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Abstract—Variable digital filters are reconfigurable signal pro-
cessing systems that possess tunable frequency responses. There-
fore, a variable digital filter can carry out real-time online tuning
during filtering operations. To produce a new response in a timely
manner, the transfer-function’s coefficients of a variable filter
must be the functions of the parameter that is adopted for tuning
the filter’s response. In this way, the coefficients are changeable.
This paper considers designing a variable bandpass filter with
a full-band tunable center-frequency (CF). Since the CF can be
changed by using the CF parameter, one can represent the filter
coefficients as the functions of the CF parameter. Another stiff
problem that needs to be carefully solved is the stability issue.
The reason is that updating the filter coefficients during online
tuning may incur instability. This paper deals with this stability
issue by locating the filter’s coefficients inside the stability
triangle through parameter transformations. To this end, we
transform the denominator coefficients into other unconstrained
parameters that can take any values without causing instability.
After the transformations, a nonlinear optimizer can be used
for optimizing the new parameters. A set of fixed-coefficient
bandpass filters with full-band tunable CFs are designed for
illustrating the achieved stability guarantee together with the
achieved considerably accurate approximations.

I. INTRODUCTION

Digital filter is the most fundamental digital system that

is considerably useful in a great number of data processing

fields, including processing various measurement signals and

communication data. Digital filter’s usefulness lies in the

frequency selectivity. That is, digital filters are able to select

important frequency components and cut off unimportant

ones. In digital communications, digital filters are utilized

for limiting frequency bands. Furthermore, many filter ap-

plications need a digital filter that has tunable frequency-

domain characteristics [1]-[15]. Various frequency responses

can be instantly attained by employing such variable digital

filters. Although nonrecursive variable filters are undoubtedly

stable, the recursive ones have the stability problem. Thus, the

stability problem must be treated carefully.
This paper considers designing a stable variable bandpass

filter with adjustable passband center-frequency (CF). The

bandpass filter has a variable center-frequency (VCF), and

the CF can be tuned in the full frequency band (full-band).

As compared to the one in [5], this novel specification has a

wider tuning range. Such a VCF bandpass filter is a variable

signal processing system with variable system coefficients.

For a given VCF bandpass design specification, the target is

to determine the optimal transfer function for approximating

the ideal VCF bandpass response as accurately as possible.

This paper uses the p-norm error criterion to measure the

filter’s deviations. In addition, the passband CF is specified

by using the CF parameter. To get a VCF bandpass filter,

every filter coefficient is realized as a function of the CF

parameter. To get those functions, a two-step procedure is used

in the design process. The first step discretizing a given VCF

bandpass specification, and then approximates the discretized

ones separately. After producing all those bandpass filters, the

second step fits polynomials to the attained filter-coefficient

values. This step yields various fitting polynomials.

The difficult issue in designing such a filter lies in the

stability guarantee. This is done by positioning all the de-

nominator coefficients of the VCF bandpass filter within the

stability triangle. To this end, parameter transformations on

the denominator coefficients are performed. To confirm the

achieved stability, a variety of fixed-coefficient bandpass filters

with different CFs are designed and tested. Computer simu-

lation results are also given for demonstrating the achieved

stability as well as the approximation accuracy.

II. FULL-BAND VCF SPECIFICATION

We consider approximating the bandpass VCF specification

S(ω, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ω ∈ [0, ωs1]

ω − ωs1

ωp1 − ωs1

, ω ∈ [ωs1, ωp1]

1, ω ∈ [ωp1, ωp2]

ωs2 − ω

ωs2 − ωp2

, ω ∈ [ωp2, ωs2]

0, ω ∈ [ωs2, π]

(1)

where ω ∈ [0, π] is used to denote the normalized frequency.

The CF of the passband [ωp1, ωp2] is tuned by the parameter

λ ∈ [0.3π, 0.7π] (2)

and the two passband edge frequencies are defined by

(ωp1, ωp2) = (λ− 0.2π, λ+ 0.2π). (3)

Moreover, the two stopband edge frequencies are

ωs1 = ωp1 − 0.10π = λ− 0.3π

ωs2 = ωp2 + 0.10π = λ+ 0.3π.
(4)
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Fig. 1. Desired full-band VCF responses.

