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Abstract— This paper clarifies the requirements of a hybrid 
team including both humans and robots, then analyzes and 
confirms that the Role-Based Collaboration (RBC) 
methodology and the Environments - Classes, Agents, Roles, 
Groups, and Objects (E-CARGO) model can meet the 
requirement and assist in establishing such teams. Following 
this assessment, this paper proposes to use E-CARGO/RBC in 
building human/robot teams. Simulations and experiments are 
used to verify the proposed method.   
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I. INTRODUCTION 
As robotics advances, robots become more intelligent and 

skillful. In 2023, Boston Dynamics declared their new 
autonomous robots that can be highly intelligent in response 
to environmental changes [https://bostondynamics.com/]. 
These advanced robotic systems are transforming the way we 
envision team dynamics in crisis situations. It is a determined 
and accomplishable task for us to establish a team including 
humans and intelligent robots for future missions, such as 
earthquake rescue, hurricane recovery, and other crisis 
responses.  

Due to the diverse array of critical elements in these 
applications, achieving collaboration and consensus among 
agents within the robot team can rapidly evolve into a 
complex challenge. This becomes exceedingly difficult when 
facing a range of hardware options, battery longevity, sizes, 
uncertainties, trust considerations, and robot functionalities in 
a dynamic environment influenced by numerous dependent or 
interconnected factors [2]. As the robots operate within this 
dynamic environment, they must efficiently adapt their 
context-sensitive behaviors to align with the environment's 
state, a process tightly linked to the agent's type and mutual 
trust. The cooperation between self-governing robots and 
humans leads to the establishment of hybrid human/robot 
teams, which introduce new prerequisites, novel challenges, 
and innovative solutions to real-world issues. When many 
dissimilar and autonomous robots are assembled into a team 
to achieve a mission, the accurate assignment of tasks to each 
robot, alongside the assessment of their performance before 
action and the subsequent optimization of process roles, is 
critical. Attaining optimal task assignments and optimizing 
process roles can prevent failures and enhance operational 
efficiency as the robots carry out their mission. 

E-CARGO (Environments - Classes, Agents, Roles, 
Groups, and Objects) [20-22, 28, 30-42] is a valuable tool for 

scientists and engineers seeking to formalize complex, 
abstract problems. This model has undergone thorough 
verification by successfully formalizing and solving 
numerous non-trivial problems within complex systems 
requiring collaborative efforts. An illustrative example of its 
effectiveness is evident in Group Role Assignment (GRA). E-
CARGO empowers the application of the Role-Based 
Collaboration (RBC) method, enabling the resolution of a 
wide array of real-world challenges, even in dynamic and 
adaptive contexts. E-CARGO/RBC emerges as a solution that 
aligns with the prerequisites for establishing hybrid 
human/robot teams, ushering in a new era of collaborative 
problem-solving. 

In this paper, we examine the requirement of hybrid 
human/robot teams, describe RBC and its model E-CARGO, 
clarify how E-CARGO/RBC meets the requirements of a 
hybrid team, discuss related team design issues, and present 
initial simulations and experiments. 

II. SCENARIO AND REQUIREMENTS OF ROBOT TEAM 
Ann, the CEO of Company X, which is responsible to 

provide services for crisis responses. Someday, a hurricane 
happens at City Y and leads to a disaster of human life and 
community resources. Ann immediately contacts the 
government and expresses her interest and ability to help in 
the disaster recovery, and then signs a contract valued at 
millions of dollars. She asks Bob, the CTO of company X, to 
establish a team including 50 robots and 10 people to 
accomplish these tasks regulated by the contract. Considering 
the catastrophic situation, Bob quickly sets up the 
fundamental requirements of the team [25] (Table I) for him 
to manage and accomplish the mission. These functional 
requirements should be carefully defined and tailored to the 
specific application and objectives of the robot team to ensure 
its effectiveness and successful operation. The following 
sections describe what we can do to help Bob accomplish his 
tasks.  

TABLE I. THE REQUIREMENTS OF A HYBRID TEAM 

Items Meanings 
Communi-
cation  
[25, 34] 

Humans and robots should be able to communicate with 
each other to share information and coordinate their 
actions effectively.  

