
Fuzzy Lightweight CNN for Point Cloud Object
Classification based on Voxel

1st Oddy Virgantara Putra
Department of Electrical Engineering
Institut Teknologi Sepuluh Nopember

Surabaya, Indonesia
7022221024@mhs.its.ac.id

2nd Moch. Iskandar Riansyah
Department of Electrical Engineering

Institut Teknologi Telkom Surabaya
Surabaya, Indonesia

iskandar@ittelkom-sby.ac.id

3rd Riandini
Department of Electrical Engineering

Politeknik Negeri Jakarta
Depok, Indonesia

riandini@elektro.pnj.ac.id

4th Ardyono Priyadi
Department of Electrical Engineering
Institut Teknologi Sepuluh Nopember

Surabaya, Indonesia
priyadi@ee.its.ac.id

5th Eko Mulyanto Yuniarno
Department of Electrical Engineering
Department of Computer Engineering
Institut Teknologi Sepuluh Nopember

Surabaya, Indonesia
ekomulyanto@ee.its.ac.id

6th Mauridhi Hery Purnomo
Department of Electrical Engineering
Department of Computer Engineering
Institut Teknologi Sepuluh Nopember

Surabaya, Indonesia
hery@ee.its.ac.id

Abstract—Point cloud object classification has gained atten-
tion from many researchers since the emergence of public
dataset like ModelNet and ShapeNet, which contains full surface
objects. However, in practice, objects captured using LiDAR are
only partially covered in the scanned area, making such a task
burdensome. Here, we proposed a solution to overcome those
problems. It is a novel fuzzy convolutional inference (FuzzConv)
incorporated with depthwise over-parameterization (DOConv).
Instead of applying raw data, the point clouds are transformed
into a 3D voxel. We utilized EfficientNet as our backbone and
modified the Mobile inverted Bottleneck Convolution (MBConv)
with DOConv. In the last fully connected (FC) layer, we
added the FuzzConv layer as an inference before feeding the
feature map to the output layer. Consequently, to validate
the performance of our model, we undertake an evaluation
with multiple classifications in ModelNet10, ModelNet40, and
our core dataset, the point cloud of human poses. Accuracy,
loss, number of parameters, loss, precision, and F1-scores are
employed as performance indicators. As a result, our model
achieved top performance regarding the accuracy and loss value
for the primary dataset, 83 % and 0.56, for ModelNet10 88.1
% and 0.56, and ModelNet40 74.1% and 1.15.

Index Terms—Fuzzy Convolution, Lightweight CNN, Human
Pose, Point Cloud Classification, Voxel

I. INTRODUCTION

Nowadays, the development of LiDAR technology has
been advanced in many areas. This advancement envelops
researches in automatic vehicle [1]–[3], remote sensing [4],
and human activities [5], [6]. Thanks to this cutting-edge
technology, we can acquire large 3D data at a reasonable
cost [7].

Several formats, for example, point clouds (PC), 2.5-
D images, and volumetric shapes can typically be treated
to represent 3D data. PC representation keeps the initial
geometric data in the euclidean domain without quantization.
Thus, representing such data is challenging, especially in
self-driving cars and humanoid robots. Until now, researchers
in deep learning, particularly in 3D point clouds, faced
incredible obstacles due to its unstructured nature and high
dimensionality [8]. By the existence of the public dataset,
such as KITTI [9], ModelNet10, ModelNet40 [10], and
ShapeNet [11], the research regarding point cloud propelled

up high. It increased the number of approaches being put
forth to solve a variety of point cloud processing-related
issues, such as 3D PC classification, detection, tracking,
segmentation, registration, and reconstruction.

Our paper’s main contribution is a novel lightweight CNN
model by modifying the convolution layer incorporating a
FuzzConv. Furthermore, our model achieves the best results
in size with small parameters while improving accuracy.

The remaining sections are organized as follows: Section
II, Related Works, Section III, Proposed work, discusses our
model. Section IV, Experiment and Result, elaborates on
verification and classification performance, and Section V
is Conclusion.

