
Benchmarking Database for A Case Charging of
Data Sponsor in Telecom

Van Chuong Do∗, Van Duong Nguyen∗, Cong Dan Pham∗, Ngoc Tien Nguyen∗

Ngoc Hieu Pham∗∗, Duc Dung Nguyen∗∗
∗OCS Research Center, Viettel High Technology, Viettel Group, Hanoi, Vietnam

∗∗Global Technical Center, Viettel Network Corporation, Viettel Group, Hanoi, Vietnam
(chuongdv2, duongnv21, danpc, tiennn18, hieupn, dungnd18)@viettel.com.vn

Abstract—Database plays an important role in software archi-
tecture and greatly influences system performance. In this paper,
we evaluate how two databases, Cassandra and Aerospike, adapt
the data sponsor concurrency problem in the telecom sector. To
obtain the evaluation result, we provide a method by building
the test cases in different scenarios.

Keywords—Database, Benchmarking, Cassandra, Aerospike,
5G, Data Sponsor, Flow Charging

I. INTRODUCTION

As we mentioned, databases have an important role in a
software system. Especially in the telecom sector, when the
number of customers increases, the explosion of new services
in the 4G 5G era. These challenges set the requirements for
large data storage and transaction processing performance of
the database.

This paper discusses the concurrency problem of data
sponsors in telecom and considers how databases adapt to
this problem. A data sponsor is a service that the customer
service provider (CSP) provides data offers to businesses or
individuals with many subscribers to use a sharing account.
When many devices share a sponsor, the transaction per
second (TPS) requirement for concurrent device access needs
a database with higher performance. Data sponsor and pricing
models are studied in previous research, for example, [1], [2],
[3], or in IoT domain as [4]. Sponsored data is a new pricing
model that allows content providers (CPs) to subsidize some
of this cost. While much smart data pricing (SDP) research has
introduced various ways to charge end-users for data access
[5], [6], [7] sponsored data instead introduces a new party to
data pricing: content providers (CPs). This model is applied
in business by many content providers (CPs) company as
Facebook [8], Internet Service Providers (ISPs) such as AT&T
and Verizon [9], [10], Syntonic Wireless and DataMi, U.S
Federal Communications [11]. Data sponsors in the 4.0 era
is a favorite service of large enterprises because of its flexible
application capabilities in a variety of purposes, bringing a lot
of value in connecting with customers. Industry groups should
apply Data Sponsor flexibly and reasonably to maximize their
use and bring efficiency to their brand promotion or customer

care campaigns. Database technologies help telecom service
providers to provide this service.

Database plays an important role in software architecture
and greatly influences the system’s performance. This is espe-
cially important for the online charging system (OCS), with
most of the time spent querying and updating the database.
There are two main types of databases: SQL and NoSQL.

SQL has a long history and supports vertical scaling.
ACID (Atomicity, Consistency, Isolation, Durability) transac-
tion NoSQL supports horizontal scaling. The horizontal scale
support helps NoSQL have the advantage of dealing with data
in industries rising over time. In addition, removing properties
ACID helps the transactions’ latency become much smaller.
The transference from SQL to NoSQL helped us succeed with
our OCS version 3.0. We consider benchmark performance for
two NoSQL Databases used in our OCS for the Data Sponsor
problem: Cassandra and Aerospike. Casandra this is a popular
database and free, and Aerospike is an in-memory database
that is faster and licensed software.

• Cassandra: It is a distributed database and supports wide
column mode. It provides zero downtime ability, non-
single fail of point, linear scalability [12]. It also supports
the language CQL, likely SQL, and is friendly with users.
In addition, it also helps online transactions. Cassandra
supports well for Big Data problem [13], [14], [15].

• Aerospike: It is a distributed database supporting multi-
model. It supports an in-memory database engine then
it has high performance. Aerospike is suitable for ap-
plications requiring low latency. Moreover, Aerospike
supports scalability with zero downtime. It also supports
the language AQL as SQL.