The parameter λ is called CF parameter, which is used for

tuning the passband CF. Clearly, the width of the passband ω ∈
[ωp1, ωp2] remains unchanged (0.4π), and the two transition

bands ω ∈ [ωs1, ωp1] and ω ∈ [ωp2, ωs2] have a fixed width

(0.10π). One can conclude from the above parameter settings

that the passband CF varies in the full frequency band.

Here, we use the coefficient-parameterized transfer function

T (z, λ) =

I1∑
i=0

di(λ)z
−i

I2∏
i=1

(
1 + ci,1(λ)z

−1 + ci,2(λ)z
−2

) (5)

whose amplitude response fits S(ω, λ) in (1). As λ varies,

the passband CF of S(ω, λ) in (1) continuously varies. To

approximate S(ω, λ), we first equally sample the interval in

(2) by using the same stepsize 0.4π/(L − 1), L = 16. This

produces L equally-spaced samples λl. That is,

λ ∈ [0.3π, 0.7π] −→ λ1, λ2, · · · , λL.

The corresponding discretized specifications are

S(ω, λ1), S(ω, λ2), · · · , S(ω, λL). (6)

Those specifications S(ω, λl) are given in Fig. 1, which have

different passband CFs, but the same passband width (0.4π).

III. TWO-STEP DESIGN METHOD

The design tries to determine the optimum coefficients

di(λ), ci,1(λ), ci,2(λ)

as the functions of λ. This is achieved by executing the

following 2 separate steps.

A. Step-1: Designing Constant Bandpass Filters Tl(z)

This step approximates each bandpass VCF specification

S(ω, λl) in (6) by using a constant bandpass filter

Tl(z) =

I1∑
i=0

diz
−i

I2∏
i=1

[1 + ci,1z
−1 + ci,2z

−2]

. (7)

Specifically, the transfer functions are individually related to

the specifications S(ω, λl) as

T1(z) ⇐⇒ S(ω, λ1)

T2(z) ⇐⇒ S(ω, λ2)

...

TL(z) ⇐⇒ S(ω, λL).

(8)

Each of the above approximations minimizes the p-norm error

(deviation), leading to a nonlinear programming problem.

Before proceeding with the nonlinear minimization, a critical

issue involving the stability needs to be carefully addressed. In

other words, the resulting filter Tl(z) in (7) may be unstable

unless the coefficients ci,1, ci,2 in its denominator meet the

stability condition {
|ci,1| < 1 + ci,2

|ci,2| < 1.
(9)

To ensure the stability of the filter Tl(z), it is necessary to

impose the stability condition in (9) on the above-mentioned

minimization. Indeed, the two inequalities in (9) specify a

stable region known as stability triangle. If all points (ci,1, ci,2)
are forced to move within the triangle, the filter Tl(z) is stable.

Evidently, only the coefficients {ci,1, ci,2} in the denominator

of Tl(z) influence the stability. Therefore, one should not

directly optimize {ci,1, ci,2}. This is because the direct op-

timization may produce an unstable filter Tl(z).
This paper tackles this issue by transforming {ci,1, ci,2} into

the functions of another set of unknowns {xi,1, xi,2} as also

shwn in [5]. The transformations utilize a function g(x) to

transform {ci,1, ci,2} into{
ci,1 = β · g(xi,1)(1 + ci,2)

ci,2 = β · g(xi,2).
(10)

In the above transformations, a constant 0 < β < 1 is fixed,

and g(x) features

|g(x)| ≤ 1. (11)

The above transformations guarantee that the stability condi-

tion (9) is met for any {xi,1, xi,2}. The transformations mean

that an arbitrary point (xi,1, xi,2) in the xi,1-xi,2 plane can be

mapped to the point (ci,1, ci,2) in the ci,1-ci,2 plane, and the

point (ci,1, ci,2) definitely falls into the inside of the stability

triangle. Hence, the design methodology is to optimize the

new unknowns xi,1, xi,2 based on the transformations in (10)
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Fig. 2. Function employed for transformations.

rather than directly optimize {ci,1, ci,2}. This trick leads to a

stable recursive bandpass filter Tl(z). This paper employs the

function

g(x) = tanh(x)

as shown in Fig. 2. This function meets |g(x)| ≤ 1, and it is

also used in [5].