II. RELATED WORKS

1) Direct Point-wise methods: Directly processing raw
point clouds prevalently into 2D deep learning is impossible
due to its fickle nature. Charles [12] proposed a deep learning
network to extract 3D geometric from point clouds called
PointNet. This model directly feeds the raw point cloud to the
network. Instead of putting all points, this method samples
data with only a 2048 sample set. To be precise, PointNet
utilizes several layers of MLP to classify objects based on
pointwise features. Deepsets [13] accomplish permutation
invariance by aggregating all points of nonlinear transforms.
Wang [14] proposed a classification model based on a point
cloud graph. The feature model is learned from space and
updated sequentially on each layer. The inner core of the
model is EdgeConv and MLP. In EdgeConv, the points are
aggregated using a channel-wise operator. Another paper [15]
proposed a network based on adaptive feature adjustment for
point cloud recognition. It utilized fully connected point pairs
within regions. Momenet [16] took advantage of geometric
moments of point cloud to classify shapes. A multiple levels
contextual encoding technique for point categorization has
been proposed by [17]. By structurally considering a point
and its surrounds, we aim to address a common and generic
feature learning challenge in 3-D PC classification: how
to express geometric characteristics more effectively and

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

ThuA1SB.3

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 684

discriminatively. Liu [18] came up with a context-aware
network.

2) Convolution-based methods: The raw point cloud is
burdensome to study due to its irregular shape. Several
projects have been pitched to address this problem.. A geom-
etry topology relation-based neural network (RS-CNN) [19]
is proposed to handle the uncertainty in the underlying shape
of point clouds. This work is tested on ModelNet40, which
contains full-body 3D object point clouds. However, this
method is prone to failure if opposed to partially available 3D
object PCs. In the following year, a 3D fractal-based voxel
transformation [20] is proposed to tackle an issue about the
real-life dataset and continued by [21] using fractal keypoint
detector. Even though 3D transformer-based learning consid-
erably improves point cloud analysis, it exposes to extensive
computational cost [22].

III. PROPOSED WORK

In this work, we proposed a framework for object clas-
sification based on voxel. This framework incorporated a
deep learning model as our backbone called EfficientNet,
a fuzzy inference layer (FL) [23], and depthwise over-
parameterization (DO) [24]. In the backbone, we modified
several layers to add FL and DO. The whole proposed work
is displayed as in Fig. 1.

A. Point Cloud to Voxel

Here, we utilize a primary dataset (D1) containing hu-
man pose and a secondary dataset from ModelNet10 and
ModelNet40. ModelNet10 contains ten classes of point cloud
objects. Meanwhile, ModelNet40 contains 40 classes. Our
primary dataset is acquired using a 32-channel LiDAR sensor
in a 30-meter square room. LiDAR sensor records the data
in Packet Capture (PCAP) format, a sequential point cloud
data (PCD). In our D1, since we only need the 3D coordinate,
we extracted the points from PCAP into PCD format. Then,
for the ModelNet10 and ModelNet40, we parsed them to
PCD from mesh. Prior to voxelization, we normalized the
3D coordinate to standardize and reduce computational per-
formance. The voxel size is set to 16 for each axis. However,
instead of directly putting the number of PCs into the voxel,
we determine the value of the voxel based on the existence
of points. The rule as in Equation 1:

V (x) =

{
1, if P ≥ 1

0, otherwise
(1)

where V is the voxel value, x represents XYZ-coordinates,
P is the number of point cloud within the voxel. From this
process, we have voxels with the size of (16, 16, 16).

B. Oversampling

Data augmentation is one technique to tackle the issue
of data imbalance. In this area, there are two terminolo-
gies: under-sampling and over-sampling. Under-sampling is
a method to reduce the amount of data in the majority
classes to match the minority. The benefit of this method is
time efficiency and low computational process. However, the
shortcomings of this method are that some vital information
is lost due to data reduction. For its counterpart, it is defined
as a data replication of the minority class to match the

majority. By using over-sampling, the classification perfor-
mance might increase. However, it might lead to over-fitting
due to replicative data. Thus, we employ Synthetic Minority
Oversampling Technique (SMOTE). SMOTE augments by
generating artificial data points based on the original data
points. SMOTE has the benefit of not producing duplicate
data points but instead producing artificial data points that
are marginally different from the actual data points. Since
all of datasets are imbalanced, thus we implement SMOTE.