Our contribution is that we build the test cases to give a
detailed performance evaluation for two NoSQL Cassandra
and Aerospike. We also evaluate how these databases adapt
to the concurrency problem of mobile data sponsor. How
the criteria and settings were considered with two different
databases for evaluation? Based on the characteristics of the
data sponsor problem: High levels of concurrent occur on
small numbers of records. Customer information is usually

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

FriA1P.4

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1326

stored on NoSQL databases to meet the performance and
speed of transaction processing. Therefore, we evaluate two
typical NoSQL databases in terms of high performance and
popularity: Aerospike and Cassandra. The main consideration
is the performance and latency of the two databases when the
frequency of high transactions occurs on the same record.

The rest of the paper is as follows. Section II details the
system architecture and mentions the transactions which are
read and written on the database. Section III describes how to
implement Datas chema and Simulator. Section IV delineates
our testing methodology and the simulation result. Finally,
Section V summarizes the results and discusses the direction
of future research.

II. ARCHITECTURE

A. Software architecture

The architecture of our OCS for the data sponsor problem
is shown in Figure 1.

Middleware Systems: The middleware system helps to
provide association and division between different network
elements and services in telecommunications. Middleware
includes MSC, SMSC, and IMS.

• MSC: A Mobile Switching Center (MSC), sometimes
referred to as a Mobile Switching Server (MSS), is a
component of 2G and 3G cellular networks that approves
or rejects voice communications from one device to
another and helps manage roaming.

• SMSC: A Short Message Service Center (SMSC) is a
network element in the mobile telephone network. Its
purpose is to store, forward, convert and deliver Short
Message Service (SMS) messages

• IMS (IP Multimedia Subsystem): The IP Multimedia
Subsystem or IP Multimedia Core Network Subsystem
(IMS) is a standardized architectural framework for de-
livering IP multimedia services

Gateway: Integrates with Middleware systems through pro-
tocols such as SMPP, DCC, and Restful to convert into internal
protocols and route to applications in the Online Charging
System.

Applications: The set of applications plays a crucial role
in charging for various Telco services such as Voice, Data,
SMS, and PCRF, as well as NonTelco services like IoT
and Mobile Money. These applications are responsible for
processing charging requests and interacting with the Gateway
to receive incoming requests. After performing the charging
process, the applications also communicate with the ABM
(Account Balance Management) system to retrieve and update
data profiles based on the charging activities.

ABM: Account Balance Manager (ABM) is a module
playing the role of a proxy for querying and updating data
on a database (DB). DB is a database software playing the
role of storage data operations. For non-supporting transaction
NoSQL database, ABM also plays simulator transactions suit-
able for operational purposes. The use of ABM helps separate
logic application and logic storage data and helps to simplify

in development of operations. To simulate transactions along
with ACID properties, ABM performs:

• ABM performs data querying before updating and saves
the data state for rollback purposes. The rollback mech-
anism helps ABM achieve the atomicity property of the
transaction.

• ABM ensures data consistency by validating the state of
the data before updating it into the database. For example,
the account balance must be greater than 0.

• ABM employs the Multiversion Concurrency Control
(MVCC) technique [16] to ensure isolation during con-
current data processing. MVCC is a concurrency control
technique that allows transactions to read and write data
simultaneously without causing data conflicts. It ensures
that each transaction views data in a specific version,
avoiding inconsistent data reads caused by other transac-
tions performing simultaneous updates. The lightweight
transaction feature in Cassandra and the check and set
mechanism in Aerospike are utilized to support the im-
plementation of MVCC in ABM.

• Durability is ensured by NoSQL databases.
NoSQL Database is a database software playing the role of

storage data operations.

B. Transaction
ABM is a simulator transaction suitable for processes com-

bined with available database support. Read-Write transactions
perform Charging and billing operations. Aerospike supports
read-write transactions by UDF or Record Read-Modify-Write
(compare and set) [17]. Cassandra also supports read-write
transactions by lightweight transaction [18]. Charging flow
is performed based on comparing and setting features of the
database as follows:

• Step 1: The application performs query client data from
the database.

• Step 2: The application performs charging previous using
the data session and reserves a quota for the next session
based on business policy. (When subscribers access the
internet and use data service in some pre-defined duration
time, we call a session).

• Step 3: The application updates the client’s data on the
database through ABM.

• Step 4: ABM receives the profile update message of the
client, including the updated profile and actions acted on
the profile.

