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Abstract—Gaussian processes (GPs) serve as powerful sur-
rogate models in optimisation by providing a flexible data-
driven framework for representing complex fitness landscapes.
We provide an analysis of realisations drawn from GP models
of fitness landscapes—which represent alternative coherent fits
to the data—and use a network-based approach to investigate
their induced landscape consistency. We consider the variation
of constructed local optima networks (LONs: which provide
a condensed representation of landscapes), analyse the fitness
landscapes of GP realisations, and delve into the uncertainty
associated with graph metrics of LONs. Our findings contribute
to the understanding and practical application of GPs in op-
timisation and landscape analysis. Particularly that landscape
consistency between GP realisations can vary considerably de-
pendent on the model fit and underlying landscape complexity
of the optimisation problem.

Index Terms—Gaussian Processes, Uncertainty Quantification,
Fitness Landscapes, Local Optima Networks

I. INTRODUCTION

The fundamental goal of optimisation is to discover the most

favourable solution within a specified domain, often subject

to certain constraints. Many real-world problems require opti-

mising objective functions that are complex, exhibit multiple

modes, and are computationally demanding to evaluate. Such

factors intensify the demand for surrogate-based optimisation

strategies [1], [2]. Within this context, Gaussian Processes

(GPs) play a significant role [3], [4]. As a probabilistic model,

GPs offer a means of approximating the objective function

in a manner that quantifies uncertainty with a particularly

powerful feature: their ability to produce a distribution of

possible outputs, or realisations, rather than a single mean

prediction (reflecting their uncertainty).

Here we present a detailed analysis of GP realisations drawn

from fits to a set of benchmark functions. Instead of relying on

the mean GP fit, we adopt a more comprehensive approach,

considering the entire set of potential functions represented

by the GP posterior. This enables us to capture the inherent

uncertainty in the model and provides a more complete picture

of the possible relationships present in the data. We further

consider the structure of these GP realisations through the

construction of Local Optima Networks (LONs) [5]. Each
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LON is calculated for a multitude of GP fits and for each

fit, we generate a set of realisations. We apply graph theory

techniques to these LONs, computing network metrics such

as degree centrality, closeness centrality, and the number of

nodes and edges. When calculating a network measure on

the mean Gaussian process (GP), we obtain an estimated

measure with an associated level of uncertainty, reflecting our

confidence in the estimate based on the specific GP model.

Conversely, by calculating the same measure on an ensemble

of realisations, we utilise multiple models to estimate the

measure and, consequently, assess the variance of the measure

across the ensemble.

Working with GP realisations allows us to comprehend how

uncertainties in the GP model translate into uncertainties in the

network metrics. See [6] for a general study on uncertainty of

graph measures. This research aims to enhance our understand-

ing of GPs as surrogates of fitness landscapes by exploring

their capabilities in the context of varying sample sizes and

diverse benchmark functions. By specifically focusing on

GP realisations and employing rigorous landscape analysis

techniques using LONs, we seek to establish a foundation

for a more nuanced and comprehensive utilisation of GPs in

complex predictive modelling tasks.

The rest of the paper is organised as follows. Section II

reviews the literature on GPs and LONs. Section III provides

details of the experimental setup, Section IV presents the

results obtained in this study and finally Section V concludes

the paper with a discussion on the results and future work.

II. BACKGROUND

A. Gaussian Process

A GP is a probabilistic model widely employed in machine

learning, statistics, and optimisation [7]. It serves as a powerful

tool for modelling and analysing functions by defining a

distribution over them. A GP represents a set of random

variables, with any finite subset of these variables following a

joint multivariate Gaussian distribution. This enables a GP to

describe the distribution of functions, treating each function

as a random variable.

A GP is characterised by a mean function and a covariance

function, with mean μ(x) and variance σ2(x) respectively,

i.e. p(f |x,D, θ) = N (μ(x), σ2(x)) where the mean and
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Fig. 1: GP fit for Sine Function (shown in red) including

the mean GP (shown in blue) and some realisations (dashed

lines). The shaded area around the mean GP represents the

uncertainty, which usually shrinks as more observations are

incorporated (unless the length scale changes).

variance are μ(x) = κ(x,X)K−1f , and σ2(x) = κ(x, x) −
κ(x,X)K−1κ(X,x). Where X is a matrix of size M × d
representing the design locations, while f is a corresponding

vector of size M that contains the true function evaluations.