C. The Backbone

The backbone of our proposed framework works as the
primary deep learning model. When selecting this model,
we evaluated several classifiers algorithms such as ResNet,
EfficientNet, MobileNetV2, VGGNet, and PointNet. Among
those models, we picked a model with high performance in
terms of accuracy and the number of parameters. Thus, we
found out that EfficientNet worked as our backbone.

Our backbone contains three batches. A single batch
contains a 2D-Convolutional Layer (Conv2D), batch nor-
malization (BN), Leaky ReLU (LR), and two Depthwise
Convolution (DC). We use Depthwise Over-parameterization
(DO) as a convolutional layer instead of regular Conv2D. In
the next layer, BN and LR are the activation functions. For
the next layer, we have DC and max pooling.

D. Depthwise Over-parameterization Layer

Depthwise Over-parameterization Convolution (DOConv)
is a combination of DC and Conv2D. In addition to being
demonstrated as a method for accelerating the linear network
training process, it has also been empirically demonstrated to
quicken the training of deep non-linear networks [24], [25].
These results imply that, despite the substantial effort put into
the search for new network topologies, over-parameterization
offers a significant untapped potential for improving existing
structures. Therefore, instead of conventional Conv2D, we
employ the Over-parameterization Conv2D layer.

A conventional Conv2D is denoted as multiplication be-
tween a sliding window P and its corresponding matrix with
the size of p x l. Consider a 3D matrix W with the size of
Cin x Cout x M x N, a sliding window P with the size of
Cin x M x N. Thus, we have a feature map as in Equation
2

O = W ∗ P (2)

where (∗) is a convolutional dot-product operator. The result
extends on the size of feature map

On the other hand, DC is a depth convolution extending
to a matrix depth. An input matrix with a certain number of
channels (Nc) is separated into Nc batch(es). Each batch
undergoes a convolutional operation. In the last process,
the results were stacked. Thus, we have an output tensor.
The number of dividers for each batch is also called Dmul,
representing the feature dimension.

Consider a 3D matrix W with the size of (Dmul, Cin ,
M , N), a sliding window P with the size of Cin x M x N.
Thus, we have a feature map as in Equation 3

O = W ◦ P (3)

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 685

Fig. 1. Our proposed work. This work is composed of five blocks, (a) voxelization block, (b) DOConv block, (c) 1-Dimensional transformation, (d)
FuzzConv block, and (e) is the output.

Fig. 2. Our modified MBConv (MMBConv) Block.

where (◦) is a depthwise convolutional operator. Imagine
a 3D matrix W with the first dimension (row) with Cin,
the second dimension (column) with MxN , and the third
dimension with Dmul. Then, W calculated with a sliding
window P where P is composed of a 2-dimensional matrix
with Cin and MxN in the 1st and 2nd dimension respectively.
From depthwise operation, we get O.

A DOConv is composed from depthwise kernel D ∈
R(M×N)×Dmul×Cin and Conv2D with kernel W ∈
RCout×Dmul×Cin . Consider a sliding window P ∈
R(M×N)×Cin . From P, W, and D we can see as in Equation
4:

O = (D,W)⃝∗ P
= W ∗ (D ◦ P)
= (DT ◦W) ∗ P

(4)

where DT is derived from the first and second axis of D ∈
RM×N ×Dmul × Cin.

The DOConv is placed in convolution layer in the back-
bone which substitute the conventional one as seen on Fig.
2.

E. Fuzzy Inference Layer

Convolutional neural network (CNN) is considered a dis-
ruptive machine learning idea. It can extract features in
the spatial domain. CNN works like a charm for reducing
computational processes. Instead of reshaping a m × n 2D
matrix into a 1D vector with a size of 1 × (m × n), CNN
extracts only meaningful information from a matrix, thanks

to the convolutional operator (CO). However, CO has its
risks, which result in promoting a vanishing gradient.