Consensual 
decision 
making [25] 

A team needs to take action in a consistent way. It refers 
to a process in which individuals or groups work together 
to reach agreements or make choices that are acceptable 
to all parties involved. Such decision making may be local 
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or global in nature, but every step of decision making 
should be in consensus. 

Roles [21-
22, 25, 28, 
30-42] 

To enable teamwork, the team must set out a clearly 
defined set of required responsibilities and rights (roles). 
Each member should be assigned specific roles that 
leverage individuals’ preferences, abilities, skills, and 
appropriateness. 

Sensing and 
Perception 
[4, 5, 9, 16] 

Team members should be equipped with sensors such as 
cameras, LiDAR, or proximity sensors to perceive their 
surroundings. They should be able to detect and recognize 
objects, people, or specific features in their environment. 

Goals [ 25] Each collaboration should have a result, i.e., a product, a 
state, an achievement, or an accomplishment, which 
represents the goal of the team. Such a goal should be 
shared by all the members. Optimization of resource 
utilization is one such goals, such as sensor data 
processing, communication bandwidth, and 
computational resources. 

Leadership 
[8, 11, 25] 

A leader performs a special role within a community. 
Leadership requires a strong self-driven personality that 
can foster a sense of trust and loyalty. The player of the 
role leader in the proposed hybrid team should be human.   

Manage-
ment 
[1, 25, 34] 

The management of team components and human-robot 
interactions contributes to the high-performance operation 
of the hybrid team. 

Sharing 
[25, 34] 

Resources, information, and assessments are among the 
many things that can be shared. This activity requires 
effective administration to avoid or minimize conflict. 
Robots should share sensory data and fuse information 
from multiple sources to enhance their perception and 
decision-making abilities. They should have mechanisms 
for aggregating and analyzing data collectively.  

Task 
Execution 
[25, 34, 42] 

Every task should be executed by a member. Team 
members should be capable of performing designated 
tasks, which may involve manipulation, assembly, or 
transportation of objects. They should be able to 
synchronize their actions to achieve a common goal. 

Trust [2, 23, 
25, 26] 

Trust represents a specific degree of confidence placed in 
an individual both prior to and during the execution of 
actions. It encompasses attributes of both a quality and a 
relational nature. Trust incorporates elements such as 
credibility, quality, reputation, reliability, validity, utility, 
robustness, and the rate of false alarms. Trust is a dynamic 
concept, capable of being established, developed, and 
undermined. It can manifest as enduring, stable, 
temporary, or evolving over time. 

Human-
Robot 
Interaction 
[4, 5, 9, 16] 

If robots interact with humans, they should possess natural 
language processing or gesture recognition capabilities to 
understand and respond to human commands or queries. 
User-friendly interfaces may be necessary. 

Adapta-
bility 
[28, 30, 38, 
39] 

The team and robots should have the ability to adapt to 
changing conditions and learn from their experiences to 
improve performance over time. The team should be 
scalable to accommodate changes in the number of robots 
or humans, allowing for easy expansion or reduction as 
needed. Redundancy is also required. 

Role 
players 
[20-22, 28, 
30-42] 

Participants are visible components that perform tasks or 
roles. They are essential and necessary for collaboration. 
Energy Management should be accomplished for both 
humans and robots. The team should efficiently manage 
their energy resources to maximize operational uptime. 
Charging or refueling stations should be considered if 
applicable. Robots should be able to sense autonomously 
within their environment, avoiding obstacles and reaching 
specified destinations. They should possess localization 
capabilities to determine their position accurately. 

III. E-CARGO AND ROLE-BASED COLLABORATION 
The E-CARGO/RBC model [20-22, 28, 30-42] meets the 

requirements of hybrid teams by defining essential 

components and providing the required mechanisms of a 
complex system. E-CARGO is a general composition model 
to express the components of a complex system, and RBC 
forms a process model for a complex to operate. E-
CARGO/RBC establishes a methodology involving a set of 
well-defined concepts, models, and algorithms to facilitate 
collaboration analysis, design and implementation. RBC 
drives the development of E-CARGO. E-CARGO clarifies 
more details in collaboration.   