Thus, the dataset D can be expressed as {(X, f)}. The

covariance matrix K of size M×M represents the covariance

function κ(x, x′; θ) evaluated for each pair of observations.

κ(x,X) is a vector of size M representing the covariances

between x and each of the observations. θ is the kernel hyper-

parameters.

Kernel functions define the covariance between different

points in the input space, reflecting the similarity or correlation

between function values at those points. Various types of

kernel functions exist, each with its own characteristics and

suitability for different types of functions. We use in this paper

are the RBF, Matérn 3/2 and Linear kernels in this work.

When data are observed, a GP model updates its prior distri-

bution to form a posterior distribution. As depicted in Figure 1,

as more data are observed, the GP realisations converge closer

to the mean function. The posterior distribution represents the

updated beliefs regarding the function values at unobserved

locations based on the observed data.1 This process obtains

the posterior GP mean and covariance. Subsequently, samples

are drawn from a multivariate Gaussian distribution with this

mean and covariance, representing possible function values

that align with the observed data and the assumptions of the

GP model. Prior research [9], [10] explored efficient poste-

rior distribution sampling. Insights for handling GP hyper-

parameters in Bayesian optimisation were studied [11]. Earlier

work [12] emphasised graph theory and GPs for comparing

posterior distributions of finite population variance.

B. Local Optima Networks

A fitness landscape refers to the relationship between the

performance or fitness of solutions and their positions in the

problem’s search space. By analysing the characteristics of

the fitness landscape, such as its ruggedness, smoothness, or

presence of local optima, optimisation algorithms can adapt

their search strategies to efficiently navigate and find optimal

or near-optimal solutions.

1We use the GPy package for our GP fit and to draw realisations [8].

LONs are graph representations that capture the relation-

ships between local optima in a fitness landscape [5] [13]. In

LONs, nodes represent individual local optima, while edges

denote the connections between these optima. The presence

of an edge between two nodes signifies the feasibility of

transitioning from one local optimum to another under some

neighbourhood function and transition mechanism. Weighted

edges offer additional information about the strength or sig-

nificance of the connections.

LONs have been extensively studied in various domains.

Initially, they were investigated for combinatorial optimisation

problems [14]–[16]. Subsequently, their application was ex-

tended to continuous optimisation problems [17], [18], where

the construction of LONs involved the use of “basin-hopping”

[19] and Nelder-Mead algorithms [20]. Additionally, search

trajectory networks were proposed for population-based al-

gorithms in continuous spaces [21] and their properties have

been studied by graph theory [17], [22], [23]. LONs have been

extensively studied for example, landscape-aware algorithm

configuration, exploring neutral and rugged landscapes [24],

characterising constrained continuous optimisation problems

[25], visualising multi-objective landscapes [26].

Local Optima (L). The set of solutions of an optimisation

problem, whose fitness is superior to all other solutions in their

neighbourhood. For example, in a minimisation problem, L is

a local optimum if its fitness value is not worse than all other

solutions in its neighbourhood: ∀x ∈ N(L) : f(x) ≥ f(L),
where N(L) is the neighbourhood of L.

Edge (E). Search transitions among local optima are repre-

sented by directed and weighted edges. The weight wij of an

edge from an optimum Li to an optimum Lj represents the

probability of the transition.

Basin of attraction. The basin of attraction Bi of a local

optimum Li in the search space X , is the set Bi = { x ∈ X |
optimiser(x) = Li }. The cardinality |Bi| of this set gives

the size of the basin of attraction of Li.

Local Optima Network (LON). A directed and weighted

graph LON = (L,E), which compacts a fitness landscape

by taking local optima in the search space as nodes and

connecting these nodes with edges based on their transition

as a result of search operators.

III. EXPERIMENTAL SETUP

To ensure the uncertainty in our final results is not un-

duly influenced by variation in the LON generation process,

we conducted experiments on known functions with varying

sample sizes. LONs were created on the original function

with sample sizes ranging from 100 to 10,000 (see Figure

3). Once convergence was achieved, the random walks were

saved for generating LONs in subsequent experiments. Our

goal was to examine the uncertainty stemming from different

GP fits and realisations. We performed 30 GP fits, details of

which can be found in Section III-B. The results of these GP

fits are presented in Table II. Each realisation trajectory was

then used to construct a corresponding LON, resulting in a

total of 30 LONs. Graph measures were calculated for these
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TABLE I: Optimisation Benchmark Functions with Bound-

aries and Optima.