Assuming there is a 3D matrix input xi, i = 0, 1, 2, ..., n.
We can formulate an output of extracted feature maps with
Equation 5:

olj =

n∑
i=0

(xi ∗ wl
ij) + blj , j = 1, 2, ..., ql

B = f(olj)

(5)

where n is the number of channel, B is output feature maps
after undergo an activation function f , w works as weight
on channels ith in a layer l, b is a bias, and lastly q is the
number of output features.

In the fuzzy system, to generate fuzzy inference is based
on fuzzy rules. For example, given inputs ai, i = 1, 2, ..., n
and outputs bj , j = 1, 2, ...,m, and the cth fuzzy rule Rl is
in Equation 6:

IF a1 is Al
1 and

IF a2 is Al
2 and

...

IF an is Al
n

THEN b1 is w
l
1 and

THEN b2 is w
l
2 and

...

THEN bn is w
l
n

(6)

where A is the fuzzy set. The bigger fuzzy input implies
arduous computation. Thanks to MISO Fuzzy, which helps
to split the inputs, thus reducing the computational cost.

Occasionally, Conv2D works as a filter to extract features
(fmaps) from input data. The fmaps are fed into the final
layer, the fully-connected (FC) layer. For every single pixel
in fmaps, it becomes crips values. For example, imagine we
have three fuzzy sets M = 3, ”low, medium, and high” as
MF if the number of fmaps from a Conv2D layer is k and

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 686

k = 120, where every feature map has a size of 3 × 3.
Thus, we have a list of a fuzzy map with the size of k ×
M = 120 × 3 = 360. However, the more extensive inputs,
the higher the computational cost is. To tackle this issue,
we cast a fuzzy neural network (FNN) to incorporate with
our backbone. Instead of the FC layer, we utilize a semi-
connected layer from FNN input to work as a feature map.
Finally, the defuzzifier layer sums up the fuzzy machine.

In order to achieve the fuzzy inference, we can calculate
using Equation 7:

Θp
q =

h×w∏
i=1

µF q
i
(xi) (7)

where Θp
q resembles the set of output inferences q from

feature maps p. As introduced in [23], the fuzzy set within
the MF are N,Z, and P . where:

N = e−
(x+m)2

2σ2 , Z = e−
x2

2σ2 , P = e−
(x−m)2

2σ2 (8)

For every feature map with a size of n×n, it maps to n×n
fuzzy maps as well as N, Z, and P. According to fuzzy set,
the number of parameters in fuzzy is denoted as Equation 9:

Nk×h×w (9)

where k is the number of feature maps, w is the number of
fuzzy set within MF. If we have a feature map with size
n = 3, and w = 120, N = 33×3×120. Seeing this, we
adapt the reasonable N from [23] and split the feature map
to independently execute the fuzzy inference. Thus, we have:

Θp
q =

9∏
i=1

µF q
i
(xi) (10)

where

µF q
i
(ζi) =

N(ζ1)× . . .×N(ζ9)
Z(ζ1)× . . .× Z(ζ9)
P (ζ1)× . . .× P (ζ9)

 (11)

where ζ5p,i represents pixels i after Conv2D layer in set p.
Finally, with the number of fuzzy inference units R equals
to 33×3 = 19683, we can merge fuzzy layer with FC layer
z8 = w8 × ψ, where:

ψ =

Θ1

1

Θ2
1

...
Θ120

19683

 , z8 =

 z11
z21

z12019683

 (12)

and w8 is defined as:

w8 =

w8
1,1 . . . w8

1,19683

w8
2,1 . . . w8

2,19683

w8
3,1 . . . w8

3,19683

 (13)

Consequently, the cost function used in here is:

f(x) =
1

ez18 + ez28 + ez38
[ez18e

z
28a] (14)

In this fuzzy layer, we integrate Conv2D with Fuzzy
Inference before feed the output the FC layer as seen as
red block in Fig. 1 (d).