• Step 5: ABM builds request compare and set, updates
client’s profile, and sends request update to the database.

• Step 6: If ABM receives a successful response from
the database, it sends the successful response to the
Application. Suppose it gets failed response because of
the failures of compare and set, then ABM proceeds to
retry. If ABM receives the failed response because of
other errors, it returns failure to the application.

In the case of failure of request update because of compare
and set fail, data have changed, and request updates have been
built based on old data. The flow retry is following:

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1327

Figure 1. Software architecture

• Step 1: Verify if the condition retry is satisfied or not.
If the condition retry is invalid, it returns failure to the
Application. If the condition retry is valid, perform step
2.

• Step 2: ABM sends a query request to the database to
get the latest profile of the client.

• Step 3: If ABM fails to receive the client’s profile, it
returns failure to the Application. If it received the client’s
profile successfully, perform the next step.

• Step 4: Update profile based on a received request from
the Application. Build request compare and set and sends
new request update profile to database.

• Step 5: If the database returns a successful response, it
returns success to the Application. If it returns a failure
response, perform step 1.

III. IMPLEMENTATION

A. Dataschema

The information of the client is stored in a profile. When
testing performance for the data sponsor problem, we use a
simple profile as in Table 1.

TABLE 1. PROFILE

Name of
attributes Data type Description

subId String client’s id
msisdn String client’s number
email String email address

address String place of residence
firstName String Name
birthDay long birthday

sex byte gender

generation long logic clock for update
profile

balanceMap map<long, Balance> list of client’s account

TABLE 2. BALANCE

Attributes Data type Description
balanceId long Account Id

balType long Account type (prepaid, postpaid,
promotion)

gross long current money
consume long spent money
reserve long reserve money from client

B. Simulator

We use the java programming language to develop simu-
lators application and ABM. Application and ABM interact
with each other by TCP/IP protocol. We use lib micro chassis
developed based on the netty framework to communicate
between the application and ABM. The transmitted messages
between ABM and the application are in JSON format. We
also use the library DataStax java driver version 4.14.1 to
integrate with Cassandra [19]. We also use Aerospike java
client version 4.4.20 to integrate with Aerospike [20].

IV. EXPERIMENTATION

A. Methodology

1) Data preparation: For the data sponsor problem, in the
actual context, maybe there are a hundred thousand to a million
devices charging on the same account. Therefore, we mainly
test performance when updating data for the 1 record on the
database. We consider only one record for one data sponsor
because we consider the concurrency problem, not storage.
We evaluate the performance and TPS for query updates
simultaneously for all devices in the same data sponsor. The
data we use is a profile including entire attributes and has a
size of 150 bytes. The profile is configured with replication
factor = 3 on both databases, Cassandra and Aerospike. The
consistency level for Cassandra is SERIAL. The consistency
level for aerospike is ALL.

2) Software and Hardware for Benchmark: We use Cassan-
dra server version 4.3.0 and Aerospike version 5.0. Cassandra
and Aerospike were installed on the Red Hat Enterprise Linux
system version 7.8. Table 3 lists the configurations of deployed
servers in this study. .

TABLE 3. HARDWARE FOR BENCHMARK

Database servers
CPU Intel (R) Platinum 8260 @ 2.40GHZ (96cpus)
RAM 256GB 2933 MT/s

Network BCM57414 NetXtreme-E 10Gb/25Gb RDMA
Disk Dell Express Flash NVME P4610 1.6TB SFF

We tune the configuration following the guide optimization
of Cassandra and Aerospike.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1328

3) Test scenario: We use different test scenarios to discover
the TPS maximum of Cassandra and Aerospike.

• Scenario 1: 1 application performs charging flow.
• Scenario 2: 2 applications perform simultaneously charg-

ing flow.
• Scenario 3: 4 applications perform simultaneously charg-

ing flow.
• Scenario 4: 8 applications perform simultaneously charg-

ing flow.
4) Get results: For every 1s, we log out the TPS, latency,

and error results. To avoid bias in a performance evaluation,
we take the average of 100 consecutive measurements.

In the next Section, we present the test result and discuss
how it meets for concurrency problem. In the figures, the
numbers 1, 2, 4, 8 refer to the number of applications.

