
Abstract— Simulating multivariate random variables is 
essential in data analytics as it allows for more accurate 
modeling, improved decision-making, and a better 
understanding of complex systems and processes. The NORTA 
algorithm, a widely used method, can accomplish this task. 
However, it requires an initial correlation matrix to produce 
multivariate random variables with the desired correlation 
matrix, and both matrices usually differ. This paper presents an 
efficient simulation-based algorithm for determining the initial 
correlation matrix, leveraging quasi-Monte Carlo integration 
with the Halton sequence, an adaptive sum of squared errors, 
and some probability distributions. The proposed algorithm is 
tested to generate many cases of multivariate random variables
with different distributions and different correlation matrices. 
The results show that this algorithm can substantially reduce 
time compared to the traditional simulation-based method.

I. INTRODUCTION

Understanding and simulating correlations among random 
variables plays a pivotal role in big data analytics and practices 
across various fields, such as finance, engineering, and 
machine learning. The interconnected nature of complex 
systems necessitates the accurate simulation of correlated 
variables to enhance prediction quality, inform decision-
making, and optimize risk assessment. In the context of big 
data analytics in finance, Leduc et al. [1] underscored the 
significance of incorporating correlations in systemic risk 
assessment. Within engineering, Qiu et al. [2] employed 
copula-based modeling to design reliable water distribution 
systems, emphasizing the importance of accounting for 
correlations in accurate estimation and infrastructure planning. 
Goodfellow et al. [3] investigated how generative adversarial 
networks (GANs) can be used to simulate correlated random 
variables in image synthesis tasks. This shows how important 
it is to understand correlations to improve the quality and 
realism of images.

There are various techniques for generating multivariate 
random variables. According to Niaki and Abbasi [4],
generating methods can be classified into three categories: 1) 
the  analytical approach, which utilizes marginal distribution 
functions and conditional distribution functions to generate 
multivariate random variables. This method has its limitations 
when it is not feasible to find conditional distribution 
functions; 2) the numerical approach, which involves the 
acceptance/rejection method and requires the selection of a 
joint probability density function that covers the joint 
probability density function of the desired multivariate random 
variables; and 3) the simulation approach, which employs 
specific properties in the transformation process, such as the 
NORTA (NORmal-To-Anything) transformation, also known 
as the Nataf transformation. This method utilizes marginal 
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probability density functions and a correlation matrix, which 
have specific properties for generating multivariate random 
variables. The NORTA transformation was proposed by Cario 
and Nelson [5], and its conceptual origins come from the 
works of Mardia [6] and Li and Hammond [7].

The NORTA transformation aims to generate a vector of 
multivariate random variables with desired distributions and a
correlation matrix by transforming a vector of multivariate 
normal random variables. This involves generating a vector of
standard normal random variables, 1, , T

mY YY . Then, 
perform a Cholesky decomposition of the initial correlation 
matrix Z to obtain a lower triangular matrix L such that 

T
Z . Note that Z is a symmetric matrix:

(1,1) (1, 2) (1, )
(2,2) (2, )

( , )

Z Z Z

Z Z
Z

Z

m
m

m m

.

Next, create a transformed vector by applying the Cholesky 
decomposition to the standard normal random variables:
Z LY . Finally, generate a vector of the multivariate random 
variable 1, , T

mX XX , where 1
i i iX F z and 1

iF

is the inverse of the cumulative distribution of iX . Finally, 

1, , T
mX XX is claimed to be a vector of multivariate 

random variables where each , 1, 2,...,iX i m has a given 
marginal distribution and the correlation matrix is X [5]. 

Implementing the NORTA transformation requires 
establishing an initial correlation matrix Z for a multivariate 
random variable vector with various distributions, aiming to 
achieve the targeted correlation matrix X . The initial 
correlation matrix typically differs from the target, X ,
necessitating the determination of an initial correlation matrix.
Cario and Nelson [5] suggested using the bisection method to 
determine Z , and later studies focused on finding the 
relationship between the initial and desired matrices.