Fig. 3. Our Primary Data Acquisition Procedure. The subject (A) stands
3 meters from horizontal distance of the sensor position. Our laptop is
connected to the interface box (D) which linked with cable (F) to the facing
down LiDAR sensor (E)

F. Evaluation Method

We evaluated all classifiers to our model using classifica-
tion metrics with several setups, the number of epoch, the
optimizers, and the loss function.

IV. EXPERIMENTS AND RESULTS

In here, we utilize a PC with processor Core i7, RAM
16GB, NVIDIA GTX 1050Ti for training our model. To
verify our model performance, we evaluated and compared
with other classifiers methods using two public datasets
named ModelNet10 and ModelNet40 collected from [26].

A. Dataset Gathering

We gathered our primary dataset using a mid-range LiDAR
OUSTER type OS1-32. The sensor is equipped with 32
channels, vertical field of view (FOV) 45°(up and down view
22.5°), precision up to 0.5 cm, and a range of 90 meters.

The subjects are four adults, 50 % male, with age around
34 years old. They performed poses such as hands up,
crouching, sitting, squatting, standing, and lying down. They
are required to stand in the center spot. Instead of aligning
LiDAR with the subject, we mounted our sensor in a top
corner of a room-sized 4x6 meter. The sensor is set to face
45 °down towards the center spot. This procedure is designed
in such a way as to mimic surveillance in a small room.

We recorded each session using a LiDAR sensor with an
area span between 90 and 270 degrees for 20 seconds. The
outputs of the recorded files are in Packet Capture (PCAP)
format. Finally, we extracted all raw point cloud data (PCD)
from PCAPs.

ModelNet10 is a dataset consisting of PCD, which con-
tains ten distinguished objects, while ModelNet40 consists
of 40 objects. This PCD is constructed from a CAD model.
To build a voxel, we create a voxel with a size of 16
for all axis. Thus, from raw PCD we get a 3D voxel
with (x, y, z) = (16, 16, 16). We picked 16 as our voxel
size because this is the best voxel size in classification
performance. Too small or too large in voxel size reduces
accuracy and loss in model prediction, as seen in TABLE II.

Fig. 3 displays the data acquisition procedure. Fig. 3(A)
is the subject standing above the center spot. Figure 3(B) is

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 687

the pole with a height of 4 meters. Figure 3(C) is the laptop.
Fig.3(D) is the interface box that connects the laptop to the
sensor using a LAN cable. Fig. 3 (E) is the LiDAR and Fig.
3 (F) is the cable sensor, (G) is the high beam limit, and (I)
is the low beam limit.

TABLE I
OUR DATASET DISTRIBUTION FOR EACH CLASSES

Class Count
Crouching 390
Hands Up 390
Lying Down 590
Sitting 390
Squatting 389
Standing 89
Total 2238

Our primary dataset contains six classes, Standing, Sitting,
Lying Down, Crouching, Hands Up, and Squatting. The
distribution of our dataset is exhibited in TABLE I with
the sum of all data at 2238 PCD data. Since our dataset
is imbalanced, we utilize over-sampling to tackle an issue in
object classification.

Both ModelNet10 and ModelNet40 is a mesh data. We
resampled the mesh with 2048 as the sample size to extract
3D point cloud data as in [12]. Thus, for every mesh, we
have a PCD size of 2048 with its respective XYZ coordinate.
Point clouds are considered unstructured data. It needs to be
clarified what dimension it has. Here, we convert from a raw
point cloud to a voxel grid.

B. Ablation Study

TABLE II
DIFFERENT VOXEL SIZE WITH ITS LOSS AND ACCURACY (ACC) RESULTS

Voxel Size Loss Acc (%)
4 0.78 74
8 0.58 83

12 1.07 77
16 0.64 87
20 1 70

Selecting the voxel size is quite challenging. A specific
size of voxel affects both accuracy and loss. Over-tiny or
oversized voxel leads to low accuracy and considerable loss
of value. TABLE II exhibits the classification results on
ModelNet10 for each voxel size. The range value of the voxel
is from 4 to 20. It can be seen that the best size in terms of
accuracy is 16. Eight is second to none if the performance is
focused on loss reduction. However, the loss value for both
8 and 16 sizes is insignificant. According to this result, we
picked 16 as our voxel size.