B. Test result

Figure 2. Cassandra query

Figure 3. Cassandra update

1) Cassandra: According to Figures 2 and 3, TPS seems
not to change when the number of concurrent client increase.
The difference between the highest TPS and the lowest TPS
is 14 TPS. Similarly, query latency also does not change
significantly when the number of concurrent clients increases.
The difference between the highest and lowest latency is

only 0.05ms. However, update latency increases linearly when
the number of concurrent clients increases. When this num-
ber increases, the error rate update also increases linearly.
The amount of error update is also corresponding to the
interruption of service and affects the customer experience.
Furthermore, Cassandra archives 359 TPS and query latency
0.5287ms, and update latency 1.6905ms is the best-used case.

Due to the nature of read-modify-write transactions, the
query TPS is equal to the update TPS. A query command
will be executed only after a successful update. When the
update TPS reaches its maximum (as the level of concurrency
increases, leading to conflicting updates and affecting latency),
however, the query TPS has not reached the maximum of the
entire database. Therefore, the latency of queries is not affected
(or affected only minimally).

Figure 4. Aerospike query

Figure 5. Aerospike update

2) Aerospike: Similar to the case of Cassandra, the TPS
of query and update are the same. TPS increases when the
number of concurrent clients increases. TPS at the number of
concurrent clients 8 is 4 times more than TPS at the number
of concurrent clients 1. When the number of concurrent
clients increases from 1 to 4, query latency does not change
significantly. However, when this number increases to 8, query
latency increases significantly 0.08ms. For update transaction,
latency and the amount of error update increases quickly when

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1329

the number of concurrent client increases from 2 to 8. In
the best-used case, Aerospike attains TPS 2966 with a query
latency of 0.138ms and an update latency of 0.3186ms.

TABLE 4. DATABASE PERFORMANCE

TPS Query latency
(ms)

update latency
(ms)

Cassandra 359.278 0.5287 1.6905
Aerospike 2966.6769 0.138 0.3186

3) Evaluation result of Cassandra and Aerospike: The test
is conducted to discover the maximum TPS achievable when
multiple applications are concurrently updating the same data
in the database. Simultaneously, the test also evaluates the
impact of the number of concurrent updates on the system’s
latency, the success rate of messages (with retries), and the
corresponding error transactions per second.

The Multiversion Concurrency Control technique, allows
multiple concurrent clients to read data from one record.
However, at any given time, only one update command can
be successfully executed. When a record is modified, and its
version is increased, update requests based on the previous
version will fail and require retries by querying the record with
the latest version and building update requests based on this
data. After three unsuccessful retries, the request is considered
an update error.

Therefore, as the number of concurrent clients increases,
if the number of requests per second has not exceeded the
maximum TPS, the latency will increase (due to the need
to retry updates caused by conflicts), until too many retries
increase the number of error transactions. When the requests
per second exceed the maximum TPS, even retrying updates
cannot improve the situation, leading to a limitation where the
success of TPS cannot increase, and the latency worsens.

To overcome this limitation, systems that require higher-
frequency concurrent data updates need to implement alterna-
tive measures such as:

• Dividing data into smaller data records to reduce the
impact on the same data.

• Using solutions to merge multiple small transactions into
a larger transaction for execution (near-real-time charging
or offline charging).

For Cassandra and Aerospike, the number of update errors
increases linearly as the level of concurrency rises. When
update errors occur, it indicates a service failure. Therefore,
we will only consider the TPS and latency of Aerospike
and Cassandra in the scenario where there are no update
errors. As in Table 4, Aerospike has TPS 11 times greater
than Cassandra. The query latency of Aerospike is faster,
approximately 0.4ms, than Cassandra. In addition, the update
latency of Aerospike is 1.3ms faster than Cassandra. The sig-
nificantly slower Cassandra than Aerospike is due to database
architecture. Two main points that help Aerospike dominate
are the following:

• Because Aerospike is an in-memory database (IMDB),
data is processed in RAM. Meanwhile, Cassandra store

data on DISK. The difference in the write-read speed of
RAM and DISK leads Aerospike to attain better latency
in write-read data.