Function
Optima

# Local Optima Global Optimum x, n = 2
Schwefel 49 (420.9687, 420.9687)

Levy 40 (1, 1)

Griewank 5 (0, 0)

Styblinski-Tang 4 (-2.9035, -2.9035)

LONs, as described in Section III-D. Our objective was to

compare the ‘true’ graph measures obtained from the actual

functions to those from the approximated lanscapes. Latin

Hypercube Sampling (LHS) was employed for random walks

in generating LONs, and the same method was used for fitting

the GPs.

A. Optimisation Functions

The functions used in this paper, sourced from [27], are

listed in Table I.

B. GP Hyperparameters

We have used three different kernel functions. Our goal

was to identify the best fit for the given data rather than

specifically analysing the effects of individual kernel functions.

For each iteration, all kernels were employed. To evaluate

the performance of each kernel function, cross-validation

was conducted. The data was partitioned into training and

validation sets with 70% for training and 30% for testing. The

kernel function that achieved the highest performance on the

validation set was chosen. To determine the optimal values for

the variance and lengthscale of each kernel, we used an ap-

proach based on [28] to systematically explore hyperparameter

combinations and find the settings that maximised the model’s

performance using cross-validation.

C. Graph Construction

LONs were constructed following the method described in

[18], specifically referring to Algorithm 1 and Algorithm 2.

Regarding the Nelder-Mead (NM) hyperparameters, the initial

simplex size was set to 0.05. If any coordinates had a value of

zero, the initial simplex size was adjusted to 0.025, following

the default value for initial simplex generation in NM [29].

To update the discovered nodes, a mean distance measure

was utilized. Similarly, for edges, the algorithm employed the

mean distances of the initially found nodes using a pivoting

approach.

D. Graph Theory Metrics & Statistical Analysis

Network analysis relies on key metrics to understand net-

work structure and behavior. Assortativity measures node

connections based on attributes, while closeness centrality

indicates information flow speed. Degree centrality quantifies

node connections and density reflects network compactness.

In-degree and out-degree centrality assess node attractive-

ness and accessibility. Node and edge count reveal size and

complexity, while PageRank identifies influential nodes and

information flow patterns.

IV. RESULTS

Note that the results are averages and uncertainties derived

from 30 separate Gaussian process fits, conducted with dif-

ferent sample sizes to fit GPs. Additionally, 30 realisations

were obtained from each GP to generate violin plots. By

calculating the average of these we obtain 30 × 30 distinct

network measures.

We first present the network measures we acquired from

LONs for the actual functions. Our primary objective is to

determine the true values of these network measures and

identify the sample sizes at which convergence occurs. This is

to assure ourselves (as much as possible) that any uncertainty

observed in subsequent experiments is not derived from the

domain sampling process to generate the LONs. Boxplots of

2D functions in Figure 3 show that a maximum of 10,000

random walks effectively covered the landscapes across all

the functions. While Schwefel started with a high range in

the measures calculated for the smallest sample size (100) the

measures converge around a size of 10,000 random walks,

Levy and Griewank trends converged around 5,000 walks,

and for Styblinski-Tang, even 100 walks sufficed. The error

metrics in Table II across 30 GP iterations demonstrates their

utility in quantifying model discrepancy from actual values.

Discrepancies for Schwefel and Levy function reduced dramat-

ically from sample sizes of 200, while Griewank required more

samples, and Styblinski-Tang needed only 50 for a good GP fit.

Figure 4 illustrates the correlation length over time, showing

it converges with increasing sample size without overfitting or

underfitting. The analysis of node degree assortativity reveals

a consistent trend across functions. However, it is important

to note that the GP fit for the Griewank function was based

on a relatively small sample size of 50. This limited sample

size introduces some uncertainties in the results obtained for

the Griewank function. Despite this limitation, it is noteworthy

that the uncertainties observed across all fits and realisations

are not significant. Closeness centrality varied across func-

tions, as did degree centrality and density measures, which

were more volatile for GP fits with smaller observation sets.