C. Performance Results on Object Classification

Here, we compared our model with PointNet, Effcient-
Net, ResNet50, MobileNetV2, DenseNet, Xception, and
VGG16Net. All of these models were assessed with overall
accuracy (OA), loss, precision, recall, and F1-score.

Here, 200 epochs of training parameters are set up, and
ADAM is used as the optimizer and loss function. The classi-
fication metrics’ results are shown in TABLE III. With 83 %,
our model leads the OA, followed by EfficientNet, Xception,

TABLE III
THE CLASSIFICATION RESULTS FROM OUR PROPOSED WORK WITH

OTHER METHODS USING OUR PRIMARY DATASET. ALL METRICS EXCEPT
LOSS AND NP ARE IN PERCENTAGE (%)

Model Loss Acc Prec Rec FS NP (mil)
ResNet50 29.09 18.1 8 18.3 9.7 20.88
EfficientNet 1.07 71.6 78 72 70.8 0.12
MobileNetV2 3.49 36.9 29 36.77 30.3 23.64
PointNet 32.08 26.41 9 17 7.8 0.75
DensetNet 6.20 24.1 34 24.3 16 7.1
Xception 25.38 44.9 60 44.3 43 20.87
VGG16 0.59 80 79.67 80 79.5 33.77
Our 0.56 83 82.5 82.3 82.3 0.15

MobileNetV2, and DenseNet. Our model also achieved the
best value in loss, prec, rec, and FS. This performance also
holds for F1-Score (FS), recall, and precision. Our loss value
is also in the first quartile when standard deviation (std) and
variance (var) are considered. The metrics prec, rec, and FS
are computed based on the average value from each class.

D. Classification Results using Public Datasets
The training parameter setups here are 50 epochs with

ADAM as an optimizer. TABLE IV displays the results of
classification metrics. Our model stands at the top posi-
tion in OA with 88 %, followed by PointNet, ResNet50,
EfficientNet, and MobileNetV2. This performance applies
too with precision (prec), recall (rec), and F1-Score (FS).
Nevertheless, we failed to achieve top-notch loss compared
to MobileNetV2, the difference in loss value is not entirely
significant. Furthermore, our loss value is in the 1st quartile
given standard deviation (std) std = 1.338, variance (var)
var = 1.791. The metrics prec, rec, and FS are calculated
based on their average value from each class in the dataset.

TABLE IV
CLASSIFICATION RESULTS OF THE PROPOSED MODEL WITH OTHER

CLASSIFIERS USING MODELNET10 DATASET.

Model Loss Acc Prec Rec FS NP (mil)
ResNet50 0.57 85.7 85.5 85.1 85.2 23.64
EfficientNet 1.81 82.2 84.6 84.7 84.4 0.12
MobileNetV2 0.53 82.2 82.8 82.7 82.3 2.20
PointNet 2.57 71.9 87.3 85 85.6 0.75
DensetNet 3.60 70.5 60.8 70.7 63.8 7.00
Xception 3.79 70.3 59.2 70.5 63.4 20.88
VGG16 2.40 10 1 10 1.8 33.64
Our 0.56 88.1 87.6 87.5 87.3 0.17

EfficientNet is the least possible in the number of model
parameters (NP) at 0.12, followed by our model with 0.17
and PointNet in the second and third position with 0.8,
respectively. Compared with the remaining models, which
have an enormous number of parameters above one million,
our model is considered lightweight.

After training and evaluating using ModelNet10, we also
compared all methods with ModelNet40. This dataset is a
3D-Mesh, consisting of 40 different classes, and its distri-
bution is imbalanced. Thus, we apply the synthetic over-
sampling method to this data. We tested all methods in the
same environment and parameters as a fair comparison. The
number of epochs is set to 50, and the learning rate (lr) is
set to 0.001.