• Cassandra bears a high cost of performance when us-
ing the Paxos consensus algorithm to install lightweight
transactions.

4) Suitable level for data sponsor: Every client makes a
load in sharing models of 1 sponsor - 1000 devices, 1 sponsor
- 10,000 members, 1 sponsor - 100,000 members, 1 sponsor
- 1000,000 members, with average of every 5 minutes, a
member requests again to use the resource of the sponsor.
TPS concurrent update on a sponsor is shown in Table 5.

TABLE 5. DATASPONSOR TPS

No. Case Concurrent TPS
per Sponsor data

1 1 sponsor 1000 members 3.3 tps
2 1 sponsor 10,000 members 33 tps

3 1 sponsor 100,000
members 333 tps

4 1 sponsor 1000,000
members 3333 tps

We can see that Cassandra meets enough of the case of 1
sponsor and 100,000 members. Aerospike can satisfy the prob-
lem of 1 sponsor and nearly 1000,000 members. However, in
actual context implementation, when the number of members
gets millions, Cassandra also adapts to this problem with a
simple technique. That is to open more sponsors and divide
members into different sponsors.

V. CONCLUSION

The evolution of the 4G 5G era, with the explosion of many
millions of customers, requires a new technology database.
In real-time charging for 5G service, to satisfy customer
experience and operate smooth services, we use the latest
modern database as Aerospike. In the paper, we evaluate how
two NoSQL, Cassandra and Aerospike adapt the concurrency
problem for data sponsors.

Some limitations to mention in the scope of the review:

• The simulation behavior because the transaction into
the system may be different from the actual customer
behavior.

• The review is narrow in scope, assuming that every
customer transaction on the same data sponsor is updated
to the data sponsor’s common data, but in reality, there are
many methods of organizing and processing data. other
data (for example offline charging, aggregating charges
by day, hour, and minute cycle) to reach this problem of
data sponsor.

In the future, we will continue to discover business models
in the real world, new services, and new operations and study
how the database can adapt. Specially, we will study how to
apply data sponsor service in IoT service, and other digital
services in 5G, and find out the performance of database
technologies for these services.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1330

REFERENCES

[1] C. Joe-Wong, S. Sen, and S. Ha, “Sponsoring mobile data: Analyzing
the impact on internet stakeholders,” IEEE/ACM Transactions on Net-
working, vol. 26, no. 3, pp. 1179–1192, 2018.

[2] Z. Wang, L. Gao, T. Wang, and J. Luo, “Monetizing edge service in
mobile internet ecosystem,” IEEE Transactions on Mobile Computing,
vol. 21, no. 5, pp. 1751–1765, 2020.

[3] Y. Zhao, Q. Tan, X. Xu, H. Su, D. Wang, and K. Xu, “Congestion-
aware modeling and analysis of sponsored data plan from end user
perspective,” in 2022 IEEE/ACM 30th International Symposium on
Quality of Service (IWQoS). IEEE, 2022, pp. 1–11.

[4] Y. Zhu, W. Bao, D. Wang, and J. Liu, “A stackelberg queuing model and
analysis for the emerging connection-based pricing in iot markets,” in
2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart
Systems (MASS). IEEE, 2022, pp. 417–425.

[5] S. Sen, C. Joe-Wong, S. Ha, and M. Chiang, “Smart data pricing
(sdp): Economic solutions to network congestion,” Recent advances in
networking, vol. 1, pp. 221–274, 2013.

[6] S. Sen, C. Joe-Wong, S. Ha, and M. Chiang, “Incentivizing time-shifting
of data: a survey of time-dependent pricing for internet access,” IEEE
Communications Magazine, vol. 50, no. 11, pp. 91–99, 2012.

[7] S. Sen, C. Joe-Wong, S. Ha, and M. Chiang, “Smart data pricing:
Using economics to manage network congestion,” Communications of
the ACM, vol. 58, no. 12, pp. 86–93, 2015.

[8] J. Malcolm, C. McSherry, and K. Walsh, “Zero rating: What it is and
why you should care,” blog, Deeplinks, Electronic Frontier Foundation,
vol. 4, 2016.