Using E-CARGO/RBC [54, 60, 68], a complex system 
including a hybrid human/robot team, is expressed as a 9-
tuple ∑ ::= <C, O, A, M, R, E, G, s0, H>,  where each upper case 
symbol expresses a finite set to express a component of a 
complex sytem, and s0 means the initial state of the system. A 
system starts from s0 and progresses according to the RBC 
flowchart (Fig. 1), i.e., including the process of role(s) (R) 
negotiation, agent(s) (A) evaluation, and role assignment, 
playing, and transfer. The RBC chart helps organize groups 
(G) work well on their environments (E), which is formed by 
classes (C) of objects (O), and supports the formal analysis, 
design, implementation, development, and maintenance of a 
system and a team. 

TABLE II THE MANAGEMENT LEVEL OF A TEAM 
Symbol Meaning Level Explanation 

m [34, 42] The number of 
agents 

1 The manager only knows the 
# of agents in the team. 

n [34, 42] The number of roles 2 The manager knows how 
many roles are needed.  

L [34, 42] A role requirement 
 n-vector 

3 The manager knows the # 
agents needed for each role. 

Q [34, 42] 
A qualification m×n 

matrix 
4 The manager knows how 

well each agent works on 
each role. 

T [34, 42] The assignment 
m×n matrix 

5 The manager knows the 
optimized assignments. 

W [34, 42] The role weight n-
vector 

6 The manager has ideas about 
the importance of roles.  

Ac [32, 34] The agent conflict 
m×m matrix  

7 The manager takes care of 
potential agent conflicts. 

Acc [36] 
The agent 

conflict/cooperation 
m×m matrix 

8 The manager considers both 
conflicts/cooperation 

between agents. 

Cf [41] 

The  conflict / 
cooperation 

(m×n)×(m×n) 
matrix 

9 The manager considers 
conflicts/cooperations 

between <agent, role>s. 

Pa [22] The manager’s 
preference m- vector 

10 The manager uses his/her 
preferences in assignment. 

𝜃𝜃𝑎𝑎  [1-3] 

Process role 
Stream of states  

11 The process role entails 
modeling the agents' 

contextual behavior using a 
stochastic process. 

𝜏𝜏𝑎𝑎  [1-3] 

Trust  
A vector with length 

of  m-1 

12 A trust vector 𝜏𝜏𝑎𝑎 represents 
trust levels from agent "a" to 

all other agents. The trust 
density lies between 0 and 1. 

More specifically, we use the symbols in Table II to help 
specify a complex system. Table II also informs the 
management level of a team if the manager is aware of the 
meanings and facts of the corresponding symbols. In 
addition, we use symbols i and j to express the indexes of 
agents and roles, respectively.  Therefore, Q[i, j]∈ [0,1] 
expresses the qualification of agent i on role j, and  T[i, j] ∈
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{0,1} expresses whether agent i is assigned to role j, i.e., 1 
means assigned and 0 no. 

Role negotiation produces a specification of how many 
roles are required, how each role is specified, how many 
agents are required for each role, and how many agents for 
each role can accommodate. Role negotiation can be divided 
into more detailed steps including resource integration, agent 
categorization, role awareness, and role specification. 

Based on the outputs of the role negotiation process, agent 
evaluation produces an 𝑚𝑚 × 𝑛𝑛 matrix Q, each of the elements 
informs the qualification value of an agent on a role.   

With the support of agent evaluation, optimized role 
assignment can be accomplished by GRA, which can be 
defined as follows: 

Given agent set A, role set R, Q, and L, the GRA problem 
[33, 41] is to obtain  

max 𝜎𝜎 = ∑ ∑ Q[i, j] ×n−1
j=0 T[i, j]m−1

i=0    
subject to  

],[ jiT ∈{0, 1} )0,0( njmi <≤<≤ , (1) 

][],[
1

0
jLjiT

m

i
=∑

−

=
)0( nj <≤ ,  (2) 

∑ T[i, j]n−1
j=0 ≤ 1 )0( mi <≤ ,  (3) 

where expression (1) shows the 0-1constraint, (2) informs 
that enough agents are required for each role, and (3) means 
that an agent can be idle and assigned to one role at a time.    