The correlation between two variables is measured by:

, , i j i j
X i j

i j
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Term i jE X X in (1) can be written as
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and ,Z i j , which is the element in Z , is the correlation 
between iZ and jZ . From ( 1) and ( 2) , the relationship 
between ,X i j and ,Z i j can be presented in ( 3) as 
follows: ,X i j

1 1
1

, , ,

i i j ji j
i j

i j i j i j Z

F z F z
dz dz

z z i j
.  (3)

Xiao [8] wrote (3), in the form of

1 1

0 0

1, , ; , ,i j
X i j Z i j

i j i j

i j H u u i j du du (4)

where , ; ,i j zH u u i j

1 1 1 2 1, 1 , ,
i ii z i z jF u F i j u i j u

,i iZ Y 21 ,j Z i Z iZ Y Y ,i iu Y and ju

jY . Generally, solving (3) for ,Z i j given the desired 

correlation matrix ,X i j is not easy because there are 
( 1)m m equations.

II. LITERATURE REVIEW

Several studies have proposed methods for determining the 
initial correlation matrix when iX and jX are continuous 
random variables, such as the empirical formulae proposed by 
Kiureghian and Liu [9] , the root finding method proposed by 
Liu and Kiureghian [ 10] , and the linear search method 
proposed by Li et al.  [11] .  However, when iX or jX is a 
discrete random variable, these methods cannot be used to 
solve the equations. Avramidis et al. [ 12] studied the 
correlation function between ,Z i j and ,X i j , and
they also developed a method to determine the value of

,Z i j for discrete random variables. Avramidis [ 13]
expanded this study to the case of mixed continuous and 
discrete random variables. Niaki and Abbasi [4] proposed an 
artificial neural network method for generating correlated 
multivariate random variables.

Niavarani and Smith [ 14] proposed a method for 
generating multivariate random variables using NORTA, 

which avoids solving a system of equations when n is large.
The steps are described from (i) to (vii) as follows:

(i) Create a random symmetric matrix D with 
principal diagonal elements equal to 0 and other elements as 
random numbers in 1 , ,  1 ,X Xi j i j ;

(ii) Create the initial correlation matrix Z by adding 
the matrix D to X , i.e, Z X ;

(iii) Check if Z is a positive definite matrix. If not, 
create D again until Z is a positive definite matrix;

(iv) Use Z to create a multivariate random variable 
vector with the desired distribution of 5,000 vectors;

(v) Estimate ,X i j by using the method of moments
in the following:

22
ˆ , i i j j

X

i i j j

X X X X
i j

X X X X
;           (5)

(vi) Calculate the sum of squared errors:
21

1 1
ˆ, ,

m m

X X
i j i

SSE i j i j ;

(vii) Check if SSE is less than the acceptable sum of 
squared errors, targetSSE . If SSE is greater or equal to 

targetSSE , go back to the step of creating a new matrix D until 
a multivariate random variable vector can be created with the 
desired distribution and SSE is less than targetSSE . This will 
result in a multivariate random variable vector of 5,000 
vectors. This method, developed by Niavarani and Smith [14],
will be compared to our method.

The method introduced by Niavarani and Smith [14] is 
easy to comprehend but may require extensive processing time 
due to matrix creation with element ijd that must be within a 

given range 1 , ,1 ,x xi j i j . For example,
creating multivariate random variables whose marginal 
distributions are Binomial(n = 3, p = 0.5) and 
Gamma(shape 14.4, scale 0.03424) will produce

,Z i j of approximately 0.5181 for ,X i j of 0.5. Many 
iterations of different correlations are tried before reaching the 
desired answer, making the processing time lengthy. Xiao [8] 
also proposed a method to tackle this issue. The process 
involves transforming the double integral evaluated for 

,X i j into an independent standard uniform space and 
introducing a quasi-Monte Carlo method to calculate the 
double integral. For a given ,X i j , an appropriate ,Z i j
is determined using the false position method. Although this 
method may be less efficient than existing approaches, it is 
comparatively easier to implement.