[9] AT&T. (2017) At&t sponsored data. [Online]. Available: http:
//www.att.com/att/sponsoreddata/en/index.html#fbid=fNjHshoHkg

[10] Verizon. (2017) Freebee data. [Online]. Available: http://freebee.
verizonwireless.com/business/freebeedata

[11] J. Kastrenakes. (2017) Republicans are ready to take down the
fcc. [Online]. Available: http://www.theverge.com/2017/2/10/14577404/
republicans-fcc-reform-modernization-removeconsumer-protections

[12] [Online]. Available: https://cassandra.apache.org
[13] A. Chebotko, A. Kashlev, and S. Lu, “A big data modeling methodology

for apache cassandra,” in 2015 IEEE International Congress on Big
Data. IEEE, 2015, pp. 238–245.

[14] K. Anusha, N. Rajesh, M. Kavitha, and N. Ravinder, “Comparative
study of mongodb vs cassandra in big data analytics,” in 2021 5th Inter-
national Conference on Computing Methodologies and Communication
(ICCMC). IEEE, 2021, pp. 1831–1835.

[15] N. Bodiroga, M. Antić, P. Zečević, and M. Bjelica, “Evaluation of
fleet management data collection backend using cassandra database,”
in 2021 Zooming Innovation in Consumer Technologies Conference
(ZINC). IEEE, 2021, pp. 177–181.

[16] P. Bernstein and N. Goodman, “Concurrency control in distributed
database systems,” ACM Computing Surveys, vol. 13, pp. 185–, 06 1981.

[17] Aerospike. Developers: Understanding aerospike trans-
actions. [Online]. Available: https://aerospike.com/blog/
developers-understanding-aerospike-transactions/

[18] Cassandra. Cassandra documentation. [Online]. Available: https:
//cassandra.apache.org/doc/latest/cassandra/architecture/guarantees.html

[19] dataStax. datastax java driver. [Online]. Available: https://docs.datastax.
com/en/developer/java-driver/4.14/

[20] Aerospike. Java client library release notes. [Online]. Available:
https://download.aerospike.com/download/client/java/notes.html

Van Chuong Do received his B.Sc. degree in Infor-
mation Technology in 2020 from Hanoi University
of Science and Technology, Vietnam. He is currently
a software engineer in Viettel High Technology,
Viettel Group. He has many years of experience with
distributed databases and high-performance comput-
ing, especially for telecommunications. His research
interests include distributed computing and cloud
computing.

Van Duong Nguyen received his B.Sc. degree
in Mathematics and Informatics Engineering from
Hanoi University of Science and Technology, Viet-
nam in 2015. He is currently manage a database
team of the Research Center for OCS (Online
Charging Platform) of Viettel High-Tech Industry
Corporation (VHT), Viettel Group. He has many
years of experience in research and development of
5G core systems such as online charging system. His
research interests include telecommunications core
networks and database technologies.

Cong Dan Pham received his PhD. Degree in Prob-
ability and Statistics from Aix-Marseille University,
France in Jun 2014. He has academic experience
in universities like Aix-Marseille University, Hanoi
University of Education, and industry experience
companies like Viettel Group. He has published var-
ious journal and conference papers in IEEE and Sci-
enceDirect. His research interests include probability
and statistics, data science and machine learning.

Ngoc Tien Nguyen received his B.Sc. degree in
Information Technology in 2020 from University
of Engineering and Technology - Vietnam National
University, Hanoi. He is currently a software en-
gineer in Viettel High Technology, Viettel Group.
He has industry experience with databases and high-
performance computing, especially for telecommu-
nications.

Ngoc Hieu Pham received his B.Sc. degree in
Electronics and Telecommunications from Ha Noi
University of Technology, Vietnam in 2009. He is
currently managing the OCS team of the Global
Technical Center of Viettel Network Corporation
(VTNET), Viettel Group. He has many years of
experience in designing, implementing and main-
taining OCS systems. His research interests include
telecommunications core networks and Cloud Com-
puting.

Duc Dung Nguyen received his B.Sc. degree in
Mathematics and Informatics in 2010 from Hanoi
University of Science - Vietnam National University,
Hanoi. He is currently an IT engineer in Viettel
Network, Viettel Group. He has industry experience
with databases and high-performance computing,
especially for telecommunications.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1331