We have presented a pragmatic resolution to GRA [42] by 
customizing it to the Kuhn-Munkres algorithm. Our 
continuous endeavors have resulted in the development of 
models and solutions for a multitude of intricate scenarios. 
Leveraging the robust optimization platform, IBM ILOG 
CPLEX Optimization Package (CPLEX) 
[https://www.ibm.com/products/ilog-cplex-optimization-
studio], we can tackle more intricate problem sets, such as 
Group Role Assignment with Constraints (GRA+) [36] and 
Group Role Assignment with Multiple Objectives (GRA++) 
[31, 37], within acceptable timeframes.  

All the GRA+ and GRA++ problems are based on the 
structure of GRA by adding more math structures and 
constraints [30, 35, 36]. GRA, including GRA+ and GRA++, 
establishes the foundation for building a role engine.  

We can match the components and principles of E-
CARGO/RBC to the team’s requirements as follows, where 
the italic terms are formally defined in E-CARGO/RBC [30-
42], and the underlined terms are the requirements: 1) E-
CARGO/RBC uses roles [30-42] to provide the direct 
requirement of roles. Roles represent positions, tasks, rights, 
duties, and responsibilities, confine the accessibility of 
objects, and facilitate interactions and communications 
among humans, robots, and between humans and robots. 2) 
E-CARGO/RBC uses role negotiation, agent evaluation [34] 
, GRA [34, 42] and process role optimization [1] to represent 
the processes of decision making and consensus. 3) E-
CARGO/RBC uses special roles [30-42] and relations [34] 
among roles to express leadership, i.e., assigning the 
leadership role to a human in a hybrid team and a highly 
autonomous robot in a pure robot team. 4) E-CARGO/RBC 

provides substantial symbols and components (Table II) to 
support the management of of a team. 5) E-CARGO/RBC 
uses roles [30-42] and environments [30-42] to support 
sharing, including resource, data, information, and 
knowledge sharing. 6) E-CARGO/RBC uses agents [30-42] 
to express the autonomous individuals, i.e., the direct 
requirement role players, in a team, who are capable of 
optimizing and accomplishing tasks independently, i.e., task 
execution. 7) E-CARGO/RBC employs roles [30-42], role 
relationships [30-42], process roles [1-3], and agents, 
alongside agent evaluation, to portray trust. 7) In E-
CARGO/RBC, an upper role [34] or a better evaluation [35] 
is the goal of team members. The goal of a group is the 
maximization of group performance [42], which can be tuned 
and constrained based on special requirements. 8) In E-
CARGO/RBC, the RBC process [32, 34] inherently reflects 
the adaptive properties of the team, allowing different kinds 
of adaptivity. 9) Within E-CARGO/RBC, the optimization of 
process roles involves the utilization of stochastic processes 
and consensus-based Bayesian inference. This combination 
is employed to model the contextual behavior of agents and 
to facilitate trustworthy decision-making [1, 2].  

Start

End

Role Playing

Is there an agreement?

Abort

Is the collaboration done?

Agent Evaluation

Role Assignment

Role Transfer

Yes!

Yes!

No!

No!

Yes!

Is re-evaluation 
needed?

No!

Yes!

Can roles 
transfer? 

Yes!

Is there a problem?

No! No!

Is it 
negotiable?

Yes!

No!

Role Awareness

Are the Roles Revisable?

No!

Yes!
             

 
            
                                  
                                             

                                                              Role Negotiation   

Role Specification

Agent Categorization

Resource Integration 
             

 
                                                               Initiation   

 
Fig. 1 Revised Process of RBC [32-34]. 

Beyond the above, E-CARGO/RBC uses 1) classes of 
objects to express passive and accessible entities in the real-
world; 2) groups to represent a system, an organization, or a 
community, which is the major target of management. The 
goal of E-CARGO/RBC is to make a group into a team, i.e., 
a well-organized group; 3) environments and messages 
establish connections, facilitate interactions, resolve 
conflicts, and enable coordination, cooperation, and 
collaboration among members; 4) group states [28, 30, 39], 
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the timely values of the system components, represent the 
dynamics of an adaptive system that responds to changes; and 
5) human users to express human agents. 6) Utilizing a 
stochastic process to model the process role enables agents’ 
behavior optimization in dynamic environments [1, 2]. 

Also, we assume the robots in a hybrid team possess the 
functions of sensing and perception. This assumption is 
acceptable according to the current robotics technology.  