For this reason, this research presents an engaging method 
that tackles the challenges associated with generating elements 
in matrix D that appear in the method proposed by Niavarani 
and Smith [14]. By utilizing random variables with 
exponential or half-normal distributions, the method ensures 
that values in matrix D are always greater than zero. 
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Furthermore, we also modify the algorithm by introducing the 
adaptive sum of squared errors. This approach is employed 
iteratively to adjust the matrix, aiming to achieve a lower value
of SSE with each iteration compared to its predecessor. Lastly, 
for a more accurate estimation of the double integral in (4), a 
simulation-based Monte Carlo method using Halton sequences 
is utilized.

III. QUASI-MONTE CARLO METHOD

The conventional Monte Carlo method for assessing 
multidimensional integrals relies on pseudo-random 
integration nodes and is commonly employed when quadrature 
techniques prove too complex or costly to execute. As a more 
effective alternative, it has been proposed that utilizing quasi-
random sequences, which are more uniformly distributed than 
pseudo-random ones, can lead to reduced error and enhanced 
convergence rates [15]. One of the most popular quasi-Monte 
Carlo (QMC) methods employs the Halton sequence, which is 
known for its low-discrepancy properties [16]. The Halton 
sequence is a quasi-random number sequence that exhibits a
fairly uniform distribution. However, as the dimensionality of 
the Halton sequence increases, the uniformity of the 
distribution decreases. The Halton sequence is generated using 
the base representation of counting numbers with prime bases.

Let , 2m m be a counting number. Any counting number 
k can be uniquely represented in base m as:

2
0 1 2 ,r

rk b b m b m b m

0,1, , ,i r 0 1,ib m

where 1r rm k m . Moreover, any 0,1c can be 
uniquely represented in base m as:

1 2
0 1 ,  0 1,  0,1, 2,ic c m c m c m i .

Conventionally, this is written as 1 1 0r rk b b b b and 

0 1c c c . Hence, a one-to-one correspondence between 
counting numbers and real numbers in the interval 0,1 can 
be established as follows:

1 2 1
0 1

r
m ry k b m b m b m .

The term (0,1)my k  is called the radical inverse of k with 
base m . Then, select prime numbers ,  1, 2, ,ip i s , where 
s is the dimensionality of the Halton sequence. Thus, the 
sequence

1
, , ,  1, 2,

sk p py k y k kx (6)

is called the Halton sequence. Fig. 1 depicts the Halton 
sequence, a type of quasi-random sequence that Xiao [8] used 
to estimate double integrations in correlation computations. 
This sequence appears to provide an almost uniform 
distribution of points when considering the distances between 
them. It is important to note that the use of the Halton sequence 
contributes to a reduction in these distances.

IV. PROPOSED ALGORITHM

The proposed algorithm utilized quasi-Monte Carlo 
integration with an update to the sum of squared errors. The 
steps are the following:

Figure 1. An example of 1,000 points of the Halton sequence.

Figure 2. Possible shapes of half-normal distributions.

Step 1. Define the acceptable sum of squared errors 

targetSSE of the covariance matrix of the desired random 

variables and set comparedSSE 1m m .
      Step 2. Set initial X and construct matrix m mS with 
elements ijs , where 

, ,  

0,  
X

ij

sign i j i j
s

i j
,

and X is the desired correlation matrix.
Step 3. Create a random symmetric matrix D with 

dimensions equal to X with elements ijd in matrix D. The 

ijd elements are random variables with a half-normal or 
exponential distribution with specified parameters.

Step 4. Construct the initial covariance matrix Z = 

initial and make Z symmetric.
Step 5. Check the condition 1 , 1,  Z i j i j and 

whether the matrix Z is positive definite.
(5.1) If the condition is met, proceed to step 6.
(5.2) If the condition is not met, return to step 3.
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Step 6. Create matrix 50000 2u using Halton sequences, 
with 0,1iju as the element of the i-th row and j-th column 

of 50000 2u .
Step 7. Estimate ,X i j or (4) from

45 10 1
14

1

1 1ˆ ,
5 10

i j
x i k

ki j i j

i j F u

1 1 2 1
1 2, 1 , ,j z k z kF i j u i j u

where 1
iF and 1

jF are the inverse cumulative 

distribution functions of iX and jX , respectively, and iju

are obtained from step 6.