Based on the transformations in (10), we design Tl(z) one

by one, l = 1, 2, · · · , L. The optimum values of {di, xi,1, xi,2}
are determined such that the p-norm of the amplitude devia-

tions is minimized. For example, designing T1(z) for approx-

imating S(ω, λ1) implies that {di, xi,1, xi,2} are optimized by

minimizing the p-norm deviation

δp =

[
K∑

k=1

W (ωk)|δ(ωk)|p
]1/p

(12)

where ωk (k = 1, 2, · · · ,K) are discretized frequencies in

[0, π], δ(ωk) is the approximation error at frequency ωk, i.e.,

δ(ωk) = S(ωk, λ1)− T1(ωk)

and T1(ωk) is the amplitude response of T1(z).

B. Step-2: Getting VCF Bandpass Filter

After Tl(z), l = 1, 2, · · · , L, are attained, the optimized

values of {di, xi,1, xi,2} are available. That is, each Tl(z)
corresponds to its coefficient values as

T1(z) ←→ {di, xi,1, xi,2}
T2(z) ←→ {di, xi,1, xi,2}

...

TL(z) ←→ {di, xi,1, xi,2}.

(13)

The next step is to fit each coefficient values, say d1, by

using a polynomial in λ. This fitting operations produce all

the polynomials

di(λ), xi,1(λ), xi,2(λ).

As a result, the final VCF bandpass filter T (z, λ) in (5) can

be attained by utilizing the changeable coefficients

di(λ), ci,1(λ), ci,2(λ)

where ci,1(λ) and ci,2(λ) are generated from xi,1(λ) and

xi,2(λ) by employing the transformations{
ci,2(λ) = β · g(xi,2(λ))

ci,1(λ) = β · g(xi,1(λ))[1 + ci,2(λ)].
(14)

IV. COMPUTER SIMULATIONS

The ideal VCF bandpass magnitude response in (1) is

approximated using the parameter settings

(I1, I2) = (8, 4)

(K,L) = (1001, 16)

(p, β) = (100, 0.99).

The weighting function in (12) is

W (ωk) =

{
1, ωk ∈ [0, ωs1] ∪ [ωp1, ωp2] ∪ [ωs2, π]

0.2, transition bands.
(15)

The computer simulations employ a nonlinear programming

to minimize the p-norm error in (12). Starting at zero initial

coefficient values for the minimization, we get the positions

of (ci,1, ci,2) along with the stability triangles illustrated in

Fig. 3 for Tl(z), l = 1, 2, · · · , L. Fig. 3 illustrates that

all the points (ci,1, ci,2) are forced to be located within the

triangles. This is attributed to the transformations adopted.

Therefore, Fig. 3 confirms that the stability has been achieved.

Furthermore, Fig. 4 plots the positions of all the poles for

Tl(z), l = 1, 2, · · · , L. Clearly, all the poles are positioned

within the unit circles, which is also consistent with the

achieved stability. Fig. 5 depicts the amplitude responses of

the obtained Tl(z), l = 1, 2, · · · , L.

The approximation accuracy of each Tl(z) is assessed by

computing the errors

δp =

[
K∑

k=1

W (ωk)|δ(ωk)|p
]1/p

δmax = max {W (ωk)|δ(ωk)|}

δ2 =

√√√√√√√√√√

K∑
k=1

|δ(ωk)|2

K∑
k=1

|S(ωk, λl)|2
× 100%

where ωk are frequency samples in [0, π], and

δ(ωk) = S(ωk, λl)− Tl(ωk)

represents the error at frequency ωk, Tl(ωk) is the gain

response of Tl(z). The mean values are

δp = 0.020439, δmax = 0.020088, δ2 = 2.123088%.
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Fig. 3. Checking positions of (ci,1, ci,2) .
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Fig. 4. Checking positions of poles.

V. CONCLUSION

A two-step design method incorporating transformations has

been detailed for achieving stable bandpass filters with full-

band tunable CFs. To ensure the stability of the resultant

bandpass filters from the nonlinear minimization, the original

denominator-coefficient pairs are first converted to another

set of new unknowns. Then, the nonlinear minimization is

executed for optimizing the coefficients. This ensures that the

denominator-coefficient points are definitely positioned within

the stability triangle, and thus the resulting bandpass filters

are stable. The coefficients of a VCF bandpass filter can be

obtained as the functions of the CF parameter λ through fitting

the coefficient values of the bandpass filters Tl(z).
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Fig. 5. Checking the actual magnitudes of Tl(z).
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