TABLE V demonstrates the result of classification per-
formance in 8 different deep learning models, which were

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 688

evaluated using six metrics, loss, acc, prec, rec, FS, and
NP. Our proposed method dominated all the remaining algo-
rithms with a loss score of 1.151, followed by MobileNetV2
and ResNet50. This fantastic performance was also attained
in acc, prec, and rec with a score of 74.1 %, 75.3 %, and 72.8
%, respectively. However, for the FS, we failed to achieve
the first position held by DenseNet. The most significant loss
is PointNet, followed by Xception and VGG16.

TABLE V
CLASSIFICATION RESULTS OF THE PROPOSED MODEL WITH OTHER

CLASSIFIERS USING MODELNET40 DATASET.

Model Loss Acc Prec Rec FS NP (mil)
ResNet50 2.29 72.3 71.3 69 68.8 23.71
EfficientNet 2.84 70.9 72.3 70.9 69.9 0.15
MobileNetV2 2.04 42.1 39.8 42.1 36.3 2.33
PointNet 5.98 25 7.8 11.7 7.1 0.75
DensetNet 2.57 73.8 75 72.8 72.7 7.13
Xception 4.24 64.5 49.8 58.5 51.9 20.95
VGG16 3.87 2.5 0.1 2.5 00.1 33.77
Our 1.15 74.1 75.3 72.8 72.3 0.37

Regarding the number of model parameters (NP), Effi-
cientNet comes in last with 0.15, followed by our model
with 0.37, and PointNet in second and third with 0.75,
respectively. Our model is considered lightweight compared
to the remaining models, which have a tremendous amount
of parameters above one million.

V. CONCLUSION

By taking advantage of FuzzConv and DOConv, our novel
approach successfully overthrew other classifiers. In our
result, we set the number of voxel sizes to 16, considered
an intermediate value. A smaller and larger voxel size
reduces accuracy performance and increases loss score. Data
imbalance significantly affects the classification task. We
discovered that the class distribution for both datasets needs
to be balanced. Thus, rather than reducing the data size,
we apply over-sampling to achieve data balance. Our model
achieved the best results for classification based on accuracy
for our primary dataset, ModelNet10, and ModelNet40.

However, there are some limitations existed. The model’s
accuracy in object classification may be impacted due to
partial coverage in LiDAR data, where objects are only
partially captured in the scanned area. The evaluation of
the proposed solution is limited to specific datasets like
ModelNet10, ModelNet40, and a core dataset of human
poses, which may raise uncertainty about its generalizability
to other datasets and real-world scenarios. The choice of
voxelization, transforming point clouds into 3D voxels, may
introduce quantization errors and result in the loss of fine-
grained information in the original point cloud data.

ACKNOWLEDGMENT

This work was supported and fully funded by the Lembaga
Pengelola Dana Pendidikan (LPDP) Indonesia.

REFERENCES

[1] X. Zhao, P. Sun, Z. Xu, H. Min, and H. Yu, “Fusion of 3d lidar and
camera data for object detection in autonomous vehicle applications,”
IEEE Sensors Journal, vol. 20, pp. 4901–4913, 5 2020.

[2] I. S. Weon, S. G. Lee, and J. K. Ryu, “Object recognition based
interpolation with 3d lidar and vision for autonomous driving of an
intelligent vehicle,” IEEE Access, vol. 8, pp. 65599–65608, 2020.

[3] R. Soitinaho, M. Moll, and T. Oksanen, “2d lidar based object
detection and tracking on a moving vehicle,” vol. 55, pp. 66–71,
Elsevier B.V., 2022.

[4] T. Ku, S. Galanakis, B. Boom, R. C. Veltkamp, D. Bangera,
S. Gangisetty, N. Stagakis, G. Arvanitis, and K. Moustakas, “Shrec
2021: 3d point cloud change detection for street scenes,” Computers
and Graphics (Pergamon), vol. 99, pp. 192–200, 10 2021.

