 42.9020 118.3702 25 81 

MP-MMEA 1.8234e5 1.1774e6 1.8022e5 1.8604e5 37.6863 32.0596 21 48 

MO-Ring-PSO-SCD 1.7779e5 7.4616e5 1.7606e5 1.7987e5 23.2941 11.1318 16 32 

Regarding the 40t-12m TTSP, MM-FGA achieves a 
superior mean HV compared to NSGA-II in second place 
as presented in Table 5. However, when observing the HV 
distribution across the algorithms, their performances 
appear relatively consistent, with the exception of MO-
PSO-CD, which exhibits the lowest mean HV. The 
distribution of N for MM-FGA, NSGA-II, and DN-NSGA-

II shows a close resemblance, with MM-FGA slightly 
edging ahead in terms of mean N due to a few outliers 
around 100. 

The final problem involves 50 tasks and 15 machines, 
making it a highly multimodal challenge with 50 decision 
variables. Table 6 presents that NSGA-II achieves the 
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highest mean HV value. However, even though MM-FGA 
doesn't secure the best mean HV, it still performs within the 
range of top multiobjective algorithms. In terms of the 
number of solutions in the decision space, MM-FGA 
outperforms all other algorithms in mean, minimum, and 
maximum N. This highlights MM-FGA's ability to find and 
maintain diverse solutions in the decision space, even in 
such a complex scenario. 

VII. CONCLUSION AND FUTURE WORKS 

We employed MM-FGA to address the four real-world 
TTSPs, concentrating on optimizing makespan and mean 
workload. To accommodate the NF-RK encoding scheme, 
we integrated a modified minimum step-size approach into 
the MM-FGA algorithm. The performance of MM-FGA 
was then compared against five alternative algorithms, 
namely NSGA-II, DN-NSGA-II, Tri-MOE-TA&R, MP-
MMEA, and MO-Ring-PSO-CD. In general, MM-FGA 
exhibited performance similar to the most effective 
multiobjective algorithms in handling the multiobjectivity 
challenge in optimization problems. Notably, MM-FGA 
outperformed the other five algorithms in terms of the 
number of solutions discovered in the decision space. This 
underscores MM-FGA's exceptional ability to tackle the 
complexity of multimodality in optimization problems. 
MM-FGA has proven to be a robust algorithm for 
addressing multimodal multiobjective discrete problems, 
particularly TTSPs, and it also holds potential for further 
enhancements in future research. 

In the realm of potential future research, the control of 
step-size management emerges as a critical determinant in 
achieving an equilibrium between exploration and 
exploitation, thus shaping the algorithm's overarching 
efficacy. However, an avenue ripe for exploration involves 
delving deeper into a more intricate approach to step-size 
adaptation during the course of the search. This could 
encompass the exploration of meta-optimization techniques 
applied to this parameter, enabling the implementation of a 
more refined and sophisticated step-size adjustment 
strategy. Such an endeavor holds the promise of potentially 
elevating the algorithm's performance to new heights 
through a more nuanced and optimized mechanism. 
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