Meanwhile, in-degree and out-degree centrality reflected the

average number of connections per node, and PageRank helped

track changes in node influence over time. We see the most

variability for Griewank function where the values for example

for density bicenteres around two points 0.6 and 0.45. This can

be explained on the table II for 400 sample size to fit GP the

R2 value is 0.679 whereas for the other functions this value

if around 0.9.

V. CONCLUSIONS & FUTURE WORK

l This research focused on the intricate interplay between

GP fits and the ensuing LONs derived from four different func-

tions. We systematically conducted 30 GP fits per function,

drew realisations, and evaluated the similarities/discrepancies

between the resultant LONs via graph measures. The key

discovery was the distinct variation in LON measures with

GP sample size changes. Significant impacts were observed
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Fig. 2: Top row: Contour-plots of the benchmark functions Bottom row: Corresponding LONs. Red nodes indicate global

optima, while blue nodes show local optima. The size of each node is proportional to the size of its basin of attraction. Edges

are weighted based on the probabilities of transition among optima.

Fig. 3: Box Plots of LON Measures in 2D with Varying Sample Sizes. Each measure was obtained from 30 iterations using

sample sizes ranging from 100 to 10,000.

on the number of nodes, edges, and closeness centrality—

measures intrinsically tied to network structure. On the con-

trary, assortativity, PageRank, and degree centrality, which rely

more on overall structure rather than precise network size,

remained largely stable. Such variations suggest an opportu-

nity for optimising LON creation through strategic GP sample

size selection, offering efficiency implications in practical GP

fit applications. Further exploration could determine optimal

sample sizes for specific functions or probe the effects of

diverse GPs on LONs. In summary, our work advances the

understanding of GP fit and LON relationships, emphasising

the importance of fitness landscape analysis. Additionally, this

sheds light on how well GP fits serve as reliable surrogate

models for optimisation and holds considerable potential for

future research in fields applying GP fits.
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Fig. 4: Convergence Plots of correlation lengths. Since the

benchmark functions are two-dimensional, each figure show-

cases the correlation length in a separate dimension for GP

models fitted with varying sample sizes. Each measure was

averaged across 30 iterations, showing the behaviour of the

correlation length as the sample sizes change.

TABLE II: Error measures and their standard deviations from

30 GP fits for all benchmark functions on varying random

walk sizes.

Schwefel Function

Sample Size RMSE Rel MSE Abs percentage MAE R2

50 203.0207.656 0.8590.032 199.2569.659 154.6620.792 0.2620.055

100 162.98923.071 0.6890.098 177.03735.014 124.45823.876 0.5150.135

200 62.3037.242 0.2630.031 58.79015.032 38.5484.581 0.9300.016

400 34.5194.248 0.1460.018 20.3113.592 16.8982.157 0.9780.005

Levy Function

Sample Size RMSE Rel MSE Abs percentage MAE R2

50 10.8930.042 0.6840.003 142.8438.810 7.8250.018 0.5320.004

100 3.7930.929 0.1510.002 46.9005.913 3.1690.490 0.5930.014

200 1.0930.107 0.0690.007 16.6412.245 0.7600.052 0.9950.001

400 1.1580.035 0.0730.002 11.1431.296 0.7500.017 0.9950.000

Griewank Function

Sample Size RMSE Rel MSE Abs percentage MAE R2

50 2.7590.064 0.9570.022 581.006212.015 1.2240.120 0.0840.043

100 2.4193.232 0.9010.203 228.278183.349 5.7892.321 0.1690.217

200 2.0220.085 0.7010.029 166.98567.361 0.8780.044 0.5070.043

400 2.5980.396 0.5290.137 81.22132.020 1.1210.200 0.6790.153

STYBLINSKI-TANG Function

Sample Size RMSE Rel MSE Abs percentage MAE R2

50 0.0190.006 0.0070.000 0.0490.028 0.0090.003 0.9210.02

100 0.0090.003 0.0010.000 0.0310.018 0.0050.003 0.9650.039

200 0.0020.001 0.0010.000 0.0080.003 0.0010.000 1.0000.003

400 0.0010.000 0.0000.000 0.0020.001 0.0000.000 1.0000.000
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