[5] J. Roche, V. De-Silva, J. Hook, M. Moencks, and A. Kondoz, “A
multimodal data processing system for lidar-based human activity
recognition,” IEEE Transactions on Cybernetics, vol. 52, no. 10,
pp. 10027–10040, 2022.

[6] R. C. Mello, S. D. S. M., W. M. Scheidegger, M. C. Múnera, C. A.
Cifuentes, M. R. Ribeiro, and A. Frizera-Neto, “The poundcloud
framework for ros-based cloud robotics: Case studies on autonomous
navigation and human–robot interaction,” Robotics and Autonomous
Systems, vol. 150, 4 2022.

[7] U. Stilla and Y. Xu, “Change detection of urban objects using 3d point
clouds: A review,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 197, pp. 228–255, 3 2023.

[8] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3d point clouds: A survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 43, pp. 4338–4364, 12 2021.

[9] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[10] Z. Wu, S. Song, A. Khosla, Y. Fisher, L. Zhang, X. Tang, and J. Xiao,
“3d shapenets: A deep representation for volumetric shapes,” 2015.

[11] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu,
“Shapenet: An information-rich 3d model repository,” 2015.

[12] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “Pointnet: Deep
learning on point sets for 3d classification and segmentation,” pp. 77–
85, 2017.

[13] M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos, R. Salakhutdinov,
and A. J. Smola, “Deep sets,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, (Red
Hook, NY, USA), p. 3394–3404, Curran Associates Inc., 2017.

[14] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM
Transactions on Graphics (TOG), 2019.

[15] H. Zhao, L. Jiang, C.-W. Fu, and J. Jia, “Pointweb: Enhancing local
neighborhood features for point cloud processing,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 5560–5568, 2019.

[16] M. Joseph-Rivlin, A. Zvirin, and R. Kimmel, “Momenet: Flavor the
moments in learning to classify shapes,” pp. 4085–4094, 2019.

[17] R. Huang, D. Hong, Y. Xu, W. Yao, and U. Stilla, “Multi-scale
local context embedding for lidar point cloud classification,” IEEE
Geoscience and Remote Sensing Letters, vol. 17, no. 4, pp. 721–725,
2020.

[18] C. Liu, D. Zeng, A. Akbar, H. Wu, S. Jia, Z. Xu, and H. Yue, “Context-
aware network for semantic segmentation toward large-scale point
clouds in urban environments,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 60, pp. 1–15, 2022.

[19] Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional
neural network for point cloud analysis,” pp. 8887–8896, 2019.

[20] J. F. Domenech, F. Escalona, F. Gomez-Donoso, and M. Cazorla, “A
voxelized fractal descriptor for 3d object recognition,” IEEE Access,
vol. 8, pp. 161958–161968, 2020.

[21] F. Gomez-Donoso, F. Escalona, and M. Cazorla, “Vfkd: Voxelized
fractal keypoint detector,” pp. 1–8, 2022.

[22] D. Lu, Q. Xie, K. Gao, L. Xu, and J. Li, “3dctn: 3d convolution-
transformer network for point cloud classification,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, pp. 24854–24865, 2022.

[23] M. J. Hsu, Y. H. Chien, W. Y. Wang, and C. C. Hsu, “A convolutional
fuzzy neural network architecture for object classification with small
training database,” International Journal of Fuzzy Systems, vol. 22,
pp. 1–10, 2 2020.

[24] J. Cao, Y. Li, M. Sun, Y. Chen, D. Lischinski, D. Cohen-Or, B. Chen,
and C. Tu, “Do-conv: Depthwise over-parameterized convolutional
layer,” IEEE Transactions on Image Processing, vol. 31, pp. 3726–
3736, 2022.

[25] S. Arora, N. Cohen, and E. Hazan, “On the optimization of deep
networks: Implicit acceleration by overparameterization,” vol. 80,
pp. 244–253, PMLR, 2 2018.

[26] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” pp. 1912–
1920, 2015.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 689