IV. DESIGN ISSUES 
The RBC process (Fig. 1) [32-34] follows an iterative and 

adaptable approach, aligning well with the requisites of a 
hybrid team consisting of both humans and robots. This 
process also integrates hybrid management and control 
methodologies[1-3]. Specifically, it employs centralized 
decision-making for achieving optimal team performance 
based on historical evaluation values. Meanwhile, task 
execution is decentralized, involving both robots and humans 
who can make localized decisions in response to their 
immediate circumstances and surroundings. Centralized 
initialization and training contribute to optimization, as the 
central computer possesses comprehensive team information, 
incorporating data from individual robots and humans. 
Simultaneously, local decision-making by individuals can 
influence subsequent central decisions. If an agent 
determines that the situation doesn't permit an immediate 
decision, they can relay this to the central management, 
potentially triggering new central decision-making. 

The RBC process also provides possibilities to take 
advantage of special robots and humans due to the dynamic 
changes of the environment including the ground states and 
weather. For example, if it is too windy, then UAVs are not 
good choices for executing transportation tasks; or if the road 
conditions become bad, trucks and cars are not good agents 
for performing transportation.  

The central management is implemented as a role engine 
[38, 42], which incorporates the E-CARGO model and 
related algorithms including GRA+ and GRA++, 
dynamically matchmakes roles and agents, makes the whole 
team be in a balanced and steady state, and forms a 
sustainable system. The sustainability of the team comes 
from the feedback mechanisms of the RBC process.   

As for role assignments, the central management, or the 
role engine dynamically revises roles required in the team 
mission, evaluates all the agents’ current performance at 
playing different roles, and assigns appropriate roles to 
agents in time. Such assigned roles are normally interface 
roles, which specify more on what to do. More detailed and 
concrete process specifications on how to do will be 
determined by the assigned agents. The roles in assignment 
are depicted through the contextual behavior of the agent and 
called interface roles. A process role will be described by a 
stochastic process of an agent. Furthermore, a trust vector is 
in place to showcase the extent of trust between the specific 
agent and other agents. 

After using GRA+ or GRA++ to assign roles to each 
agent, the agents will use their process roles, which specify 

more about how to do, to map the assigned interface roles to 
accomplish the designated tasks.   

In RBC, the group performance is a simple sum of the 
selected agent’s performance value on specific roles. The 
goal is to optimize the role assignment using GRA [41], 
GRA+ [35], and GRA++ [30, 36]. As an abstract indicator, 
group performance and evaluations match numerous factors 
that express robots’ and humans’ properties.   

To provide optimized team performance, role negotiation 
and agent evaluation are initiated dynamically based on the 
requirements of the system including feedback 
communicated from the individual role players, i.e., the 
agents in cooperation.  

In [1], a hybrid control role engine is implemented where 
the central unit handles role negotiation and GRA, while 
decentralized role playing utilizes a consensus-based 
Bayesian inference to model agents' contextual behavior and 
optimization. This same approach is subsequently employed 
for fault-resilient systems and trust management in [2-3]. 

V. SIMULATIONS AND EXPERIMENTS 
We tested our approach in a situation including four 

robots going from arbitrary initial positions to unlabeled 
destinations (Fig. 2). In such a simulation, we established a 
hybrid team including the role engine operator and the robots.  

 
Fig. 2 The initial process roles were obtained through GRA for a 

scenario involving four agents navigating to unlabeled star points.[1]. 

At the outset, the mission is defined, and the central 
computer is informed about the final locations. Four distinct 
roles (corresponding to destination points) are specified. For 
our simulation, we consider four robots as agents and 
evaluate the cost associated with each process role. We 
establish a Q matrix and use GRA [41] to allocate roles 
among the 4 agents. 
     In this simulation, we amalgamate interface roles and 
process roles. Each process role is defined as an optimized 
trajectory to the destination location, employing the Gaussian 
process [1-3]. We assign these optimized trajectories to the 
respective process roles. Each agent (robot) then follows its 
assigned role, which, in this case, is the pre-defined 
trajectory. Throughout the task, every robot autonomously 
avoids local collisions through decentralized decision-
making, all while maintaining its trajectory toward the 
destination location. 