Step 8. Calculate 
21

1 1
ˆ, ,

m m

X X
i j i

SSE i j i j ,

where ,X i j and ˆ ,X i j are the elements of the i-th 

row and j-th column of X and ˆ
X , respectively.

Step 9. Check if SSE < comparedSSE .

(9.1) If the condition is met, set initial ,Z

ˆ, ,ij X Xs sign i j i j , and comparedSSE SSE .
(9.2) If the condition is not met, proceed to step 10.
Step 10. Check if targetSSE SSE .

(10.1) If the condition is met, return Z .
(10.2) If the condition is not met, return to step 3.

In the process of updating Z by adding S D to
from the previous iteration, we would like to emphasize that 
the exponential distribution and the half-normal distribution 
were chosen for generating elements in matrix D because their 
values are greater than zero. Fig. 2 presents the possible shapes 
of the half-normal distributions with varying scale parameters.

The introduction of comparedSSE serves to accelerate the 
process, minimizing the computational time needed to obtain 

Z with targetSSE SSE , as opposed to not specifying 

comparedSSE . If the current SSE is less than the previous SSE
, i.e., comparedSSE SSE , the current SSE will become the 
criterion for the subsequent iteration or “new” comparedSSE .
This comparison consistently takes place before evaluating the 
current SSE against targetSSE , and simulation studies will 
demonstrate that this approach outperforms the algorithm that 
solely compares SSE with targetSSE .

Consider the task of generating a multivariate random 
variable 1 2, TX XX with target

63 10 .SSE Here, the 
marginal distributions of 1X and 2X are defined by a Poisson 
distribution with a rate of 10 and a Gamma distribution with a 
shape parameter of 2 and a scale parameter of 3, respectively. 
The algorithm that has been proposed yields a value of 
approximately –0.5273 for the correlation coefficient

1, 2Z and this will be utilized within the framework of the 
NORTA algorithm to generate a set of 10,000 points, as 
depicted in Fig. 3. From the generated points, the estimated 

correlation coefficient ˆ 1,2X amounts to 0.499557 , and 

the corresponding SSE is calculated to be 71.96267 10 .

It becomes evident that the proposed algorithm can be 
utilized for the generation of multivariate random variables. 
These variables play a crucial role in fields such as data 
analytics and machine learning [17].

Figure 3. An example of generated points where the marginal distributions 
follow the Poisson and Gamma distributions.

V. CASE STUDIES OF SIMULATIONS

For the proposed algorithm, exponential and half-normal 
distributions are used for generating elements in matrix D ,
with mean values set to 0.3, 0.15, 0.075, 0.05, 0.025, 0.01, and 
0.005. Our algorithm will be compared to the traditional 
algorithm that estimates the correlation matrix using the 
method of moments.

In the case of multivariate simulation studies, the number 
of variables (m) will be set to 2, 3, and 4 variables, with five 
distributions: Poisson rate 0.8 representing a discrete 
asymmetric distribution, Uniform{1,2,...,10} and Binomial

3,n 0.5p representing discrete symmetric 
distributions, Exponential scale 10 representing a 
continuous asymmetric distribution, and Gamma(shape
14.4, scale 0.0342) . There are a total of 10 situations listed 
below:

Situation 1: Discrete asymmetric random variables are 
divided into 3 cases:

Case 1: 1X , 2X ~ Poisson;

Case 2: 1X , 2X , 3X ~ Poisson;

Case 3: 1X , 2X , 3X , 4X ~ Poisson.

Situation 2: Continuous asymmetric random variables are 
divided into 3 cases:

Case 4: 1X , 2X ~ Exponential;
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Case 5: 1X , 2X , 3X ~ Exponential;

Case 6: 1X , 2X , 3X , 4X ~ Exponential.

Situation 3: Discrete asymmetric and continuous 
asymmetric random variables are divided into 3 cases:

Case 7: 1X ~ Poisson, 2X ~ Exponential;

Case 8: 1X , 2X ~ Poisson, 3X ~ Exponential;

Case 9: 1X , 2X ~ Poisson, 3X , 4X ~ Exponential.

Situation 4: Discrete asymmetric and discrete symmetric 
random variables are divided into 3 cases:

Case 10: 1X ~ Poisson, 2X ~ Uniform;

Case 11: 1X , 2X ~ Poisson, 3X ~ Uniform;

Case 12: 1X , 2X ~ Poisson, 3X , 4X ~ Uniform.

Situation 5: Asymmetric continuous and symmetric 
continuous distributions:

Case 13: 1X ~ Exponential, 2X ~ Gamma;

Case 14: 1X , 2X ~ Exponential, 3X ~ Gamma;

Case 15: 1X , 2X ~ Exponential, 3X , 4X ~ Gamma.

Situation 6: Asymmetric discrete and symmetric continuous
distributions:

Case 16: 1X ~ Poisson, 2X ~ Gamma;

Case 17: 1X , 2X ~ Poisson, 3X ~ Gamma;

Case 18: 1X , 2X ~ Poisson, 3X , 4X ~ Gamma.

Situation 7: Symmetric discrete and asymmetric continuous
distributions:

Case 19: 1X ~ Uniform, 2X ~ Exponential;

Case 20: 1X , 2X ~ Binomial, 3X ~ Exponential;

Case 21: 1X , 2X ~ Binomial, 3X , 4X ~ Exponential.

Situation 8: Symmetric discrete distributions:

Case 22: 1X , 2X ~ Binomial;

Case 23: 1X , 2X , 3X ~ Binomial;

Case 24: 1X , 2X , 3X , 4X ~ Binomial.

Situation 9: Approximately symmetric continuous
distributions:

Case 25: 1X , 2X ~ Gamma;

Case 26: 1X , 2X , 3X ~ Gamma;

Case 27: 1X , 2X , 3X , 4X ~ Gamma.

Situation 10: Discrete symmetric random variables with 
approximately symmetric continuous variables are divided 
into 3 cases:

Case 28: 1X ~ Binomial, 2X ~ Gamma;

Case 29: 1X , 2X ~ Binomial, 3X ~ Gamma;

Case 30: 1X , 2X ~ Binomial, 3X , 4X ~ Gamma.

The desired correlation matrix ( )X is defined as follows: 
For the 2-variable cases, X is set to

1 0.5
0.5 1

,

and targetSSE is 63 10 . For the 3-variable cases in situations 
1 – 7, X is set to

1 0.2 0.6
0.2 1 0.2
0.6 0.2 1

,

and targetSSE is 56 10 . For the 3-variable cases in situations 
8 – 10, X is equal to

1 0.2 0.8
0.2 1 0.2
0.8 0.2 1

,

and the acceptable squared sum of errors is 56 10 . For the 4-
variable cases in situations 1 – 7, X is equal to

1 0.4 0.2 0.6
0.4 1 0.4 0.3
0.2 0.4 1 0.1
0.6 0.3 0.1 1

,

and targetSSE is 43.5 10 . Finally, for the 4-variable cases in 
situations 8 – 10 , X is equal to

1 0.7 0.5 0.9
0.7 1 0.7 0.6
0.5 0.7 1 0.3
0.9 0.6 0.3 1

,

and targetSSE is 43.5 10 .

The research presented in this paper was conducted using a 
computer with an Intel(R) Core(TM) i7-8565U CPU, clocked 
at a speed between 1.80 GHz and 1.99 GHz, and equipped with 
16GB of RAM. The corresponding codes were programmed in 
R, version 4.2.2 [18].