We also verify that the approach is effective in a real-
world setting. The experiment is designed to command four 
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robots to move and establish a diamond formation in a 
cluttered environment with static obstacles. As in the 
simulation, the destinations are not initially assigned to the 
robots.  Two different-sized pairs of robots are used: the 
Pioneer 3DX mobile measuring 33cm3 and the TurtleBot3 
Burger measuring 16cm3 as shown in Fig. 3. The user of the 
centralized role engine is considered as a member of the 
hybrid team.  

 
(a)Pioneer 3DX mobile robot      (b) TurtleBot3 Burger 

Fig. 3 The robot models used in the practical experiment (Fig. 4) [1].   

 
(a)                                (b)              

 
(c)                                  (d) 

Fig. 4 (A) Robots start. (B) Turtlebots move in front of the Pioneers, 
while avoiding collisions, to take efficient paths through the 
obstacles as in (C). (D) Robots reach the desired formation. 

This experiment was executed using Robot Operating 
System (ROS), initially on the Gazebo simulation platform 
[https://gazebosim.org/home], and then conducted in a real-
world environment. It was conducted in the Advanced Control 
and Mechatronics (ACM) lab at Dalhousie University.  

In the experiment (Fig. 4), the robots are assigned the roles 
and process roles and play the roles, i.e., the centrally 
calculated trajectories. The results show that the E-
CARGO/RBC method can assign suitable roles for different 
robots to successfully complete a formation task in a cluttered 
environment. In this experiment, agents operate 
autonomously while maintaining consensus with the central 
unit. Additionally, a human assumes a supervisory role, 
overseeing high-level tasks, monitoring task progress, and 
intervening when failures occur [1, 3].  

VI. RELATED WORK 
Not much research has been done from the perspective of 

hybrid human/robot teams due to the lack of models and 
appropriate methodologies. However, there are many 
research activities in teamwork [4-10, 12-15, 17-19, 24, 27, 
29], and human-robot collaboration (HRC) [4, 5, 9, 16]. 

In teamwork research, the performance of teams is a well-
accepted research topic in psychology [4-8] and remains a 
challenge for organizers and managers hitherto. The term 
“team performance” is taken for granted by many 
investigations without clear definitions and specifications. 
Team performance is assumed in most of the literature to 
refer to the quality of a team to accomplish the designated 
task [6]. Pursuing optimal expected team performance prior 
to execution is not a trivial aim [17], since it is difficult to 
know the performance of a team before the teamwork is 
completed. Efficiency and effectiveness are widely used 
metrics for inspecting the performance of a team [18, 19]. 
Such metrics need investigators to design quantitative 
methods to specify and calculate team performance. 
Therefore, developing methodologies to quantify team 
performance is valuable and rewarding. Providing methods 
to model team performance is also required. In [7], a 
methodology for managing robot teams is proposed to 
manage robots to execute team tasks. Their work 
dynamically changes the robots’ roles to accommodate 
cooperation requirements during the progress of the robot 
team. 

In HRC, Angleraud et al. [4] propose a system 
architecture to support robot collaboration, which enables a 
human to coordinate when and which robot actions are 
executed. Baratta et al. [5] surveyed the HRC work from the 
perspective of industry 4.0. De Simone et al. [9] identify how 
the operator’s work is affected by HRC by a scoping review, 
analyze the collaboration between humans and robots, and 
present critical factors influencing the performance of 
collaborative operators. Inkulu et al. [16] describe various 
HRC techniques and their applicability to various 
manufacturing methods, along with key challenges. 

From the above related work, we may understand the 
originality and the significance of this paper.  

VII. CONCLUSIONS 
This paper presents a novel method to establish a well-

organized hybrid team including both humans and robots. 
This approach applies the well-designed E-CARGO/RBC 
model and uses a role engine to be the central management 
for the team, taking advantages of both distributed task 
executions and globally optimized team decision making. 
Such a method can keep a team perform well through 
adaptive processes. 

The proposed method is verified initially by simulations 
and experiments by testing the centralized role assignment 
and distributed role playing. More simulations and 
experiments are required in the aspects of adaptive processes 
including dynamic role assignment.  

Future work includes implementing a real hybrid team 
including dynamic environment changes, which will validate 
the proposed method with more strong and solid evidence.    
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