VI. RESULTS AND CONCLUSIONS

Table I presents the average time in seconds needed to 
identify the initial correlation for the NORTA algorithm, along 
with the average of SSEs. These results are derived from the 
optimal configuration of all potential mean values for both 
exponential and half-normal distributions. For example, in 
case 1, the average times for the exponential distribution with 
means of 0.3, 0.15, 0.075, 0.05, 0.025, and 0.01 are 2.65, 1.51, 
1.30, 0.98, 0.82, 1.38, and 2.61, respectively. For the half-
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normal distribution with the specified means, the average 
times are 2.95, 1.67, 1.75, 0.98, 0.74, 1.33, and 2.49, 
respectively. Consequently, the best average time of 0.74 is 
obtained from using the half-normal distribution and will only 
be selected to be shown in Table 1. For such a configuration, 
the corresponding SSE is about 60.8 10 , considered to be the 
best average SSE. The notation (H) means the setting with a 
half-normal distribution yields the lowest time, and (E) means 
the exponential distribution.

As the number of variables increases, the average time 
required to complete the process increases significantly. 
Generating 4-dimensional variables cannot be accomplished 
within 15 minutes, leading to a lack of SSE values in such 
cases. In all cases, the SSEs of the proposed algorithm are 
lower. While the half-normal distribution may be favored over 
the exponential distribution, it is not clearly evident which one 
is superior. Nevertheless, utilizing small random numbers 
from both distributions as elements of matrix D proves more 
effective than using uniform random numbers, which are 
employed in traditional simulation-based methods.

In conclusion, using a quasi-Monte Carlo can improve the 
accuracy of double integration in (4), and besides only 
determining targetSSE , using the additional criterion of 

comparedSSE can reduce the time it takes to identify the initial 
correlation matrix for NORTA.

TABLE I. AVERAGE TIME AND ERRORS

m Case

Simulation-based 
Algorithm Proposed Algorithm

Average
Time

Average
SEE

Average
Time

Average
SSE

2

1 8.24 (H) 5.6x10-6 0.74 (H) 0.8x10-6

4 3.46 (H) 2.9x10-6 0.31 (H) 1.5x10-6

7 5.2 (H) 4.0x10-6 0.26 (E) 1.0x10-6

10 2.42 (E) 9.4x10-6 0.27 (H) 1.2x10-6

13 5.47 (E) 11.2x10-6 1.12 (E) 2.1x10-6

16 7.29 (H) 9.4x10-6 1.67 (H) 2.0x10-6

19 1.17 (H) 8.1x10-6 0.21 (H) 0.5x10-6

22 2.72 (H) 10.8x10-6 0.74 (H) 0.6x10-6

25 1.82 (E) 19.7x10-6 0.51 (H) 5.1x10-6

28 4.06 (H) 16.6x10-6 0.89 (H) 2.2x10-6

3

2 275.30 (E) 4.8x10-5 5.99 (E) 3.6x10-5

5 256.80 (E) 11.9x10-5 5.03 (E) 9.2x10-5

8 179.44 (E) 6.9x10-5 1.24 (E) 2.3x10-5

11 184.48 (E) 11.3x10-5 2.77 (H) 3.1x10-5

14 246.49 (H) 12.4x10-5 5.16 (E) 5.0x10-5

17 242.74 (E) 9.1x10-5 4.45 (E) 3.4x10-5

20 197.73 (E) 7.9x10-5 1.34 (H) 3.3x10-5

23 129.25 (H) 8.3x10-5 2.04 (H) 3.4x10-5

26 137.92 (E) 4.4x10-5 2.02 (H) 6.0x10-5

m Case

Simulation-based 
Algorithm Proposed Algorithm

Average
Time

Average
SEE

Average
Time

Average
SSE

29 213.35 (H) 5.5x10-5 3.10 (H) 3.0x10-5

4

3 > 900 - 9.25 (H) 2.7x10-4

6 > 900 - 3.13 (H) 2.8x10-4

9 > 900 - 4.44 (H) 2.6x10-4

12 > 900 - 1.99 (H) 2.6x10-4

15 > 900 - 11.36 (E) 3.7x10-4

18 > 900 - 7.72 (H) 2.6x10-4

21 > 900 - 2.49 (E) 2.5x10-4

24 > 900 - 6.51 (H) 2.5x10-4

27 > 900 - 2.88 (E) 3.2x10-4

30 > 900 - 7.30 (E) 2.0x10-4
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